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ABSTRACT

Longitudinal samples of DNA sequences, the DNA sequences sampled from the same population at
different time points, have increasingly been used to study the evolutionary process of fast-evolving
organisms, e.g., RNA virus, in recent years. We propose in this article several methods for testing genetical
isochronism or detecting significant genetical heterochronism in this type of sample. These methods can
be used to determine the necessary sample size and sampling interval in experimental design or to
combine genetically isochronic samples for better data analysis. We investigate the properties of these test
statistics, including their powers of detecting heterochronism, assuming different evolutionary processes
using simulation. The possible choices and usages of these test statistics are discussed.

LONGITUDINAL samples, or serial samples, are sam-
ples taken at a series of time points from the same

population. Strictly speaking, almost all DNA sequence
samples in population genetics studies are longitudinal
samples, since the sequence sample from different indi-
viduals is most likely taken at different times, although
the time interval between samplings may be small. In
most cases, such samples can be safely regarded as a
sample taken at a single time point, which simplifies
analysis of the data. The justification of such a conven-
tion is that the sampling interval is so small that the
possible mutations accumulated on the sequences stud-
ied within the sampling intervals are negligible. In other
words, these samples are genetically isochronic. How-
ever, for organisms with a very high mutation rate, e.g.,
RNA virus, caution must be taken in the sampling inter-
vals because the genetic change within the samples may
be significant. In fact, for fast-evolving organisms, samples
are purposely taken at different time points to keep track
of the change in the population. Several new statistical
methods have been developed for analyzing longitudi-
nal DNA samples (reviewed by Drummond et al. 2003).

Important questions with regard to the experimental
design include how large a sample size and how long a
sampling interval is needed for conducting a meaning-
ful genetic analysis. Sample sizes that are too small may
render the study useless and sampling intervals that are
too long may lead to loss of important information from
the population. Furthermore, very short sampling in-
tervals may be unnecessary and cost ineffective.

Because genetic difference is the primary informa-
tion in such studies, genetical isochronism is a suitable

criterion for guiding experiment design. A test of genet-
ical isochronism along with simulation can show the
probability of detecting the desired genetic change
within samples with given sample sizes, sampling inter-
vals, and evolutionary models. Such tests can also be
used to guide the combination of genetically isochro-
nic samples to obtain a larger ‘‘single sample’’ in the
data analysis. The increased sample size and reduced
parameter space will in general lead to more powerful
analysis.

Seo et al. (2002b) studied the optimal experimental
design specially for estimating mutation rate and di-
vergence time using longitudinal samples. The purpose
of the present article is to develop general statistical tests
for detecting genetical heterochronism (i.e., deviation
from genetical isochronism). Assuming a fixed geneal-
ogy of the samples, such a test can be built under a
likelihood framework (e.g., Rambaut 2000; Drummond

et al. 2001; Rodrigo et al. 2003). However, the genealogy
of the samples is usually unknown and not easy to infer
with accuracy, so that a general test based on summary
statistics without assumption of genealogies may be
desirable. The tests proposed in this article are based
on two groups of summary statistics of longitudinal
samples, one of which is the average nucleotide differ-
ence between two sequences between and within sam-
ples, and the other is the number of private mutations
within samples. Different linear combinations of these
summary statistics were used to construct test statistics.
Besides the permutation approach we also used simula-
tion to determine the critical values of the tests. For
each combination of test statistics and critical values, the
test powers with different sample sizes and sampling
intervals under different evolutionary models were in-
vestigated. Finally, the choices of test statistics and criti-
cal values under different circumstances are discussed.

1Corresponding author: Human Genetics Center, School of Public
Health, University of Texas, P.O. Box 20186, 1200 Herman Pressler,
Houston, TX 77030. E-mail: yunxin.fu@uth.tmc.edu

Genetics 176: 327–342 (May 2007)



CONSTRUCTING STATISTICAL TESTS

Genetical isochronism: Define genetical isochronism
as the genetic equivalence of two statuses of the same
population at two successive time points, which is due to
the time interval being relatively small such that the
gene frequencies were not changed significantly by
mutation and/or genetic drift, so that genetical iso-
chronism is a statistical concept. If the two statuses of the
population are significantly different, they are geneti-
cally heterochronic. Let G be a measure of the differ-
ence of gene frequencies between two samples taken at
different time points in a population; then the null
hypothesis of the test of isochronism is G ¼ 0 and the
alternative hypothesis is G . 0.

Two-sample model: Suppose there are two samples
taken from an evolving haploid population at times t0
and t0 1 t, respectively, where t is the sampling interval in
generations. Let n1 and n2 be the sizes of samples taken
at t0 and t0 1 t, respectively. Define the population
mutation rate u ¼ 2Nem, where Ne is the effective
population size and m is the mutation rate per gene site
per generation, both assumed to be constant.

Test statistics based on the average nucleotide
difference between two sequences between and within
samples: Let Pi (i ¼ 1, 2) be the average number of
nucleotide differences between two sequences from
sample i. Let P12 be the average nucleotide differences
between two sequences, one from sample 1 and the
other from sample 2. That is,

P1 ¼
2

n1ðn1 � 1Þ
X
i , j

d
ð1;1Þ
ij

P2 ¼
2

n2ðn2 � 1Þ
X
i , j

d
ð2;2Þ
ij

P12 ¼
1

n1n2

Xn1

i¼1

Xn2

j¼1

d
ð1;2Þ
ij ;

where dðk;lÞij is the nucleotide difference between the ith
sequence of sample k and the jth sequence of sample l.

The expectations of P1, P2, and P12 under the
neutral Wright–Fisher model are

EðP1Þ ¼ u;

EðP2Þ ¼ u;

EðP12Þ ¼ u 1 mt;

where E( ) stands for mathematical expectation (e.g.
Drummond and Rodrigo 2000; Fu 2001).

Here testing genetical isochronism is equivalent to
testing the null hypothesis of mt¼ 0. It is easy to see that
the expectations of both (P12�P1) and (P12�P2) are
equal to mt and that the expectations of any linear com-
bination of (P12 � P1) and (P12 � P2) are equal to 0
under the null hypothesis. The above analyses result in
the following form of test statistics by standardizing a
linear combination of (P12 � P1) and (P12 � P2),

Dc ¼
P12 � cP1 � ð1� cÞP2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Var½P12 � cP1 � ð1� cÞP2�
p ; ð1Þ

where
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n2
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�
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is the variance of P12 � cP1 � ð1� cÞP2 under the null
hypothesis of mt ¼ 0 (see appendix a).

Three particular values of c, 1, 0, and c1 ¼ n1ðn1 � 1Þ=
ðn1ðn1 � 1Þ1 n2ðn2 � 1ÞÞ are of interest. The first two
correspond to D1 ¼ ðP12 �P1Þ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðP12 �P1Þ

p
and

D0 ¼ ðP12 �P2Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðP12 �P2Þ

p
.

Since the expectation of P12 � cP1 � ð1� cÞP2 equals
mt, a significant positive value of Dc is taken as evidence
of heterochronism, which corresponds to the one-tail test
of the alternative hypothesis of Dc . 0 vs. Dc ¼ 0.

Test statistics based on the number of private
mutations within samples: Define the number of private
mutations within a sample as the number of sites that
are only polymorphic in that sample but are mono-
morphic in the other sample. Let Kp(i) (i ¼ 1, 2) be the
number of private mutations of sample i. Wakeley and
Hey (1997) showed that the expectations of Kp(1) and
Kp(2) under the null hypothesis are

EðKpð1ÞÞ ¼ u an11n2 � an2 �
ðn1 � 1Þ!ðn2 � 1Þ!
ðn1 1 n2 � 1Þ!

� �
ð3Þ

EðKpð2ÞÞ ¼ u an11n2 � an1 �
ðn1 � 1Þ!ðn2 � 1Þ!
ðn1 1 n2 � 1Þ!

� �
; ð4Þ

where an ¼ 1 1 1
2 1 . . . 1 1=ðn � 1Þ.

If the sampling interval is big, both samples will tend
to contain more mutations that are ‘‘private’’ to that
sample. In other words, the expectations of both Kp(1)
and Kp(2) will be larger than their expectations under
the null hypothesis of no sampling interval. So both
Kp(1) and Kp(2) and their linear combinations can be
used to test genetical isochronism. Therefore we con-
sider a group of tests of the form

Tc ¼
cðKpð1Þ � EðKpð1ÞÞÞ1 ð1� cÞðKpð2Þ � EðKpð2ÞÞÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Var½cKpð1Þ1 ð1� cÞKpð2Þ�
p :

ð5Þ
Five particular values of c, 1, 0, 0.5, c2 ¼ n2=ðn1 1 n2Þ,
and c3 ¼ n2

2=ðn2
1 1 n2

2Þ, are of interest.
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For example, if c ¼ 1 or 0, (5) is simplified to T1 ¼
ðKpð1Þ � EðKpð1ÞÞÞ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðKpð1ÞÞ

p
or T0 ¼ ðKpð2Þ�

EðKpð2ÞÞÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðKpð2ÞÞ

p
.

Var½cKpð1Þ1 ð1� cÞKpð2Þ� is the variance of cKpð1Þ1
ð1� cÞKpð2Þ under the null hypothesis. There is no
simple formula for Var½cKpð1Þ1 ð1� cÞKpð2Þ�. However,
it can be calculated with the formulas

Var½cKpð1Þ1 ð1� cÞKpð2Þ�

¼ c2VarðKpð1ÞÞ1 ð1� cÞ2 VarðKpð2ÞÞ
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where jij is the number of mutations whose frequency is
i in sample 1 and j in sample 2, and d is an index variable
such that it takes the value 1 if conditions in parentheses
are true and takes the value 0 otherwise [see appendix b

for derivation of (13)]. The test of genetical isochro-
nism is equivalent to the one-tail test of the alternative
hypothesis of Tc . 0 vs. Tc ¼ 0.

DETERMINING THE LEVEL OF SIGNIFICANCE

Simulation: Although all the test statistics proposed in
this article are in standardized form, their distributions
do not follow a normal distribution or other standard
distributions under the null hypothesis, which is similar
to the tests for single sample (e.g., see Fu and Li 1999).
Furthermore, when such statistics are applied, an
estimation of u is needed to replace u in formulas (2),
(3), (4), and (13). Therefore simulation has to be used
to determine the critical values of these tests. However,
the standardization does help to minimize the effect of
u, n1, and n2 on the test statistics and will lead to more
accurate and stable estimation of critical values using
interpolation (see below).

To obtain the critical values of Dc’s and Tc’s, we first
simulated independent samples under the null hypoth-
esis with a large number of combinations of u, n1, and
n2. We chose 40 different n1 [n1¼ 5 (5) 100 (10) 300, i.e.,
5, 10, 15, . . . , 100, 110, . . . , 300], 40 different n2 [n2 ¼
5 (5) 100 (10) 300] and 46 different u [u ¼ 0.2 (0.1) 1
(0.2) 3 (0.5) 4 (1) 20 (5) 50 (10) 80]. For each of the
parameter sets, 20,000 independent samples were sim-
ulated using the coalescent algorithms (e.g., Hudson
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1983). From each sample, all test statistics were calcu-
lated with u’s in formulas (2), (3), (4), and (13) replaced
by Watterson’s estimator (Watterson 1975) ûw ¼
K=an11n2

, where K is the total number of polymorphic
sites when combining samples 1 and 2. The empirical
critical values for each parameter set can be easily
determined from the empirical distribution. For exam-
ple, the critical value of a given test with a 5% sig-
nificance level is the 95th percentile of the empirical
distribution of that test statistic after ascending sorting.
The critical values of other combinations of parameters
can be obtained by interpolating the values from the big
table obtained above.

Permutation: Permutation or shuffling has been
widely used in data analysis for conducting tests without
assumption of normality of the test statistics (e.g., Ewens

and Grant 2005). The procedure of permutation is easy
to conduct: (1) combine sample 1 and sample 2 into a
big sample; (2) randomly pick n1 sequences from the big
sample to form a pseudosample 1 and let the remaining
n2 sequences be pseudosample 2 (each one of such a
shuffle is called a permutation); (3) from pseudosam-
ples 1 and 2, calculate some specified test statistics; (4) re-
peat the process above from step 2 for a large number of
times (20,000 times in our tests); and (5) the empirical
critical values can be obtainedsimilar to that of simulation.

The rationale behind the procedure is as follows. In
the procedure of permutation, each test statistic esti-
mated from each permutation has the same probability.
If the null hypothesis is true, the actual observed value
of the test statistic should have only probability a to be
among the 100a% most extreme values. On the other
hand, if the alternative hypothesis is true, the random
permutation will tend to shift the distribution of the test
statistic estimated from each permutation to that
expected under the null hypothesis, which will make
the actual observed value of the test statistic more likely
to be among the extreme values.

POWERS OF THE TESTS

Since the main purpose of this research is to develop
guidelines for experimental design, we are mostly in-
terested in the effects of n1, n2, u, and mt on the power of
the tests. For each combination of parameters, 5000 inde-
pendent samples were simulated using coalescent algo-
rithms, which assume a neutral Wright–Fisher model with
constant population size. Each test was applied to the
simulated samples and the frequency of successful detec-
tions by a given test was used as an estimate of its power.

Figure 1 shows the powers of the tests (Dc’s and Tc’s)
using the critical values determined by simulation, with
different n1, n2, and mt and fixed u¼ 10. Figure 2 shows
the powers of the same tests with u¼ 40. Figures 3 and 4
show the powers of the tests using the critical values
determined by permutation, corresponding to the same
parameters of Figures 1 and 2, respectively. Figure 5

shows the minimum sample sizes (assuming n1 ¼ n2)
needed to achieve 50 or 90% power using Dc1

and T0:5

(which are identical to Tc2
and Tc3

in this case) with a
5% significance level. For example, to achieve 50%
detection power using T0:5 with a 5% significance level,
we need a minimum sample size n1 ¼ n2 ¼ 16 for a
population with u¼ 5 or n1¼ n2¼ 101 for a population
with u ¼ 100.

The results can be summarized as follows:

1. The test power is positively correlated with mt, that is,
the larger the mt the higher the power. On the other
hand, u is negatively correlated with the test power,
i.e., the larger the u the lower the test power.

2. The larger the total sample size the higher the test
power, which is true for all test statistics. However, the
effects of n1 and n2 on different test statistics are quite
different. If total sample size is fixed, T0 and D1 have
higher powers when n1 . n2 than when n2 . n1. On
the contrary, T1 and D0 have higher powers when n1 ,

n2 than when n2 , n1. D1 and D0 have higher powers
when n1¼ n2 than when n1 . n2 or when n1 , n2. T0:5

has higher power than T1 and T0 when n1¼ n2, but its
power is in between those of T1 and T0 when n2 . n1

or n2 , n1. The powers of Tc2
and Tc3

are consistently
better than those of both T1 and T0. The power Dc1

is
higher than that of D1 and D0 in general.

3. Tc2
and Tc3

are the most powerful test statistics in
general. Dc1

is also quite powerful when n1 ¼ n2.
Especially when mt is relatively large, e.g., the quantity
is comparable to u, it can be the most powerful test
statistic under such a condition.

4. In general, tests using critical values determined by
permutation are slightly more powerful than those
using the critical values determined by simulation.
This is largely because they consider the sampling
variation but not the evolutionary variation (see
discussion). But there are some exceptions; e.g.,
T1 may be slightly less powerful using the critical
values from permutation rather than using those
from simulation, especially when n1 , n2 and/or with
population growth (see discussion).

AN EXAMPLE

Here we use longitudinal samples of env genes of
human immunodeficiency virus (HIV)-1 from Rodrigo

et al. (1999) to illustrate the use of the tests developed in
this article. These longitudinal samples were taken from
an AIDS patient over a course of 3 years. After the first
blood sample was taken from the patient, four other
blood samples were taken 7, 22, 23, and 34 months later.
From each blood sample, between 8 and 15 DNA se-
quences of a 0.65-kb region of HIV env gene were
obtained. The summary of their sample is listed in Table
1 of Rodrigo et al. (1999).

Consider sample 1 and sample 2 first. We have n1 ¼ 13,
n2 ¼ 15, P1 ¼ 18:03, P2 ¼ 17:75, P12 ¼ 19:56,
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Kpð1Þ ¼ 46, Kpð2Þ ¼ 41, and K ¼ 113. Then we obtained
ûw ¼ K=an11n2

¼ 29:04, which replaces u in formulas (2),
(3), (4), and (13), and calculated the test statistics (Table
1). Finally, we used permutation and simulation to get the

empirical distributions of the test statistics and then
obtained the empirical P-values (Table 1).

Table 2 shows the P-values of Tc2
using the critical

values determined by simulation and permutation for

Figure 1.—Powers of Dc’s and Tc’s with 5% significance level determined by simulation (u ¼ 10). T0.5, Tc2
, and Tc3

are identical
when n1 ¼ n2.
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all pairwise comparisons of the samples. Most of them
are ,0.05, and therefore most pairs of samples can be
regarded as significant deviation from genetical iso-
chronism. However, all tests involving sample 5 based

on simulation are not significant while all those based
on permutation are significant or marginally significant.
This may be due to the fact that the sample size of
sample 5 is only eight and is the smallest one of all. With

Figure 2.—Powers of Dc’s and Tc’s with 5% significance level determined by simulation (u ¼ 40). T0.5, Tc2
, and Tc3

are identical
when n1 ¼ n2.
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such a small sample size, Tc2
based on simulation may

be just lack of enough power as that based on per-
mutation. This may be compounded by the possibility
that the mutation rate changed after the third sampling

time because of drug treatment (Drummond et al.
2001).

This example reveals the issues of sample size in
experimental design. If one wants to study the evolution

Figure 3.—Powers of Dc’s and Tc’s with 5% significance level determined by permutation (u ¼ 10). T0.5, Tc2
, and Tc3

are iden-
tical when n1 ¼ n2.
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of HIV via longitudinal samples of env genes, the
sampling interval of 1 year with sample size �20 is
sufficient for a relatively conservative design.

DISCUSSION

In this article we proposed and studied two forms of
test statistics for testing genetical isochronism, using

Figure 4.—Powers of Dc’s and Tc’s with 5% significance level determined by permutation (u ¼ 40). T0.5, Tc2
, and Tc3

are iden-
tical when n1 ¼ n2.
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critical values based on two different approaches, sim-
ulation and permutation. We showed that the tests with
critical values determined by permutation are slightly
more powerful than those determined by simulation.

The permutation approach also has other advantages:
no parameters need to be estimated (indeed no stan-
dardization is needed), and it is relatively fast for a small
number of tests and easy to program. However, caution

Figure 5.—Minimum sample sizes, assuming n1 ¼ n2 ¼ n, needed to achieve 50 or 90% power using Dc1
and T0.5 (T0.5, Tc2

, and
Tc3

are identical when n1 ¼ n2) with 5% significance level.
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must be taken when using the permutation approach.
There are two levels of variation in samples that will
affect statistical tests. One level is due to the stochastic
nature of evolution, that is, the variation of different
replications (i.e., the resulting populations) of the
same evolution process. The second level is due to the
sampling process, that is, the variation of different
samples from the same population. The permutation
approach effectively assumes that the two samples are
taken from the same population, thus taking into
consideration only the second level of variation. The
result is that the variances of test statistics are smaller
than those from the simulation approach. Nevertheless,
it provides the lower bound of the total variance. On the
other hand, simulation considers both levels of varia-
tion, which makes it more conservative than permuta-
tion. Because of these differences, both approaches are
useful. We suggest using critical values from simulation
as the standard for experimental design, in which the
evolution process is the subject of research. As to the
application for combining genetically isochronic samples
in data analysis, passing tests with critical values from
permutation can be used as a prerequisite because it is
more powerful in detecting heterochronism.

T0.5, Tc2
, and Tc3

are linear combinations of T1 and T0

with different weighting. T0.5 puts equal weights on T1

and T0, while Tc2
and Tc3

put higher weight on T1 than
on T0 when n1 , n2 and higher weight on T0 than on T1

when n1 . n2. Since T0 has a higher power than T1 when
n1 . n2 while T1 has a higher power than T0 when n1 ,

n2, the strategy of putting more weight on the more
powerful test statistic successfully makes the powers of
composite test statistics Tc2

and Tc3
better than or at least

as good as T1, T0, and T0.5. Similarly, Dc1
can also be

regarded as a linear combination of D1 and D0 with
higher weight on D1 than on D0 when n1 . n2 and higher
weight on D0 than on D1 when n1 , n2. The same weight-
ing strategy makes its power higher than D1 and D0 in
general. There are infinite possible linear combinations
of T1 and T0 with different weighting. It is possible to
construct more powerful test statistics than Tc2

and Tc3
.

However, the power of the test statistic depends on many
factors, e.g., n1, n2, mt, and u. The task of looking for the
most powerful test statistic in general may be extremely
hard. Our limited experience showed that the perform-
ances of Tc2

and Tc3
were quite good in most cases we

studied. The same is true for Dc1
. Other than looking for

a single test statistic that is powerful in all situations, an
alternative is to combine different test statistics to form a
multidimensional test that could be more powerful than
any single one of them by taking account of their
different performances under different situations.

In this article we presented several methods for
testing genetical isochronism from two samples at two
time points. Extending them to samples from multiple
time points is of practical value. One possible approach
is to form a test statistics vector consisting of all pairwise
test statistics and testing the significance of deviation of
the observed vector from its expectation. A multivariate
normal distribution may be assumed and the variance
and covariance matrix of such a vector should be cal-
culated. Alternatively, we could define a new global test
statistic, such as the sum of the squares of all pairwise
test statistics, and use simulation to obtain the distribu-
tion of such a global test statistic under the null hypoth-
esis. In such a simulation, multiple samples will be taken
from the same population other than just two samples.
There are many ways to define such a global test statistic
and finding a powerful one will be a challenge.

Although we constructed the test statistics under the
assumption of constant population size, these tests can
also be used under different evolutionary models. We
also investigated the test powers assuming sudden
population growth or shrinkage at the sampling point
of sample 1 (data not shown). Compared to the powers
with constant population size, T0 becomes less powerful
with a decrease in population size in the second sample,
while most of the other tests become more powerful,
especially Dc1

. On the contrary, most tests become less
powerful with an increase of population size in the
second sample while T0 becomes more powerful.

TABLE 1

The values and P-values of test statistics for sample 1 vs. sample 2

Test statistic D1 D0 Dc1
T1 T0 T0.5 Tc2

Tc3

Value 0.321 0.392 0.729 1.866 1.091 2.107 2.151 2.183
P-value 0.260 0.231 0.122 0.044 0.100 0.025 0.023 0.021

0.196 0.158 0.008 0.076 0.422 0.001 0.001 0.003

The first and second rows of P-values are determined by simulation and permutation, respectively.

TABLE 2

P-values of Tc2
for pairwise comparisons of samples

Sample 1 2 3 4 5

1 0.023 0.008 0.003 0.060
2 0.001 0.019 0.037 0.058
3 ,0.001 ,0.001 0.045 0.084
4 0.004 0.001 0.005 0.187
5 0.049 0.010 0.019 0.027

P-values on the top diagonal and on the bottom diagonal
are determined by simulation and permutation, respectively.
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As to the choice of test statistics, we suggest either Tc2

or Tc3
as the first choice, since they are the most

powerful test statistics in most cases we studied. When
there are evidences of population growth, T0 can be
added as a supplement. On the other hand, when there
are evidences of population shrinkage, Dc1

can be added
as a supplement if n1 � n2.

As shown in box 1 in Drummond et al. (2003) and
in this study, the power of tests is positively related to
mt and negatively related to u. This effect can be un-
derstood by examining one of the tests. Take D1, for
example: the numerator is P12 �P1, whose expectation
is mt under the alternative hypothesis. Obviously,
the larger the mt, the larger the departure from 0, which
is expected under the null hypothesis. The denomina-
tor is standard deviation (SD) of P12 �P1 under the
null hypothesis. Using (2), it is easy to show that the
quantity is ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðn1 1 1Þðn1 1 n2Þ1 2ðn2 � 1Þ
6n1n2ðn1 � 1Þ u

1
ðn1 1 4Þðn1 1 n2Þ1 5ðn2 � 1Þ

9n1n2ðn1 � 1Þ u2

vuuuuut ;

which is a monotone increasing function of u. The larger
the u, the larger the SD of P12 �P1, which makes the
deviation from 0 statistically less significant. For other test
statistics, mt and u will increase or decrease their power in
a similar way as for D1.

When conducting tests, we choose to use Watterson’s
estimator ûw ¼ K=an11n2

to replace u for calculating the
test statistics. Other estimators of u can also be used, e.g.,
Tajima’s estimator (Tajima 1983), Fu’s BLUE estima-
tor (Fu 1994), and maximum-likelihood estimators
(Felsenstein 1992; Griffiths and Tavare 1994;
Kuhner et al. 1995). u can also be estimated without
assuming the null hypothesis, that is, be estimated
directly from longitudinal samples, e.g., likelihood-based
methods developed by Drummond et al. (2002) and Seo

et al. (2002a). However, these maximum-likelihood-
based methods are quite time consuming and other
assumptions of evolution process, e.g., constant popula-
tion size, still need to be made. If the assumed evolution
process is true, a more accurate estimator will increase
the test power while retaining the false positive rate.
However, when we are not very sure about the true
evolution process, a relatively conservative test with a
slightly larger estimation of u is desired, and Watterson’s
estimator ûw seems to be a good choice in this case. This
is again similar to the case of a test for a single sample.

Although we constructed the simulation under the
assumption of a neutral Wright–Fisher model with
constant population size, the same test framework can
also be used for testing genetical isochronism under other
evolutionary models. The same Tc’s and Dc’s can still be
used as indicators of deviation from genetical isochro-
nism. However, their expectations and variances are now

different from those used here. If these expectations and
variances cannot be calculated easily under the null
hypothesis with the new evolutionary model, or not many
comparisons are needed, direct simulation under the
null hypothesis with the new evolutionary model can be
used to obtain the empirical distribution of P12�
cP1 � ð1� cÞP2 and cKpð1Þ1 ð1� cÞKpð2Þ, and the criti-
cal values or P-values of the tests can be estimated.

The tests we presented in this article are designed for
detecting genetical heterochronism. However, signifi-
cant test results may be caused by other departures from
the null hypothesis, such as population substructure.
Vice versa, significant tests for population substructure
may also be caused by genetical heterochronism. For
example, Achaz et al. (2004) directly applied Hudson

et al.’s (1992) tests, which were designed for testing
population substructure, to longitudinal samples of
HIV-1 populations and interpreted the significant
results as evidence of genetical heterochronism.

We thank Bruce Walsh and two anonymous reviewers for their
wonderful comments and suggestions. This work was supported by
National Institutes of Health grants GM60777 and GM50428.
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APPENDIX A

To derive (2), we begin with decomposing Var½P12 � cP1 � ð1� cÞP2� :

Var½P12 � cP1 � ð1� cÞP2� ¼VarðP12Þ1 c2VarðP1Þ1 ð1� cÞ2 VarðP2Þ
1 2cð1� cÞCovðP1;P2Þ � 2c CovðP12;P1Þ
� 2ð1� cÞCovðP12;P2Þ: ðA1Þ

VarðP1Þ and VarðP2Þ concern only the information of single samples. Their formulas are known since the seminal
work of Tajima (1983):

VarðP1Þ ¼
n1 1 1

3ðn1 � 1Þu 1
2ðn2

1 1 n1 1 3Þ
9n1ðn1 � 1Þ u2 ðA2Þ

VarðP2Þ ¼
n2 1 1

3ðn2 � 1Þu 1
2ðn2

2 1 n2 1 3Þ
9n2ðn2 � 1Þ u2: ðA3Þ

To compute VarðP12Þ, we decompose it further:

VarðP12Þ ¼ EðP2
12Þ � ½EðP12Þ�2: ðA4Þ

Under the null hypothesis t ¼ 0,

EðP12Þ ¼ u 1 mt ¼ u ¼ EðP1Þ ¼ EðP2Þ ðA5Þ

and

P2
12 ¼

1

n2
1n2

2

Xn1

i¼1

Xn2

j¼1

d
ð1;2Þ
ij

 !2" #

¼ 1

n2
1n2

2

"Xn1

i¼1

Xn2

j¼1

	
d
ð1;2Þ
ij


2
1
Xn1

i¼1

Xn2�1

j¼1

Xn2

j9¼j11

d
ð1;2Þ
ij d

ð1;2Þ
ij9

1
Xn1�1

i¼1

Xn1

i9¼i11

Xn2

j¼1

d
ð1;2Þ
ij d

ð1;2Þ
i9j 1

Xn1�1

i¼1

Xn1

i9¼i11

Xn2�1

j¼1

Xn2

j9¼j11

d
ð1;2Þ
ij d

ð1;2Þ
i9j9

#
; ðA6Þ

where dð1;2Þij is the difference between sequence i of sample 1 and sequence j of sample 2. Since there is no order
structure in either sample 1 or sample 2, i and i9 are just two randomly picked sequences from sample 1, and j and j9 are
just two randomly picked sequences from sample 2, so that

EðP2
12Þ ¼

1

n1n2
E
	

d
ð1;2Þ
ij


2	 

1

n2 � 1

n1n2
E
	

d
ð1;2Þ
ij d

ð1;2Þ
ij9



1

n1 � 1

n1n2
E
	

d
ð1;2Þ
ij d

ð1;2Þ
i9j




1
ðn1 � 1Þðn2 � 1Þ

n1n2
E
	

d
ð1;2Þ
ij d

ð1;2Þ
i9j9



: ðA7Þ

Under the null hypothesis, dð1;2Þij has the same statistical property as dð1;1Þij or dð2;2Þij , so that in the remaining text of
appendix a we just write it as dij regardless of where sequence i or j comes from. According to Tajima (1983),
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Eðd2
ijÞ ¼ u 1 2u2 ðA8Þ

Eðdij dij9Þ ¼ Eðdij di9jÞ ¼
u

2
1

4

3
u2 ðA9Þ

Eðdij di9j9Þ ¼
u

3
1

11

9
u2: ðA10Þ

Combining (A4)–(A10), we have

VarðP12Þ ¼
2n1n2 1 n1 1 n2 1 2

6n1n2
u 1

2n1n2 1 n1 1 n2 1 5

9n1n2
u2: ðA11Þ

Similarly, we can get

CovðP1;P2Þ ¼ EðP1P2Þ � EðP1ÞEðP2Þ ðA12Þ

CovðP12;P1Þ ¼ EðP12P1Þ � EðP12ÞEðP1Þ ðA13Þ

CovðP12;P2Þ ¼ EðP12P2Þ � EðP12ÞEðP2Þ ðA14Þ

and
EðP1P2Þ ¼ Eðdij di9j9Þ ðA15Þ

EðP12P1Þ ¼
2

n1
Eðdijdij9Þ1

n1 � 2

n1
Eðdij di9j9Þ ðA16Þ

EðP12P2Þ ¼
2

n2
Eðdij dij9Þ1

n2 � 2

n2
Eðdijdi9j9Þ: ðA17Þ

Combining (A5), (A8)–(A10), and (A12)–(A17), we have

CovðP1;P2Þ ¼
u

3
1

2

9
u2 ðA18Þ

CovðP12;P1Þ ¼
n1 1 1

3n1
u 1

2ðn1 1 1Þ
9n1

u2 ðA19Þ

CovðP12;P2Þ ¼
n2 1 1

3n2
u 1

2ðn2 1 1Þ
9n2

u2: ðA20Þ

Combining (A2), (A3), (A11), and (A18)–(A20) with (A1), we finally get (2).

APPENDIX B

Fu (1995) showed, for a single sample,

EðjijjÞ ¼ dði¼jÞ
Xn

k¼2

kP ðk; i jnÞEð§2
kÞ1 dði1j # nÞ

Xn

k¼2

kðk � 1ÞPðk; i; k; j jnÞEð§k§9kÞ

1 dði $jÞ
Xn�1

k¼2

Xn

k9¼k11

kk9Paðk; i; k9; j jnÞEð§k§k9Þ

1 dð j $iÞ
Xn�1

k¼2

Xn

k9¼k11

kk9Paðk; j ; k9; i jnÞEð§k§k9Þ

1 dði1j #nÞ
Xn�1

k¼2

Xn

k9¼k11

kk9½Pbðk; i; k9; j jnÞ1 Pbðk; j ; k9; i jnÞ�Eð§k§k9Þ; ðB1Þ

where ji is the number of mutations whose frequency is i. d is an index variable so that it takes the value 1 if all
conditional statements in parentheses are true and takes the value 0 otherwise. Define state k as the time period in
history during which the sample has exactly k ancestral sequences. Then §k is number of mutations accumulated on
one of the ancestral sequences during state k, and §9k is number of mutations accumulated on another ancestral
sequence during state k,
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Eð§2
kÞ ¼

1

kðk � 1Þu 1
2

k2ðk � 1Þ2u2 ðB2Þ

Eð§k§9kÞ ¼
2

k2ðk � 1Þ2u2 ðB3Þ

Eð§k§k9Þ ¼
1

kðk � 1Þk9ðk9� 1Þu
2 ðB4Þ

Pðk; i jnÞ ¼

n � i � 1

k � 2

� �
n � 1

k � 1

� � if k $ 2; 1 # i , n

0 otherwise ðB5Þ

8>>>>><
>>>>>:

is the probability that an ancestral sequence at state k has i descendants in the sample,w

Pðk; i; k; j jnÞ ¼

n � i � j � 1

k � 3

� �
n � 1

k � 1

� � if i 1 j , n; k . 2; i $ 1; j $ 1

1
n�1 if i 1 j ¼ n; k ¼ 2; i $ 1; j $ 1

0 otherwise ðB6Þ

8>>>>>>><
>>>>>>>:

is the probability that two randomly chosen ancestral sequences at state k are of size i and j in the sample,

Paðk; i; k9; j jnÞ ¼

Xminðk9�k11;i�j11Þ

t¼2

k9� k

t � 1

� �
k9� 1

t

� � k � 1

k9

i � j � 1

t � 2

� �
n � i � 1

k9� t � 1

� �
n � 1

k9� 1

� � if i . j ; k9 . k

k � 1

k9ðk9� 1Þ

n � i � 1

k9� 2

� �
n � 1

k9� 1

� � if i ¼ j ; k9 . k

0 otherwise ðB7Þ

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

is the probability that an ancestral sequence at state k and one of its descendant sequences at state k9 (k9 . k) are of size i
and j, respectively, in the sample, and

Pbðk; i; k9; j jnÞ ¼

Xminðk9�2;k9�k 1 1;iÞ

t¼1

k9� k

t � 1

 !

k9� 1

t

 ! ðk � 1Þðk9� tÞ
tk9

i � 1

t � 1

 !
n � i � j � 1

k9� t � 2

 !

n � 1

k9� 1

 ! if i 1 j , n; k9 . k $ 2;

i $ 1; j , n

1

k9j

n � k9

j � 1

 !

n � 1

j

 ! if i 1 j ¼ n; k9 . k ¼ 2;

i $ 1; j , n

0 otherwise

8>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>:

ðB8Þ
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is the probability that an ancestral sequence at state k and one of its nondescendant sequences at state k9 (k9 . k) are of
size i and j, respectively, in the sample.

Extending (B1) for two samples under null hypothesis, we have

Eðjij jlm jn1;n2Þ ¼ dði¼l ;j¼mÞ

n1

i

� �
n2

j

� �
n1 1 n2

i 1 j

� � Xn11n2

k¼2

kP ðk; i 1 j jn1 1 n2ÞEð§2
kÞ

1 dði1l # n1;j 1 m #n2Þ

n1

i

� �
n2

j

� �
n1 � i

l

� �
n2 � j

m

� �
n1 1 n2

i 1 j

� �
n1 1 n2 � i � j

l 1 m

� �

3
Xn11n2

k¼2

kðk � 1ÞPðk; i 1 j ; k; l 1 m jn1 1 n2ÞEð§k§9kÞ

1 dði $ l ;j $mÞ

n1

i

� �
n2

j

� �
i

l

� �
j

m

� �
n1 1 n2

i 1 j

� �
i 1 j

l 1 m

� �

3
Xn11n2�1

k¼2

Xn11n2

k9¼k11

kk9Paðk; i 1 j ; k9; l 1 m jn1 1 n2ÞEð§k§k9Þ

1 dðl $ i;m $ jÞ

n1

l

� �
n2

m

� �
l

i

� �
m

j

� �
n1 1 n2

l 1 m

� �
l 1 m

i 1 j

� �

3
Xn11n2�1

k¼2

Xn11n2

k9¼k11

kk9Paðk; l 1 m; k9; i 1 j jn1 1 n2ÞEð§k§k9Þ

1 dði1l # n1;j 1 m # n2Þ

n1

i

� �
n2

j

� �
n1 � i

l

� �
n2 � j

m

� �
n1 1 n2

i 1 j

� �
n1 1 n2 � i � j

l 1 m

� �

3
Xn11n2�1

k¼2

Xn11n2

k9¼k11

kk9Pbðk; i 1 j ; k9; l 1 m jn1 1 n2ÞEð§k§k9Þ

1 dði1l # n1;j1m #n2Þ

n1

i

� �
n2

j

� �
n1 � i

l

� �
n2 � j

m

� �
n1 1 n2

i 1 j

� �
n1 1 n2 � i � j

l 1 m

� �

3
Xn11n2�1

k¼2

Xn11n2

k9¼k11

kk9Pbðk; l 1 m; k9; i 1 j jn1 1 n2ÞEð§k§k9Þ; ðB9Þ

where jij is the number of mutations whose frequency is i in sample 1 and j in sample 2.

Pðk; i 1 j jn1 1 n2Þ
n1

i

� �
n2

j

� �. n1 1 n2

i 1 j

� �� �
is the probability an ancestral sequence at state k has i descendants

in sample 1 and j descendants in sample 2.

Pðk; i 1 j ; k; l 1 m jn1 1 n2Þ
n1

i

� �
n2

j

� �
n1 � i

l

� �
n2 � j

m

� �. n1 1 n2

i 1 j

� �
n1 1 n2 � i � j

l 1 m

� �� �
is the probability

that one ancestral sequence at state k has i descendants in sample 1 and j descendants in sample 2 while at the
same time another ancestral sequence at state k has l descendants in sample 1 and m descendants in sample 2.
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Paðk; i 1 j ; k9; l 1 m jn1 1 n2Þ
n1

i

� �
n2

j

� �
i
l

� �
j
m

� �. n1 1 n2

i 1 j

� �
i 1 j
l 1 m

� �� �
is the probability that an ancestral

sequence at state k has i descendants in sample 1 and j descendants in sample 2 while at the same time one of its
descendant sequences at state k9 (k9 . k) has l descendants in sample 1 and m descendants in sample 2.

Pbðk; i 1 j ; k9; l 1 m jn1 1 n2Þ
n1

i

� �
n2

j

� �
n1 � i

l

� �
n2 � j

m

� �. n1 1 n2

i 1 j

� �
n1 1 n2 � i � j

l 1 m

� �� �
is the probability

that an ancestral sequence at state k has i descendants in sample 1 and j descendants in sample 2 while at the same time
one of its nondescendant sequences at state k9 (k9 . k) has l descendants in sample 1 and m descendants in sample 2.

After some algebra, we can simplify (B9) to (13).
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