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ABSTRACT

A maximum-likelihood estimator for pairwise relatedness is presented for the situation in which the
individuals under consideration come from a large outbred subpopulation of the population for which
allele frequencies are known. We demonstrate via simulations that a variety of commonly used estimators
that do not take this kind of misspecification of allele frequencies into account will systematically overes-
timate the degree of relatedness between two individuals from a subpopulation. A maximum-likelihood
estimator that includes FST as a parameter is introduced with the goal of producing the relatedness es-
timates that would have been obtained if the subpopulation allele frequencies had been known. This
estimator is shown to work quite well, even when the value of FST is misspecified. Bootstrap confidence
intervals are also examined and shown to exhibit close to nominal coverage when FST is correctly
specified.

THE use of molecular marker data to infer the degree
of relatedness between two individuals is of in-

terest in a variety of contexts (see Weir et al. 2006 for a
review). Several estimators have been developed for the
case in which the loci are unlinked and the individuals
are not inbred. These include Thompson’s maximum-
likelihood estimator (Thompson 1975; Milligan 2003)
and a variety of other estimators (e.g., Queller and
Goodnight 1989; Li et al. 1993; Ritland 1996; Lynch

and Ritland 1999; Wang 2002).
The above methods generally assume that allele fre-

quencies are known without error, but Wang (2002)
also considered the case in which allele frequencies
were estimated from a sample of size N from the popu-
lation in which relatedness is to be estimated. In this
work, we consider a different situation: the case in
which the individuals examined belong to a subpopu-
lation of the population to which known allele frequen-
cies apply. An example of this situation would be when
‘‘European’’ allele frequencies are used in estimating
the relatedness between two individuals who happen to
be Italian.

The effect of using allele frequencies from the overall
population is to shift the reference from which we mea-
sure relatedness back in time. As an illustration, con-
sider the case in which two individuals share copies of an
allele that is common in their subpopulation, but very
rare in the population as a whole. Using the subpopu-
lation allele frequencies, the fact that both individuals

have this allele provides little evidence for relatedness.
When the population allele frequencies are used,
however, the evidence for relatedness becomes strong.
The difference is that, when the population allele fre-
quencies are used, relatedness is implicitly measured
with respect to the time when the population allele fre-
quencies held in the subpopulation, that is, before the
subpopulation split from the ancestral population (which
may be assumed to have allele frequencies similar to that
of the current overall population—there is an implicit
assumption here that the overall population is so large
that its allele frequencies remain roughly unchanged
over time). In this scenario, the relatedness estimate us-
ing the population allele frequencies is affected by the
generations during which the allele frequencies in the
subpopulation were diverging via drift from that in
the overall population. From that perspective, the abun-
dant copies of the allele in the subpopulation may all
be copies of one allele in the ancestral population and
these two individuals both have copies because they
share common ancestry. Hence, even though the indi-
viduals may not be closely related with respect to recent
generations, the fact that they share alleles that are rare
in the overall population provides evidence that they
may be closely related with respect to their more distant
ancestry. The difference in allele frequencies between
the subpopulation and the overall population is itself
suggestive of relatedness between the individuals: Both
are consequences of finite population size.

In contrast to the estimate of relatedness found by ap-
plying population allele frequencies, the estimate using
the subpopulation allele frequencies ignores the evolu-
tionary history during which the allele frequencies in the
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subpopulation drifted to their current states. Hence, this
estimate measures relatedness relative to the period of
time when the current subpopulation allele frequencies
began to (approximately) hold.

Depending on a researcher’s particular interests, he
or she may prefer the estimate from using the overall
population frequencies or that obtained from the sub-
population frequencies. The choice would depend upon
the timescale of the researcher’s scientific question.

As an example, suppose a researcher was interested in
estimating rates of extrapair paternity in some species of
birds. This is inherently a question of relatedness in just
the preceding generation—whether a mother bird’s
social mate is in fact the father of her offspring or, if the
mother’s social mate is unavailable for testing, a ques-
tion of whether her chicks are full or half siblings. From
the perspective of this researcher, blindly using the pop-
ulation allele frequencies would inflate the degree of
relatedness between the individuals (by including evo-
lutionary relatedness that is irrelevant to this study).

On the other hand, if a species is in danger of extinc-
tion, a researcher might be interested in determining
the relatedness between individuals to determine which
individuals might be bred with each other to maximize
the genetic diversity maintained in the population. In
this case, if the researcher is interested in creating a
population with maximum heterozygosity, he or she is
concerned with relatedness going back for many gen-
erations and so might prefer to use the population allele
frequencies and an estimation procedure that takes
inbreeding into account.

The methodology in this article is relevant to the first
of these researchers: We present a methodology for
estimating the degree of relatedness between individu-
als that would have been obtained had the researcher
been able to use current subpopulation allele frequen-
cies instead of the overall population frequencies.

To create such an estimator, we need to be able to
characterize the variation between the allele frequencies
in a subpopulation and those in the overall population.
This variation between allele frequencies between two
or more populations can be summarized by the popula-
tion structure parameter, u (also known as FST). Balding

and Nichols (1997) estimated u using data from studies
performed by Krane et al. (1992) and Budowle and
Monson (1994) in which mixed Caucasian allele fre-
quencies at variable number tandem repeat (VNTR) loci
were compared to allele frequencies in various Euro-
pean subpopulations (e.g., Norway, Spain, Turkey). They
examined three loci in each data set and found that, for
the six loci examined, u was generally ,0.01, although
at one locus larger values of u could not be ruled out.
Weir (1994) estimated a common u-value for Apache,
Navajo, and Pima populations using allele frequencies
calculated from a pool of the three populations and
obtained values of 0.02, 0.041, 0.097, 0.032, and 0.111 at
the five VNTR loci considered. In a more recent study,

Weir et al. (2005) estimated u using two large SNP data
sets. The HapMap data set (International HapMap

Consortium 2005) contained data on four human sub-
populations: Caucasians of European descent, Yoruba
from Ibadan, Nigeria, Han Chinese from Beijing, and
Japanese from Tokyo. The genomewide estimate of
u using all four of these populations was 0.13. The
Perlegen (Hinds et al. 2005) data set, which contained
European Americans, African Americans, and Han
Chinese from the Los Angeles area, yielded 0.10 as an
estimate of u.

Values of u estimated for animal populations are often
even higher. Kretzmann et al. (2003) considered sam-
ples from five subpopulations of the Egyptian vulture
(Neophron percnopterus) from the Iberian peninsula,
Canary Islands, and Balearic Islands. They used geno-
types at nine microsatellite loci to estimate u-values be-
tween pairs of the populations (or, in the language of
this work, they estimated a common u for each pair of
subpopulations, using the allele frequencies estimated
from a pool of the two samples). Of the 10 pairwise
u-estimates, 3 were ,0.015, 3 were between 0.05 and 0.1,
3 were between 0.1 and 0.15, and 1 was 0.295. In a similar
study, Marshall and Ritland (2002) used 10 micro-
satellite loci to examine the genetic differentiation among
11 subpopulations of black bear (Ursus americanus) in the
Pacific Northwest. Of the 55 pairwise u-estimates from
this study, 5 were ,0.05, 28 were between 0.05 and 0.10,
18 were between 0.10 and 0.15, and 4 were $0.15.

In this article, we apply a maximum-likelihood ap-
proach to relationship estimation, based upon a gener-
alization of Thompson’s (1976) likelihood in which we
account for population structure by including u in our
model. This model is the same as that given in Ayres

(2000), but, whereas Ayres used the model to present
formulas for some specific likelihood ratios, we present
the likelihood equations in their general form and use
them to find maximum-likelihood estimators.

THEORY AND METHODS

In this section, we begin by outlining the likelihood
method developed by Thompson (1975). In notation
we follow the treatment given in Milligan (2003): Our
Table 1 and Figure 1 are essentially identical to those in
Milligan’s article. We then proceed to explain the model
we use to describe the relationship between allele fre-
quencies in the subpopulation and those in the ancestral
population and, using this model, derive the likelihood
analogous to that of Thompson.

Identity-by-descent and relationship estimation: Two
alleles are said to be identical by descent (IBD) if they
are both copies of an allele present in some previous
generation. Individuals that are related are more likely
than unrelated individuals to have similar genotypes be-
cause they have an increased probability of sharing al-
leles IBD from a recent common ancestor. When we
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speak of relationship estimation, we generally refer to
the estimation of one or more parameters related to the
probability that alleles are shared IBD between two in-
dividuals. One such parameter is the coancestry coef-
ficient, uXY, which represents the probability that an
allele chosen at random from individual X is IBD to an
allele chosen at random from individual Y. An equiva-
lent parameter is the relatedness coefficient, r ¼ 2uXY.

Jacquard (1972) described a set of nine identity-by-
descent modes that give a full description of the possible
IBD relationships between the set of four alleles pos-
sessed by two (possibly inbred) individuals. These are
denoted S1; . . . ; S9 and are shown in Figure 1. The
probability that a pair of individuals will be in IBD mode
Si is denoted Di.

As an example, if two noninbred individuals are full
siblings (that is, they share both a mother and a father
and the mother and father are unrelated), then D7 ¼
0.25, D8 ¼ 0.5, and D9 ¼ 0.25. All other IBD modes are
impossible for noninbred full siblings. Indeed, all IBD
modes other than S7, S8, and S9 can occur only if one or
both of the two individuals are inbred.

If it is assumed that two related individuals are not
inbred, then only three IBD modes are possible: S7, S8,
and S9. These can be described more simply by noting
the number of alleles shared IBD between the two

individuals. IBD mode S7 corresponds to the case in
which two alleles are shared IBD between the two in-
dividuals, whereas S8 and S9 correspond to the sharing
of one and zero alleles, respectively. In this case, the
relevant probabilities, D7, D8, and D9 correspond to the
probabilities that the pair share two, one, and zero al-
leles, respectively, and are often denoted by k2, k1, and
k0. Note that k2 1 k1 1 k0 ¼ 1.

It is usually not possible to look at the alleles in two
individuals and infer their IBD mode. We can, however,
tell which alleles are identical by state (IBS), that is,
which alleles share the same allelic type. There are 9 IBS
modes, denoted S1; . . . ;S9, and these are listed in the
‘‘Allelic state’’ column in Table 1.

The genetic information about the relationship be-
tween two individuals that can be found using unlinked
loci pertains exclusively to the estimation of the pro-
portion of loci in the genome that are in each IBD state.
Hence, with unlinked loci, two relationships with iden-
tical single-locus IBD probabilities are indistinguishable.
As an example, noninbred half-sibling, grandparent–
grandchild, and avuncular relationships all have k0¼ 0.5,
k1 ¼ 0.5, and k2 ¼ 0.0, so it is impossible to distinguish
between these relationship types with unlinked loci.

Thompson’s model: Thompson (1975) assumed a
model in which the individuals under consideration
came from a single population in Hardy–Weinberg equi-
librium. In such a situation, two random alleles that are
not IBD may be considered to be two random draws
from the population of alleles. Under this assumption,
the probabilities of observing each of the nine possible
IBS modes, conditioned on the IBD mode, are shown in
Table 1. Using these probabilities, the single-locus like-
lihood of a relationship specified by D, between two
individuals whose IBS mode is Si , can be found by con-
ditioning on the IBD mode as follows:

LðDÞ ¼ PrðSi jDÞ ¼
X

j

PrðSi j SjÞDj : ð1Þ

Multilocus likelihoods for unlinked loci are formed
by taking the product of the single-locus likelihoods.

Figure 1.—Jacquard’s identity-by-descent modes. Each
group of four dots represents an IBD mode between two in-
dividuals. The top pair of dots represents the two alleles in in-
dividual 1 and the bottom pair of dots represents the two
alleles in individual 2. Lines connect alleles that are IBD.

TABLE 1

Probabilities for various identity-by-state modes, given modes of identity-by-descent

IBS
mode

Allelic
state

Identity-by-descent mode Sj

S1 S2 S3 S4 S5 S6 S7 S8 S9

S1 AiAi, AiAi pi p2
i p2

i p3
i p2

i p3
i p2

i p3
i p4

i

S2 AiAi, AjAj 0 pipj 0 pipj 0 p2
i pj 0 0 p2

i p2
j

S3 AiAi, AiAj 0 0 pipj 2 p2
i pj 0 0 0 p2

i pj 2 p3
i pj

S4 AiAi, AjAk 0 0 0 2pipjpk 0 0 0 0 2 p2
i pjpk

S5 AiAj, AiAi 0 0 0 0 pipj 2 p2
i pj 0 p2

i pj 2 p3
i pj

S6 AjAk, AiAi 0 0 0 0 0 2pipjpk 0 0 2 p2
i pjpk

S7 AiAj, AiAj 0 0 0 0 0 0 2pipj pipj(pi 1 pj) 4 p2
i p2

j

S8 AiAj, AiAk 0 0 0 0 0 0 0 pipjpk 4 p2
i pjpk

S9 AiAj, AkAl 0 0 0 0 0 0 0 0 4pipjpkpl

Here, alleles with different subscripts are distinct, and pi is the frequency of allele Ai.
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Thompson (1975) used these likelihood equations
primarily for the purpose of constructing likelihood ra-
tios to compare the probability of the observed marker
data under two competing hypotheses concerning the re-
lationship between the individuals. Milligan (2003)
used the likelihood to estimate k2, k1, and k0 and hence
obtain an estimate for uXY ¼ 0.5k2 1 0.25k1. He then
compared the performance of the maximum-likelihood
estimator to the performance of various method-of-
moments estimators.

Model with population substructure: Unlike Thomp-
son’s model, in which the individuals come from a single
panmictic population with the given allele frequencies,
we consider the case in which individuals come from a
subpopulation of the population for which allele fre-
quencies are known. For populations in equilibrium
and loci for which the postmutation state of an allele is
independent of its premutation state, it has been shown
(Wright 1951; Griffiths 1979) that allele frequencies
among the subpopulations follow a Dirichlet distribu-
tion. Under similar assumptions, Balding and Nichols

(1994) derived equations for joint allele probabilities
within a subpopulation using the population allele fre-
quencies; these results match the moments of a Dirich-
let distribution.

The Dirichlet distribution depends upon the pop-
ulation structure parameter described above. This pa-
rameter, u, can be thought of as a correlation among
alleles in the subpopulation: The probability that the
first allele drawn from the population is A is pA (because,
although we do not know the allele frequencies specific
to the subpopulation, we do know that the expected al-
lele frequency in the subpopulation is the same as the
population allele frequency pA) and, given that the first
allele drawn was A, the probability that the second allele
drawn will also be A is pA 1 u(1 � pA). The equilibrium
assumption means that u is not changing over time.

One can also think of u as an IBD probability. The
current population allele frequencies approximate those
of an ancestral population from which the subpopulation
descended. When we estimate IBD using the subpopu-
lation allele frequencies, we use Thompson’s model in
which IBD is measured with respect to some previous
generation when the current subpopulation allele fre-
quencies held. Using the population allele frequencies
forces our frame of reference back to the ancestral pop-
ulation. Two alleles that are merely IBS with respect to
the subpopulation model may be IBD when the longer
population history is taken into account. In this context,
u represents the probability that any two alleles in the
subpopulation are IBD with respect to the ancestral
population.

In Thompson’s model, two individuals have a re-
lationship specified by D and alleles that are not IBD are
considered to be drawn independently at random ac-
cording to the subpopulation allele frequencies. Using
population allele frequencies instead of subpopulation

frequencies forces us to consider the subpopulation
alleles within a longer evolutionary framework, where
our ‘‘not IBD’’ alleles are no longer drawn independently
because they may be IBD to previously seen alleles when
IBD is measured with respect to the ancestral population.

To calculate the likelihood under a model in which
the subpopulations are related to the overall population
with population structure parameter u, we first note that
Equation 1 still holds, but the calculation of PrðSi jSjÞ
will now be undertaken under the assumption that our
individuals belong to a subpopulation of the population
from which the allele frequencies apply.

Under the Dirichlet model, joint probabilities for sets
of alleles can be calculated as described, for example, in
Weir (2003). In particular, if (p1, p2, . . . , pn) are the
population allele frequencies of alleles A1, . . ., An, at a
locus, the probability that a sample of alleles from the
subpopulation will contain t1 alleles of type A1, t2 alleles
of type A2, and so forth, is given by

Prðt1; . . . ; tnÞ ¼ C
GðgÞ

Gðg 1 tÞ
Y

i

Gðgi 1 tiÞ
GðgiÞ

; ð2Þ

where G indicates the usual gamma function, gi¼ (1� u)
pi/u, g ¼

P
i gi ¼ ð1� uÞ=u, and C is a constant in-

dicating the number of possible orderings in which we
could have drawn a sample with these allele counts.

Define Mi, j¼ [(1� u)pi 1 ju], for i¼ 1, 2, . . . and j¼ 0,
1, . . . . Suppose the single-locus joint genotype, g, of two
individuals contains ti alleles of type Ai (so ti 2 {0, 1, 2,
3, 4}), and let h denote the number of heterozygous
individuals in the pair (so h 2 {0, 1, 2}). Then

Prðg Þ ¼
2h
Q

i

Qti�1
j¼0 Mi; jQ2n�1

j¼0 ½1 1 ð j � 1Þu�: ð3Þ

Table 2 shows the probabilities of the nine possible
joint IBS states given the nine possible IBD states. Note
that, when u¼ 0, these reduce to the probabilities given
in Table 1. Using these probabilities, the likelihood can
be calculated as in Equation 1. In determining the
maximum-likelihood estimator, we consider D1, . . ., D9,
which refer to IBD probabilities measured with respect
to the subpopulation, to be parameters while u, which
measures the background IBD that comes from the
relationship between the subpopulation and the ances-
tral population, is considered to be a known constant. As
in Thompson’s model, we assume that genotypes at dis-
tinct unlinked loci are independent and, hence, the
multilocus likelihood is the product of the single-locus
likelihoods.

When u¼ 0, the likelihood with population structure
is identical to that of Thompson. To distinguish between
the two maximum-likelihood estimators when u . 0, we
refer to the maximum-likelihood estimator (MLE) cal-
culated with u¼ 0 as the reduced model (r)MLE and the
general MLE introduced here as the full model (f)MLE.
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Parameter space: In the analyses presented in this
article, we consider the case in which the subpopulation
is large and outbred. In this case, D1 ¼ . . . ¼ D6 ¼ 0 and
the likelihood is a function of k0, k1, and k2. It is also
true that, in an outbred population, the IBD parameters
k2, k1, and k0 are subject to the constraint 4k2k0 , k2

1

(Thompson 1976), and we have incorporated this con-
straint into our estimations. Our parameter space is then
{k2,k1,k0:0# ki # 1(i¼0,1,2),k01k11k2¼1,4k2k0 , k2

1 }.
To find the maximum-likelihood estimator for the

coancestry coefficient, uXY, for a pair of individuals, we
first use the simplex method (Press et al. 2002) to find
maximum-likelihood estimators for k2, k1, and k0 and
then estimate ûXY ¼ 0:5k̂2 1 0:25k̂1.

Other estimators: In this article, we compare our
maximum-likelihood estimator to various other popular
relationship estimators. These include the maximum-
likelihood estimator described by Thompson (1975)
and Milligan (2003), as well as a number of other esti-
mators that we briefly describe below.

The Queller–Goodnight (QG) estimator, first intro-
duced in Queller and Goodnight (1989), is one of
the earlier relationship estimators. We chose to use the
form of the Queller–Goodnight estimator presented in
Equation 11 of Lynch and Ritland (1999), where we
averaged the single-locus estimates across loci. The simi-
larity index (SIM) (Li et al. 1993) is another popular re-
lationship estimator. Here, we use the version given in
Equation 8 of Lynch and Ritland (1999), averaged

across loci. The Lynch–Ritland (LR) estimator is known
to perform well and is given in Equations 5–7 of Lynch

and Ritland (1999), with a weighted average taken
across loci. The final moment estimator we use is Wang’s
estimator, which we denote as W and compute accord-
ing to Equations 9 and 10 in Wang (2002).

Both the QG and LR estimators are asymmetric with
respect to the two individuals, that is, ûXY 6¼ ûYX . For
these two estimators, we use the average of the estimates
taken from the different orderings of the two individuals.

Assessing uncertainty in the estimators: An estima-
tion of relatedness is incomplete without an indication of
the uncertainty associated with that estimation. Suppose
m markers were genotyped in the two individuals being
compared. A different estimate of relatedness might
occur if a different set of m markers had been chosen. If
we think of our set of markers as being randomly chosen
from some distribution of possible markers, we want a
confidence interval such that a fixed proportion (e.g.,
95%) of all random sets of m markers would produce
intervals that contain the true parameter value. To do
this, we created bootstrap confidence intervals for the
estimates, where bootstrapping was done over loci. More
specifically, each bootstrap sample consisted of the two
individuals’ genotypes at m loci, where the loci in the
bootstrap sample are chosen at random (with replace-
ment) from the originally genotyped m loci. Each boot-
strap sample yielded an estimate for ûXY , and the
final 95% confidence interval for the original pair of

TABLE 2

Probabilities for various identity-by-state modes, given modes of identity-by-descent when the individuals being compared belong
to a subpopulation of the population from which the allele frequencies are estimated

IBS
mode

Allelic
state

Identity-by-descent mode

S1 S2 S3 S4 S5 S6 S7 S8 S9

S1 AiAi, AiAi
Mi0

1� u

Mi1Mi0

1� u

Mi1Mi0

1� u

Mi2Mi1Mi0

ð1 1 uÞð1� uÞ
Mi1Mi0

1� u

Mi2Mi1Mi0

ð1 1 uÞð1� uÞ
Mi1Mi0

1� u

Mi2Mi1Mi0

ð1 1 uÞð1� uÞ
Mi3Mi2Mi1Mi0

ð1 1 2uÞð1 1 uÞð1� uÞ

S2 AiAi, AjAj 0
Mi0Mj0

1� u
0

Mi0Mj1Mj0

ð1 1 uÞð1� uÞ 0
Mi1Mi0Mj0

ð1 1 uÞð1� uÞ 0 0
Mi1Mi0Mj1Mj0

ð1 1 2uÞð1 1 uÞð1� uÞ

S3 AiAi, AiAj 0 0
Mi0Mj0

1� u

2Mi1Mi0Mj0

ð1 1 uÞð1� uÞ 0 0 0
Mi1Mi0Mj0

ð1 1 uÞð1� uÞ
2Mi2Mi1Mi0Mj0

ð1 1 2uÞð1 1 uÞð1� uÞ

S4 AiAi, AjAk 0 0 0
2Mi0Mj0Mk0

ð1 1 uÞð1� uÞ 0 0 0 0
2Mi1Mi0Mj0Mk0

ð1 1 2uÞð1 1 uÞð1� uÞ

S5 AiAj, AiAi 0 0 0 0
Mi0Mj0

1� u

2Mi1Mi0Mj0

ð1 1 uÞð1� uÞ 0
Mi1Mi0Mj0

ð1 1 uÞð1� uÞ
2Mi2Mi1Mi0Mj0

ð1 1 2uÞð1 1 uÞð1� uÞ

S6 AjAk, AiAi 0 0 0 0 0
2Mi0Mj0Mk0

ð1 1 uÞð1� uÞ 0 0
2Mi1Mi0Mj0Mk0

ð1 1 2uÞð1 1 uÞð1� uÞ

S7 AiAj, AiAj 0 0 0 0 0 0
2Mi0Mj0

1� u

Mi0Mj0ðMi1 1 Mj1Þ
ð1 1 uÞð1� uÞ

4Mi1Mi0Mj1Mj0

ð1 1 2uÞð1 1 uÞð1� uÞ

S8 AiAj, AiAk 0 0 0 0 0 0 0
Mi0Mj0Mk0

ð1 1 uÞð1� uÞ
4Mi1Mi0Mj0Mk0

ð1 1 2uÞð1 1 uÞð1� uÞ

S9 AiAj, AkAl 0 0 0 0 0 0 0 0
4Mi0Mj0Mk0Ml0

ð1 1 2uÞð1 1 uÞð1� uÞ

As in Table 1, alleles with different subscripts are distinct.
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individuals was found by taking the middle 95% of the
estimates from the bootstrap samples.

Simulations: We ran a series of simulations in which
we compared the performance of the various point esti-
mators under a variety of circumstances. Each simula-
tion began with the generation of allele frequencies for
the overall population, and allele frequencies in the
subpopulation were stochastically generated from these
using the Dirichlet distribution as described, for exam-
ple, in Weir (2003). In our analyses, we used the allele
frequencies from the ancestral population in estimating
the relatedness between individuals in subpopulations.

In our first set of simulations, we considered an
ancestral population with 10 markers, each of which
had 10 alleles with frequencies determined by a triangle
distribution. For each value of u (u¼ 0.0, 0.03, 0.10), we
generated 4000 sets of subpopulation allele frequencies,
and, for each of these subpopulations, we estimated
the relatedness of 1000 pairs of individuals of each of
the following types: parent–offspring (PO), full sibling
(FS), half sibling (HS), first cousins (FC), second cousins
(SC), and unrelated (UN). The genotypes for relative
pairs were generated using the subpopulation allele
frequencies and the appropriate IBD probabilities (k0,
k1, k2) for the relationship type. In these simulations, we
estimated the bias and root mean-square error (RMSE)
for each subpopulation and then presented the average
of these values across subpopulations.

For the second set of simulations, we were interested
in the behavior of the various estimators within a sub-
population and whether the maximum-likelihood estima-
tor was sensitive to misspecification of u. All simulations
were performed with 10 markers, each with 10 alleles.
For each value of u (u ¼ 0.0, 0.03, 0.10), we generated a
set of subpopulation allele frequencies and simulated
1000 pairs of individuals of each relationship type using
these frequencies. We estimated the MLE using various
assumed values of u (u ¼ 0.0, 0.01, 0.02, 0.03, 0.05, 0.10,
0.15) and also obtained relatedness estimates from the
moment estimators. To get a sense of whether our re-
sults would vary substantially depending on either the
allele frequencies in the ancestral population or the
particular realization of subpopulation allele frequen-
cies, we carried out the analysis on five replicate sub-
populations for each of the following types of allele
frequencies in the ancestral population: equally fre-
quent alleles, triangle allele frequencies, and random
allele frequencies generated from a Dirichlet distribu-
tion with all parameters set to unity. Once we had de-
termined that our results did not vary substantially
among these simulations, we ran larger data sets of 5000
relative pairs of each type from subpopulations (u¼ 0.0,
0.03, 0.10) of a population in which the overall allele
frequencies followed a triangle distribution.

The third set of simulations was designed to in-
vestigate the effect of varying the number and type of
loci. We considered both diallelic and microsatellite (10

alleles) loci and varied the number of loci from 5 to 100.
For both marker types, the ancestral population had
triangle allele frequencies. In the case in which loci were
diallelic, the QG estimator is undefined for heterozy-
gous individuals, so we did not consider its performance
in these simulations. In addition, in the situation with
diallelic loci, if all loci have equal assumed allele fre-
quencies, the SIM and Wang estimators are identical, so
we presented only one of these in our results. For each
combination of number of loci, number of alleles, and
u, we simulated 10,000 relative pairs of each type (full
sibling and unrelated).

We also performed a set of simulations to investigate
the performance of bootstrap confidence intervals for
the fMLE. In these simulations, we looked at one sub-
population of an overall population in which each locus
had 10 alleles with frequencies determined by a triangle
distribution and considered cases in which 5, 10, 15, 20,
30, and 40 loci were used. Within the subpopulation, we
generated 1000 relative pairs of each type, and for each
pair we used 1000 bootstrap samples of the markers to
determine a 95% confidence interval. We also ran a
series of simulations to examine the behavior of the con-
fidence intervals for varying assumed values of u. In this
series of simulations, for each combination of u (u¼ 0.00,
0.03, 0.10) and number of markers (10 or 40), we sim-
ulated 1000 relative pairs from a single simulated sub-
population and then formed a bootstrap confidence
interval for each relative pair under several assumed values
of u. When the data were simulated under u ¼ 0.00, we
analyzed the data with each of the following assumed
values of u: 0.00, 0.01, 0.03, and 0.05. When the true
value of u was 0.03, the data were analyzed under u¼ 0.00,
0.01, 0.03, 0.05, and 0.08. When u ¼ 0.10, we analyzed
the data assuming u ¼ 0.05, 0.08, 0.10, 0.12, and 0.15.

Centre d’Ètude du Polymorphisme Humain data
analysis: To compare the behavior of the estimators in
a real setting, we examined relative pairs from Version
10 of the Centre d’Ètude du Polymorphisme Humain
(CEPH) database. To this end, we chose a set of 49 widely
spaced genetic markers from throughout the genome
that were genotyped in the eight CEPH reference fam-
ilies. These families included six families from Utah
(CEPH families 1331, 1332, 1347, 1362, 1413, and 1416)
as well as an Old Order Amish family (CEPH family 884)
and a Venezuelan family (CEPH family 102). We chose
our markers to have moderately high gene diversities
(expected heterozygosities) in the range of 0.7–0.8. For
comparison, and to illustrate the point that a choice of
a different set of markers will lead to slightly different
results, we repeated all analyses with a second set of 49 loci.

Within each family and for each set of markers, we
looked at all possible relative pairs for which both
individuals were genotyped at all 49 markers. We chose
this approach to give us the largest possible sample size
upon which to evaluate the behavior of the estimators,
but we are aware that the lack of independence between
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different pairs of relatives may have an effect on the in-
terpretation of our results. In particular, this depen-
dence will not bias the relatedness estimates for any
given family, but we would expect the mean estimates
from each family to vary more than if they were based on
independent relative pairs.

The allele frequencies we used were those listed in the
CEPH data sets, with one exception: Any allele whose
allele frequency was listed as zero in the CEPH data set
but appeared in that data set was reassigned an allele
frequency of 1 3 10�4.

RESULTS

Simulation results: Figure 2 shows the average bias
and RMSE over subpopulations descended from a pop-
ulation that had 10 alleles at each of 10 loci considered.
We first compared the performance of the rMLE and
moment estimators to examine their robustness to this
type of model misspecification. The moment estimators
all performed similarly and all showed increasing bias
with increasing values of u. The rMLE also increases its
bias with increasing u, but not as severely as the moment
estimators. When u is as large as 0.10, the moment
estimators no longer show less bias than the rMLE.

We next examined how the bias and RMSE would be
affected by using a model that takes population structure
into account. In all cases, the fMLE showed reduced bias
compared to models that do not take population struc-
ture into account. Even when we use the true value of
u in the fMLE, though, the bias still increased with u.
Naturally, though, this bias will be seen to decrease
when the number of loci increases.

A plot corresponding to Figure 2 was also produced for
the case in which the overall population had all alleles
equally frequent, but was similar to the triangle allele-

frequency case and so is not shown here. The main dif-
ference between the existing Figure 2 and the version
with equally frequent alleles is the relative performance
of the moment estimators.

Figure 3 shows a more in-depth view of the results from
a single subpopulation. As before, we considered 10 loci,
each with 10 alleles that had triangle allele frequencies
in the overall population. We performed these simula-
tions under three values of u and compared the four
moment estimators as well as maximum-likelihood esti-
mators under various assumed values of u. The top row
of Figure 3 shows the behavior of the estimators when
there is no population structure. The plot showing the
relatedness estimates for unrelated individuals clearly
demonstrates a fundamental difference between the
moment and maximum-likelihood estimators: The mo-
ment estimators can give relatedness estimates that are
less than zero whereas the maximum-likelihood esti-
mates are constrained to give results that lie within the
space of possible values for u. Note that, for distantly
related or unrelated individuals, this constraint causes
much of the bias seen in the maximum-likelihood esti-
mators: Since it is impossible for the estimator to sub-
stantially underestimate the degree of relatedness, but it
is possible to overestimate this value, the estimator will,
on average, overestimate the degree of relatedness. The
unbiasedness of the moment estimators is a result of the
undesirable property of allowing estimates that are less
than zero. A comparison of the box plots of the actual esti-
mates shows the superior performance of the maximum-
likelihood estimator.

The second and third rows of plots in Figure 3 show
the effects of increasing the degree of population struc-
ture. The results confirm what was seen in Figure 2:
Ignoring population structure causes inflation in the
relationship estimates, and this effect is reduced when

Figure 2.—Average behavior in subpopula-
tions of a population in which allele frequencies
follow a triangle distribution. Here we show the
average bias and RMSE based on 1000 relative
pairs of each type drawn from each of 4000 sim-
ulated subpopulations. The symbols are as
follows: d, rMLE; :, fMLE; n, Queller–Good-
night; 1, Lynch–Ritland; x, similarity index; ),
Wang.
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we account for the population structure in our likelihood.
In addition, we see that the MLE calculated from the
likelihood with population structure is quite robust to
misspecification of u. In particular, analyzing the data
with a specified value of u that is a little too high may
actually improve the performance (by helping to
counter some of the natural bias in the MLE).

In Figures 4 and 5, we examined the effect of number
and type of loci for estimating the relatedness of full
siblings and unrelated pairs of individuals drawn from
one subpopulation. In each case, we show the mean pa-
rameter estimate and RMSE from 10,000 relative pairs.
For full siblings, we see that, although accounting for
population structure reduces the bias associated with
the estimators, it provides little reduction in the RMSE
unless u is large. For unrelated pairs, however, the MLE

that takes population structure into account shows a
notable reduction in RMSE compared to the other esti-
mators for all values of u examined. Figures 4 and 5 also
illustrate the point that increasing the number of loci
does not necessarily result in increased accuracy when
the allele frequencies are misspecified.

Looking at the behavior of each estimator for un-
related pairs of individuals can give insight into how the
various estimators respond to this type of model mis-
specification. The fMLE approaches zero as the number
of loci are increased. The models that do not account
for population structure naturally measure relatedness
relative to some ancestral population. The parameter u

is the probability that any two alleles drawn from the
subpopulation are IBD with respect to that ancestral
population. Hence, we might expect an estimator that

Figure 3.—Box plots showing the distribution of the estimators on a single subpopulation. We simulated 5000 relative pairs of
each type for each of three values of u. The top row of plots shows the results when the relative pair comes from a subpopulation
with u ¼ 0.0, whereas the middle and bottom rows of plots show results when the simulations were run with u ¼ 0.03 and u ¼ 0.10,
respectively. We estimated the relatedness of the individuals using the four moment estimators as well as the maximum-likelihood
estimators assuming various values of u. The symbols for the maximum-likelihood estimators are: M0, u ¼ 0.00; M1, u ¼ 0.01; M2,
u ¼ 0.03; M3, u ¼ 0.05; M4, u ¼ 0.10; M5, u ¼ 0.15. The MLE that assumes the correct value of u for the subpopulation is shaded.
The box plots shown contain boxes that extend from the first to the third quartiles of the relatedness estimates, with a line through
the box indicating the median. Whiskers extend from the boxes to the most extreme data point that is within 1.5 times the in-
terquartile range from the box.
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does not take population structure into account to have
a nonzero expected value of u for ‘‘unrelated’’ individ-
uals. However, under the assumption that any two alleles
have a nonzero probability of being IBD, all nine of
Jacquard’s IBD configurations are possible, so the
estimators under consideration (which assume no in-
breeding) also have to contend with this type of model
misspecification.

For unrelated individuals, as the number of loci
increases, the rMLE appears to approach the value of
u used to simulate the data, but we have not looked into
its behavior closely. The moment estimators display a
variety of behaviors. In the appendix, we derive the
expected behavior of the moment estimators as a func-
tion of u in the general diallelic case and in the case in
which there are n equally frequent alleles at a locus. In
the diallelic case, Wang’s estimator has an expected
value of u/2 whereas the Lynch–Ritland estimator
has u/(1 1 u) as its expected value. In the case with n
equally frequent alleles, the Lynch–Ritland and Queller–
Goodnight estimators are identical and have an ex-
pected value of u/(1 1 u), regardless of the value of n.
The similarity index and Wang’s estimator have expected
values that depend on n and approach u/(1 1 u) and u(1
1 3u � u2)/(1 1 3u 1 2u2), respectively, as n/‘.

Bootstrap simulation results: Figures 6 and 7 show
Monte Carlo estimates for the coverage probabilities of
bootstrap 95% confidence intervals for the rMLE and

fMLE, respectively. When population structure is not
taken into account (Figure 6), coverage decreases with
increased sample size. When the data are analyzed
under the correct model, however, the coverage for all
relationships examined and all values of u was at least
88.5% whenever at least 10 loci were used (results not
shown). In Figure 7, we see the effects of misspecifying
the value of u assumed in the analysis. For small sample
sizes, this method of constructing confidence intervals is
robust to misspecification of u. When the number of
markers is large, however, the fact that these confidence
intervals do not take uncertainty in u into account
results in reduced coverage, especially for more dis-
tantly related individuals.

CEPH results: Figures 8 and 9 show the mean esti-
mates and root mean-square error for the relative pairs of
each type (parent–offspring, full siblings, grandparent–
grandchild, unrelated) within the CEPH data set for the
initial set of 49 markers with gene diversities between
0.7 and 08. The Utah families, where we would expect
u to be small, show a pattern similar to that seen in
our simulated data sets with little or no population
structure: All estimators show fairly little bias, with the
maximum-likelihood estimators generally exhibiting lower
RMSE than the other estimators. Figure 10 shows the
mean estimates using the second set of 49 markers.

Although there is some variation between the various
families and between marker sets, the MLE does not give

Figure 4.—Full siblings.
Here, we have generated
10,000 full-sibling pairs
from a single subpopula-
tion and examined the ef-
fect of the number of loci
and number of possible al-
leles on relationship esti-
mation. The symbols for
the various estimators are
as given in Figure 2.
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mean results that are substantially different from the
non-maximum-likelihood estimators for the Utah fam-
ilies. In other words, 49 unlinked markers seem to be
enough to make the MLE (with u ¼ 0) essentially
unbiased.

In the Amish family, relative pairs show inflated re-
latedness estimates, especially among the grandparent–
grandchild and unrelated pairs. The Old Order Amish

form a small genetic isolate, so any pair of individuals
from this population may be expected to share multiple
ancestors in recent generations. Thus, a relative pair
from this group will often be more related than the
nominal degree of relatedness indicated in the CEPH
pedigrees. The genealogy of this particular Amish
family is known for more generations than are included
in the CEPH database and none of the grandparents in

Figure 5.—Unrelateds.
Here, we have generated
10,000 pairs of unrelated in-
dividuals from a single sub-
population and examined
the effect of the number of
loci and number of possible
alleles on relationship esti-
mation. The symbols for
the various estimators are
as given in Figure 2.

Figure 6.—Coverage probabilities based on
the reduced-model MLE when relative pairs were
generated from a subpopulation with u ¼ 0.0
(s), u ¼ 0.03 (n), and u ¼ 0.10 (1).
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the CEPH pedigree share common ancestors within the
three preceding generations (Egeland 1972; Broman

and Weber 1999). Nevertheless, with both our marker
sets, the mean maximum-likelihood estimate for re-
latedness for each type of relative pair was higher than
the nominal level, even when we allowed u to be as high
as 0.05.

A previous study (Broman and Weber 1999) has
shown evidence of excess relatedness (as evidenced by
exceptionally long spans of homozygosity within individ-
uals) within the Venezuelan family (CEPH family 102).
Because of this and the fact that Venezuelan allele fre-
quencies might well be quite different from the Utah al-
lele frequencies that should have dominated the CEPH
allele frequency estimates, we expected the Venezuelan
families to show higher than nominal degrees of re-

latedness, especially with the non-maximum-likelihood
estimators. Contrary to our expectations, though, all re-
latedness estimators performed well for this family using
both sets of markers.

A close look at the RMSE values in the various families
indicates that the Amish and Venezuelan families differ
from the Utah families in an important way. As an over-
all principle, increasing the value of u used in the MLE
calculations decreases the estimated coancestry coeffi-
cient between a pair of individuals. For pairs of un-
related individuals, then, it is clear that increasing the
value of u will always result in a decrease in RMSE. When
highly polymorphic markers are used, the same is also
true for parent–offspring pairs for the following reason:
When two individuals share at least one allele at a marker,
the single-locus MLE for the coancestry coefficient at that

Figure 7.—Effects of parameter misspe-
cification on confidence interval coverage.
Each plot shows the empirical coverage
probabilities for bootstrap confidence in-
tervals based on a fixed number of markers
(10 or 40) and a set degree of population
structure (u ¼ 0.00, 0.03, 0.10). Within
each plot, for each type of relative pair is
the coverage of 95% confidence intervals
based on 1000 pairs of individuals, where
the analysis was performed under various
assumed values of u. When the true value
of u was 0.00, we analyzed each pair of in-
dividuals under the assumed values of (left
to right) u ¼ 0.00, 0.01, 0.03, and 0.05.
When the true value of u was 0.03, we ana-
lyzed the data under assumed values of u ¼
0.00, 0.01, 0.03, 0.05, and 0.08. Finally,
when u was 0.10, we performed analyses un-
der assumed values of u ¼ 0.05, 0.08, 0.10,
0.12, and 0.15. In all cases, the results when
the true value of u was assumed are repre-
sented by a solid circle. All other values of u
are indicated by open circles.

Figure 8.—Mean estimates for the
CEPH data set, based on the first set of
49 loci. The families are denoted as follows:
U1; . . . ; U6 refer to Utah families 1331,
1332, 1347, 1362, 1413, and 1416; A refers
to the Old Order Amish family 884; V refers
to the Venezuelan family 102. For each
family, we have plotted the mean estimates
in two columns: The left column has the
MLE estimates calculated with u ¼ 0.0,
0.01, 0.02, 0.03, 0.05. All MLEs are indi-
cated by solid circles, with darker shaded
circles indicating lower values of u. The
right column has the other estimators with
symbols as follows: n, Queller–Goodnight;
1, Lynch–Ritland; x, similarity index; ),
Wang. Above the horizontal axis are values
indicating the number of relative pairs eval-
uated in each family.
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marker will always be 0.25 or 0.5 unless the pair shares
an allele with a population allele frequency .0.25. With
highly polymorphic markers, we only rarely see alleles
with such high frequencies. Hence, since the maximum-
likelihood estimator for several markers should not be
less than the minimum of the single-locus MLEs, we see
that 0.25 is a lower bound for the MLE for the coancestry
coefficient between a parent–offspring pair (note that
this is not true for SNP markers as seen in Figure 4 of
Weir et al. 2006). An increase in u thus results in a
reduction of the RMSE for such pairs. For other relation-
ships, increasing u past a certain point will drive the MLE
below the correct value and cause an increase in the
RMSE. For the Utah families, we see that increasing u for
full siblings and grandparent–grandchild pairs always
increases the RMSE, as might be expected if the true
value of u is small. The Amish family shows the opposite

pattern: Increasing u decreases the RMSE. This is
consistent with two scenarios: The value of u is truly very
high or the individuals are truly more closely related than
the nominal level. For the Venezuelan siblings, the
minimum RMSE (among the u-values examined) is
achieved when u ¼ 0.02.

DISCUSSION

Our purpose here has been to develop methodology
for estimating relatedness within a subpopulation of a
population in which allele frequencies are known or
estimated. In effect, this method measures IBD proba-
bilities with respect to recent generations while filtering
out additional allele sharing that comes from the more
distant generations during which allele frequencies in
the subpopulation drifted to their current values.

Figure 9.—Root mean-square error for
the CEPH data set, based on the first set
of 40 loci. The symbols for this plot are
the same as those in Figure 8.

Figure 10.—Mean estimates for the
CEPH reference families, as generated by
a second set of markers. The symbols in
this plot are the same as those in Figure 8.
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The bottom left-hand plot in Figure 5 illustrates this
point. Here, u ¼ 0.10 and the rMLE and other non-
maximum-likelihood estimators estimate the relatedness
of supposed unrelated individuals in this population at
0.10. From the perspective of the researcher interested
in relatedness going back many generations, this is the
correct answer: u represents the degree of relatedness
in the individuals relative to approximately the gener-
ation when the subpopulation split from the overall
population. For a researcher interested in questions
regarding relatedness relative to less distant generations
(specifically, the degree of relatedness that would be
estimated if the researcher had access to allele fre-
quencies from the subpopulation), the correct value for
these unrelated individuals is uXY¼ 0, the value given by
the fMLE.

We have looked at relatedness estimation from the
perspective of researchers who want to base their esti-
mators on the subpopulation allele frequencies but
have access only to population allele frequencies. We
have shown that this misspecification of allele frequen-
cies causes positive bias in relatedness estimators that
are currently in use. When the subpopulation is quite
differentiated from the overall population, as is fre-
quently seen in animal populations, the amount of the
degree of bias can be large (for unrelated individuals,
the expected amount of bias is approximately equal to
the degree of differentiation between the subpopula-
tion and the overall population).

We have proposed a maximum-likelihood estimator
that takes population structure into account, but re-
quires the degree of differentiation between the sub-
population and the overall population (u or FST) to be
specified. Our simulations show that this estimator ex-
hibits reduced bias compared to the estimators that
ignore the possibility that allele frequencies come from
an overall population rather than from the pertinent
subpopulation. In addition, we have demonstrated that
this estimator is fairly robust to small misspecifications
of u. Note that the value of u used with this estimator will
need to be estimated from a data set that does not
contain individuals whose relatedness is in question be-
cause u cannot be estimated from sets of individuals
with unspecified relationships. Indeed, commonly used
estimators for u (e.g., Weir and Cockerham 1984)
require that it be estimated from data sets consisting
of unrelated individuals from various subpopulations.

When we examined the effect of the number of loci
on this full-model MLE, we saw that the functional rela-
tionship between mean estimate (or RMSE) and num-
ber of markers is shaped like a negative exponential.
Hence, when few markers are being used, small in-
creases in the number of markers produce large de-
creases in bias and RMSE. When the number of markers
is larger, though, it takes the addition of many more
markers to give a substantial improvement in the esti-
mator. Our simulation results indicate that, for highly

polymorphic markers such as microsatellites, moderate
increases in the number of loci beyond, say, 40 or 60 has
little effect. For diallelic loci (e.g., SNPs) substantial im-
provements in performance are obtained at .100 loci.
We did not pursue this beyond 100 loci because the
methods presented here are for unlinked loci (where,
by unlinked, we mean segregating independently within
a single meiosis), and a genome will not contain many
more than 50 such loci. We have reason to believe that
maximum-likelihood estimation may be fairly robust to
this assumption provided that the loci cover a wide region
of the genome: Hepler (2005) performed maximum-
likelihood estimation of Jacquard’s nine Delta parame-
ters (D1, . . ., D9), using a large set of tightly linked loci
spread over an entire human chromosome, and ob-
tained quite accurate results.

To give a measure of confidence in our estimates, we
proposed forming bootstrap confidence intervals for
our estimates, where the bootstrapping is performed
over the loci. When population structure exists and is not
taken into account, we showed that the performance of
these confidence intervals (as measured by their cover-
age probabilities) decreased dramatically with increasing
numbers of loci. When population structure was taken
into account by using the full-model MLE with the
correct value of u, the confidence intervals performed
well whenever the number of loci was . �10. With
larger sample sizes, though, the performance of the con-
fidence intervals depended on the specification of u; a
reduction in coverage occurred when analyses were per-
formed with incorrect values of u. Not unsurprisingly,
the greater the number of markers, the closer the as-
sumed value of u needed to be to the true value for the
confidence intervals to maintain adequate coverage.

We concluded our study by looking at the perfor-
mance of various estimators based on 49 unlinked (or
loosely linked) microsatellite loci genotyped on the
eight CEPH reference families. Six of the families were
from Utah and, for these, we would expect to have u

close to 0. Hence, this amounted to a comparison of pre-
vious methods on a real data set. With 49 loci, all esti-
mators were essentially unbiased and the MLE was
shown to outperform the others in terms of RMSE (by
virtue of performing better on parent–offspring and un-
related pairs and performing no worse on full siblings
and grandparent–grandchild pairs).

This work was supported in part by National Institutes of Health
grants GM45344 and GM75091.
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APPENDIX

Here we derive the expected values of the Wang, Lynch–Ritland, similarity index, and Queller–Goodnight
estimators for the general diallelic case and the case in which there are n equally frequent alleles at a locus. This is done
for the situation in which the relative pair is drawn from a subpopulation of the population from which the allele
frequencies are taken and the estimators are not modified to take this into account. The relative pairs in these
calculations are not inbred except through the background relatedness, u, so their relatedness within the sub-
population can be summarized by the values of k0, k1, and k2.

Wang’s estimator: Wang’s estimator (Wang 2002) is based on the proportion of loci for which the relative pair is in
each of four IBS categories. Category 1 includes any case in which the two individuals share two alleles IBS, category 2
includes cases in which three of the four alleles are IBS, category 3 consists of genotype pairs of the type AiAj, AiAk, where
each of Ai, Aj, and Ak represents a distinct allele, and category 4 contains any genotype pair for which the two individuals
share no alleles identical in state. Pi denotes the proportion of loci for which the relative pair falls into category i. Wang
adopts the following notational convention: ai ¼

P
j p

j
i .

In the diallelic case, Wang’s Equation 8 implies the following:

ûXY ¼
4P̂1 1 3P̂2 � 2ð1 1 a2Þ

4ð1� a2Þ
: ðA1Þ

Joint genotype probabilities for the diallelic case are given in Table A1. The expected values of P̂1 and P̂2 are as follows:

E ½P̂1� ¼ Pr½A0A0;A0A0�1 Pr½A0A1;A0A1�1 Pr½A1A1;A1A1�

¼ k2 1 k1
M00M01 1 M10M11

ð1� uÞ

1 k0
M00M01M02M03 1 4M00M01M10M11 1 M10M11M12M13

ð1 1 2uÞð1 1 uÞð1� uÞ ðA2Þ
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E ½P̂2� ¼ k1
2M00M10

ð1� uÞ 1 k0
4M00M01M02M10 1 4M00M10M11M12

ð1 1 2uÞð1 1 uÞð1� uÞ : ðA3Þ

At a single locus, the expected value of ûXY is

E ½ûXY � ¼
4E ½P̂1�1 3E ½P̂2� � 2ð1 1 a2Þ

4ð1� a2Þ

¼ 1

4p0p1
2k2 1 k1

2M00M01 1 2M10M11 1 3M00M10

ð1� uÞ

�

1 2k0
1

ð1 1 2uÞð1 1 uÞð1� uÞðM00M01M02M03 1 4M00M01M10M11

1 M10M11M12M13 1 3M00M10M11M12 1 3M00M01M02M10Þ � 2ð1� p0p1Þ
�

¼ 1

4p0p1
½2k2 1 k1ð2� p0p1 1 up0p1Þ1 2k0ð1� p0p1 1 up0p1Þ � 2ð1� p0p1Þ�

¼ 1

4p0p1
½2up0p1 1 2k2p0p1ð1� uÞ1 k1p0p1ð1� uÞ�

¼ u

2
1 ð1� uÞ2k2 1 k1

4

¼ u

2
1 ð1� uÞuXY :

ðA4Þ

For multiple loci, Wang replaces each of P̂1, P̂2, and aa2 in Equation A1 with a weighted average of its value across all
loci. The expected value of E ½ûXY � remains the same as that in the single-locus case.

Note that, when u ¼ 0 (as it is in Wang’s model), the estimator is unbiased for uXY. When u . 0, however, we might
expect that an estimator that does not take population structure into account might have the property that E ½ûXY � ¼ u

for unrelated individuals. Wang’s estimator instead gives E ½ûXY � ¼ u=2 for diallelic loci in this case.
For the case in which the locus has n equally frequent alleles, Table A2 lists the possible IBS modes and their

probabilities. Note that, with all alleles equally frequent, Mij¼M0j for all i and j. Since each IBS mode corresponds to

TABLE A1

Joint genotype probabilities for diallelic loci for individuals that are not inbred except for
background inbreeding captured by u

Genotype Probability
Genotype
category LR

A0A0, A0A0 k2

M00M01

1� u
1 k1

M00M01M02

ð1 1 uÞð1� uÞ1 k0

M00M01M02M03

ð1 1 2uÞð1 1 uÞð1� uÞ 1
1

2

A0A0, A0A1 k1

M00M01M10

ð1 1 uÞð1� uÞ1 k0

2M00M01M02M10

ð1 1 2uÞð1 1 uÞð1� uÞ 2
1� 2p

4ð1� pÞ

A0A0, A1A1 k0

M00M01M10M11

ð1 1 2uÞð1 1 uÞð1� uÞ 4
�p

2ð1� pÞ

A0A1, A0A0 k1

M00M01M10

ð1 1 uÞð1� uÞ1 k0

2M00M01M02M10

ð1 1 2uÞð1 1 uÞð1� uÞ 2
1� p

1� 2p

A0A1, A0A1 k2

2M00M10

1� u
1 k1

M00M10ðM01 1 M11Þ
ð1 1 uÞð1� uÞ 1 k0

4M00M01M10M11

ð1 1 2uÞð1 1 uÞð1� uÞ 1
1

2

A0A1, A1A1 k1

M00M10M11

ð1 1 uÞð1� uÞ1 k0

2M00M10M11M12

ð1 1 2uÞð1 1 uÞð1� uÞ 2
�p

1� 2p

A1A1, A0A0 k0

M00M01M10M11

ð1 1 2uÞð1 1 uÞð1� uÞ 4
�ð1� pÞ

2p

A1A1, A0A1 k1

M00M10M11

ð1 1 uÞð1� uÞ1 k0

2M00M10M11M12

ð1 1 2uÞð1 1 uÞð1� uÞ 2
�ð1� 2pÞ

4p

A1A1, A1A1 k2

M10M11

1� u
1 k1

M10M11M12

ð1 1 uÞð1� uÞ1 k0

M10M11M12M13

ð1 1 2uÞð1 1 uÞð1� uÞ 1
1

2

The single-locus Lynch–Ritland (LR) estimate of uXY for each joint genotype is also given.
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several genotypes, we have also listed the number of genotypes included in each IBS mode. For example, if there are n
alleles, there are n genotypes of the form (AiAi, AiAi).

The expected values of P1, P2, and P3 are

E ½P̂1� ¼ k2 1 k1
nM00M01ð1 1 uÞ
ð1 1 uÞð1� uÞ 1 k0

nM00M01ðM02M03 1 2ðn � 1ÞM00M01Þ
ð1 1 2uÞð1 1 uÞð1� uÞ ðA5Þ

E ½P̂2� ¼ k1
2nðn � 1ÞM 2

00M01

ð1 1 uÞð1� uÞ 1 k0
4nðn � 1ÞM 2

00M01M02

ð1 1 2uÞð1 1 uÞð1� uÞ ðA6Þ

E ½P̂3� ¼ k1
nðn � 1Þðn � 2ÞM 3

00

ð1 1 uÞð1� uÞ 1 k0
4nðn � 1Þðn � 2ÞM 3

00M01

ð1 1 2uÞð1 1 uÞð1� uÞ : ðA7Þ

Wang’s equations for the multiallelic case are written in terms of some functions of the allele frequencies. These
functions, and their values in the equally frequent allele case, are as follows:

b ¼ 2a2
2 � a4 ¼

2n � 1

n3

c ¼ a2 � 2a2
2 1 a4 ¼

ðn � 1Þ2
n3

d ¼ 4ða3 � a4Þ ¼
4ðn � 1Þ

n3

e ¼ 2ða2 � 3a3 1 2a4Þ ¼
2ðn � 2Þðn � 1Þ

n3

f ¼ 4 a2 � a2
2 � 2a3 1 2a4

� �
¼ 4ðn � 2Þðn � 1Þ

n3

TABLE A2

Joint genotype probabilities for general loci when all loci have n equally frequent alleles

IBS mode Count Probability
Genotype
category LR SXY SIM

AiAi, AiAi n k2

M00M01

1� u
1 k1

M00M01M02

ð1 1 uÞð1� uÞ1 k0

M00M01M02M03

ð1 1 2uÞð1 1 uÞð1� uÞ 1
1

2
1

1

2

AiAi, AiAj n(n � 1) k1

M 2
00M01

ð1 1 uÞð1� uÞ1 k0

2M 2
00M01M02

ð1 1 2uÞð1 1 uÞð1� uÞ 2
n � 2

4ðn � 1Þ
3

4

ð3n � 2Þðn � 2Þ
8ðn � 1Þ2

AiAi, AjAj n(n � 1) k0

M 2
00M 2

01

ð1 1 2uÞð1 1 uÞð1� uÞ 4
�1

2ðn � 1Þ 0
1� 2n

2ðn � 1Þ2

AiAi, AjAk
nðn � 1Þðn � 2Þ

2
k0

2M 3
00M01

ð1 1 2uÞð1 1 uÞð1� uÞ 4
�1

2ðn � 1Þ 0
1� 2n

2ðn � 1Þ2

AiAj, AiAi n(n � 1) k1

M 2
00M01

ð1 1 uÞð1� uÞ1 k0

2M 2
00M01M02

ð1 1 2uÞð1 1 uÞð1� uÞ 2
1

2

3

4

ð3n � 2Þðn � 2Þ
8ðn � 1Þ2

AiAj, AiAj
nðn � 1Þ

2
k2

2M 2
00

1� u
1 k1

2M 2
00M01

ð1 1 uÞð1� uÞ1 k0

4M 2
00M 2

01

ð1 1 2uÞð1 1 uÞð1� uÞ 1
1

2
1

1

2

AiAj, AiAk n(n � 1)(n � 2) k1

M 3
00

ð1 1 uÞð1� uÞ1 k0

4M 3
00M01

ð1 1 2uÞð1 1 uÞð1� uÞ 3
n � 4

4ðn � 2Þ
1

2

n2 � 4n 1 2

4ðn � 1Þ2

AiAj, AkAk
nðn � 1Þðn � 2Þ

2
k0

2M 3
00M01

ð1 1 2uÞð1 1 uÞð1� uÞ 4
�1

n � 2
0

1� 2n

2ðn � 1Þ2

AiAj, AkAl
nðn � 1Þðn � 2Þðn � 3Þ

4
k0

4M 4
00

ð1 1 2uÞð1 1 uÞð1� uÞ 4
�1

n � 2
0

1� 2n

2ðn � 1Þ2

For each IBS mode, the number of different genotypes possible in that mode is indicated in the column labeled ‘‘count.’’ The
genotypic category to which each IBS mode belongs is listed, as are the mode’s value of SXY and single-locus Lynch–Ritland (LR)
and similarity index (SIM) estimates for the coancestry coefficient based on that mode.
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g ¼ 1� 7a2 1 4a2
2 1 10a3 � 8a4 ¼

ðn � 4Þðn � 2Þðn � 1Þ
n3

V ¼ ð1� bÞ2ðe2f 1 dg 2Þ � ð1� bÞðef � dg Þ2 1 2cdf ð1� bÞðg 1 eÞ1 c2df ðd 1 f Þ

¼ 4ðn � 1Þ5ðn � 2Þ
n13 ðn3 � n2 1 n � 2Þðn2 � 3n 1 3Þ:

Wang writes equations for k̂1 and k̂2 (which he denotes f̂ and D̂) in terms of the above functions. Using Wang’s
Equations 9 and 10, the expected values of the estimates of k1 and k2 are

E ½k̂1� ¼ E ½fdf ½ðe 1 g Þð1� bÞ1 cðd 1 f Þ�ðP̂1 � 1Þ1 dð1� bÞ½g ð1� b � dÞ1 f ðc 1 eÞ�P̂3

1 f ð1� bÞ½eð1� b � f Þ1 dðc 1 g Þ�P̂2g=V �

¼ 1

V

16ðn � 1Þ4ðn � 2Þðn2 � 3n 1 3Þ
n10 ðE ½P̂1� � 1Þ

�

1
8ðn � 1Þ4ðn � 2Þðn2 � 3n 1 3Þðn2 1 n � 1Þ

n11 E ½P̂2�

1
4ðn � 1Þ4ðn � 2Þðn2 � 3n 1 3Þðn2 1 n � 1Þ

n11 E ½P̂3�
�

¼ E ½P̂1�ð4n3Þ1 E ½P̂2�ð2n4 1 2n3 � 2n2Þ1 E ½P̂3�ðn4 1 n3 � n2Þ � 4n3

ðn � 1Þðn3 � n2 1 n � 2Þ ðA8Þ

E ½k̂2� ¼ fcdf ðe 1 g ÞðE ½P̂1�1 1� 2bÞ1 ½ð1� bÞðfe2 1 dg 2Þ � ðef � dg Þ2�ðE ½P̂1� � bÞ
1 cðdg � ef ÞðdE ½P̂3� � fE ½P̂2�Þ � c2df ðE ½P̂3�1 E ½P̂2� � d � f Þ
� cð1� bÞðdgE ½P̂3�1 efE ½P̂2�Þg=V

¼ 1

V
½E ½P̂1�½cdf ðe 1 g Þ1 ð1� bÞðfe2 1 dg 2Þ � ðef � dg Þ2�

1 E ½P̂2�½cf ðef � dg Þ � c2df � cef ð1� bÞ�
1 E ½P̂3�½cdðdg � ef Þ � c2df � cdg ð1� bÞ�
1 ð1� 2bÞcdf ðe 1 g Þ1 b½ðef � dg Þ2 � ð1� bÞðfe2 1 dg 2Þ�1 c2df ðd 1 f Þ�

¼ E ½P̂1�ðn4 � 2n3Þ � E ½P̂2�ð2n3 � 2n2Þ � E ½P̂3�ðn3 � n2Þ1 ð2n2 � 3n 1 2Þ
ðn � 1Þðn3 � n2 1 n � 2Þ : ðA9Þ

This gives

E ½ûXY � ¼
E ½k̂1�1 2E ½k̂2�

4
¼ ½E ½P̂1�ð4n3Þ1 E ½P̂2�ð2n4 1 2n3 � 2n2Þ

1 E ½P̂3�ðn4 1 n3 � n2Þ � 4n3 1 E ½P̂1�ð2n4 � 4n3Þ � E ½P̂2�ð4n3 � 4n2Þ
� E ½P̂3�ð2n3 � 2n2Þ1 ð4n2 � 6n 1 4Þ�=½4ðn � 1Þðn3 � n2 1 n � 2Þ�

¼ ½2k2½ðn3 � n2 1 n � 2Þ1 uðn3 � n2 1 3n � 2Þ1 u2ð�4n3 1 13n2 � 17n 1 10Þ
1 u3ð2n3 � 11n2 1 13n � 6Þ�

1 k1½n3 � n2 1 n � 2 1 uð2n3 � 6n2 1 10n � 4Þ
1 u2ð�5n3 1 19n2 � 27n 1 14Þ1 u3ð2n3 � 12n2 1 16n 1 8Þ�

1 uð4n3 � 4n2 � 8Þ1 u2ð12n3 � 30n2 1 38n � 28Þ
1 u3ð�4n3 1 22n2 � 26n 1 12Þ�=½4ðn3 � n2 1 n � 2Þð1 1 uÞð1 1 2uÞ�
¼ uXY 1 u½ð1� k2Þ½ð4n3 � 4n2 � 8Þ1 uð12n3 � 30n2 1 38n � 28Þ

1 u2ð�4n3 1 22n2 � 26n 1 12Þ�
1 k1½ð�n3 � 3n2 1 7n 1 2Þ1 uð�7n3 1 21n2 � 29n 1 18Þ

1 u2ð2n3 � 12n2 1 16n � 8Þ��=½4ðn3 � n2 1 n � 2Þð1 1 uÞð1 1 2uÞ�: ðA10Þ
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Wang’s approach for the multilocus case with multiple alleles is the same as that for the diallelic case. Each of P̂1, P̂2, P̂3,
a1, a2, a3, a4, and a2

2 is replaced by a weighted average taken over the loci. Since we are considering the case in which
allele frequencies at all loci are the same, the average value of ai (i ¼ 1, 2, 3, 4) is the same as the single-locus value.
Hence, the only difference between the single-locus and multilocus estimates is that P̂1, P̂2, and P̂3 in Equations A8 and
A9 are replaced by weighted averages. However, since Equations A8 and A9 are linear in these terms, the multilocus
estimator has the same expected value as the single-locus estimator.

We have seen that Wang’s estimator gives unexpected results when the number of alleles is small. We also have
observed that, with 10 alleles at a locus, this undesirable behavior appears to have been corrected (see, e.g., Figure 5).
We next examine the behavior of Wang’s estimator for unrelated individuals as we increase the number of (equally
frequent) alleles:

lim
n/‘

E ½ûXY � ¼ lim
n/‘
½u½ð4n3 � 4n2 � 8Þ1 uð12n3 � 30n2 1 38n � 28Þ

1 u2ð�4n3 1 22n2 � 26n 1 12Þ�=½4ðn3 � n2 1 n � 2Þð1 1 uÞð1 1 2uÞ��

¼ lim
n/‘

u

4n3ð1 1 uÞð1 1 2uÞ½4n3 1 12n3u� 4n3u2�

¼ u
1 1 3u� u2

1 1 3u 1 2u2: ðA11Þ

Thus, for reasonable values of u, E ½ûXY � � u for unrelated individuals when the number of alleles per locus is large.
LYNCH and RITLAND’s (1999) estimator: If (a, b) is the genotype of the first individual, (c, d) is the genotype of the

second individual, and Sij is an indicator of whether alleles i and j are identical by state, then Lynch and Ritland’s single-
locus estimator is

ûXY ¼
paðSbc 1 SbdÞ1 pbðSac 1 SadÞ � 4papb

2½ð1 1 SabÞðpa 1 pbÞ � 4papb �
: ðA12Þ

In contrast to Wang’s estimator, the same expected estimate is derived in both the general diallelic case and the case
with n equally frequent alleles, as well as in a general three-allele case (not shown).

For the diallelic case, let p be the frequency of allele A0. The single-locus estimates for uXY for each possible joint
genotype are given in Table A1.

If G is the set of all possible joint genotypes, we have

E ½ûXY � ¼
X
g2G

E ½ûXY j g �Prðg Þ

¼ 1

2
k2

M00M01

1� u
1 k1

M00M01M02

ð1 1 uÞð1� uÞ1 k0
M00M01M02M03

ð1 1 2uÞð1 1 uÞð1� uÞ

� �

1
ð1� 2pÞ
4ð1� pÞ k1

M00M01M10

ð1 1 uÞð1� uÞ1 k0
2M00M01M02M10

ð1 1 2uÞð1 1 uÞð1� uÞ

� �

� p

2ð1� pÞ k0
M00M01M10M11

ð1 1 2uÞð1 1 uÞð1� uÞ

� �

1
1� p

1� 2p
k1

M00M01M10

ð1 1 uÞð1� uÞ1 k0
2M00M01M02M10

ð1 1 2uÞð1 1 uÞð1� uÞ

� �

1
1

2
k2

2M00M10

1� u
1 k1

M00M10ðM01 1 M11Þ
ð1 1 uÞð1� uÞ 1 k0

4M00M01M10M11

ð1 1 2uÞð1 1 uÞð1� uÞ

� �

� p

1� 2p
k1

M00M10M11

ð1 1 uÞð1� uÞ1 k0
2M00M10M11M12

ð1 1 2uÞð1 1 uÞð1� uÞ

� �

� 1� p

2p
k0

M00M01M10M11

ð1 1 2uÞð1 1 uÞð1� uÞ

� �

� 1� 2p

4p
k1

M00M10M11

ð1 1 uÞð1� uÞ1 k0
2M00M10M11M12

ð1 1 2uÞð1 1 uÞð1� uÞ

� �

1
1

2
k2

M10M11

1� u
1 k1

M10M11M12

ð1� uÞð1 1 uÞ1 k0
M10M11M12M13

ð1 1 2uÞð1 1 uÞð1� uÞ

� �
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¼ k2

2
1

k1ð1 1 3uÞ
4ð1 1 uÞ 1

k0u

1 1 u

¼ uXY
1� u

1 1 u
1

u

1 1 u
: ðA13Þ

The expected value of ûXY for the case with n equally frequent alleles can be derived using the nine IBS genotype
classes, their counts, and their probabilities, which are listed in Table A2. Then

E ½ûXY � ¼
X
g2G

E ½ûXY j g �Prðg Þ

¼ n

2

k2M00M01

1� u
1

k1M00M01M02

ð1 1 uÞð1� uÞ1
k0M00M01M02M03

ð1 1 2uÞð1 1 uÞð1� uÞ

� �

1
nðn � 2Þ

4

k1M 2
00M01

ð1 1 uÞð1� uÞ1
2k0M 2

00M01M02

ð1 1 2uÞð1 1 uÞð1� uÞ

� �

� k0nM 2
00M 2

01

2ð1 1 2uÞð1 1 uÞð1� uÞ �
nðn � 2Þk0M 3

00M01

2ð1 1 2uÞð1 1 uÞð1� uÞ

1
nðn � 1Þ

2

k1M 2
00M01

ð1 1 uÞð1� uÞ1
2k0M 2

00M01M02

ð1 1 2uÞð1 1 uÞð1� uÞ

� �

1
nðn � 1Þ

4

2k2M 2
00

1� u
1

2k1M 2
00M01

ð1 1 uÞð1� uÞ1
4k0M 2

00M 2
01

ð1 1 2uÞð1 1 uÞð1� uÞ

� �

1
nðn � 1Þðn � 4Þ

4

k1M 3
00

ð1 1 uÞð1� uÞ1
4k0M 3

00M01

ð1 1 2uÞð1 1 uÞð1� uÞ

� �

� k0nðn � 1ÞM 3
00M01

ð1 1 2uÞð1 1 uÞð1� uÞ �
k0nðn � 1Þðn � 3ÞM 4

00

ð1 1 2uÞð1 1 uÞð1� uÞ

¼ k2

2
1

k1ð1 1 3uÞ
4ð1 1 uÞ 1

k0u

1 1 u

¼ uXY
1� u

1 1 u
1

u

1 1 u
: ðA14Þ

For the Lynch–Ritland estimator, the multilocus relatedness estimate is simply a weighted average of the single-locus
estimates. Since each of the single-locus estimators has the same expected value, the value for the multilocus case is
identical to that for the single-locus case.

The similarity index: The similarity index is based upon the average proportion of alleles shared IBS in the two
individuals, as measured by the quantity SXY¼ 0.5 � (proportion of X’s alleles that are present in Y) 1 0.5 � (proportion
of Y’s alleles that are present in X). The values of SXY for each possible joint genotype are given in Table A2.

Let (a, b) and (c, d) be the genotypes of the two individuals. The equation for the similarity index is then

ûXY ¼
SXY � S0

2ð1� S0Þ
; ðA15Þ

where S0 is the expected proportion of alleles shared IBS in unrelated individuals, given by S0 ¼
P

p2
i ð2� piÞ.

For the diallelic case, the similarity index and Wang’s estimators are identical at a single locus and so have the same
expected value. Table A2 lists the single-locus estimates for uXY for the case in which there are n equally frequent alleles
at a locus. In this case, the expected value of the estimator for a single locus is derived as follows:

E ½ûXY � ¼
X
g2G

E ½ûXY j g �Prðg Þ

¼ n

2

k2M00M01

1� u
1

k1M00M01M02

ð1 1 uÞð1� uÞ1
k0M00M01M02M03

ð1 1 2uÞð1 1 uÞð1� uÞ

� �
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1
nðn � 2Þð3n � 2Þ

8ðn � 1Þ
k1M 2

00M01

ð1 1 uÞð1� uÞ1
2k0M 2

00M01M02

ð1 1 2uÞð1 1 uÞð1� uÞ

� �

� k0nð2n � 1ÞM 2
00M 2

01

2ðn � 1Þð1 1 2uÞð1 1 uÞð1� uÞ �
k0nðn � 2Þð2n � 1ÞM 3

00M01

2ðn � 1Þð1 1 2uÞð1 1 uÞð1� uÞ

1
nðn � 2Þð3n � 2Þ

8ðn � 1Þ
k1M 2

00M01

ð1 1 uÞð1� uÞ1
2k0M 2

00M01M02

ð1 1 2uÞð1 1 uÞð1� uÞ

� �

1
nðn � 1Þ

4

2k2M 2
00

1� u
1

2k1M 2
00M01

ð1 1 uÞð1� uÞ1
4k0M 2

00M 2
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The multilocus estimate is the average of the single-locus estimates and so has the same expected value as the single-
locus estimator.

For unrelated individuals, the limit as n grows large is

lim
n/‘

E ½ûXY � ¼ lim
n/‘

uðu 1 2n � 3Þ
2ðn � 1Þð1 1 uÞ ¼

u

1 1 u
: ðA17Þ

The Queller–Goodnight estimator: The Queller–Goodnight estimator has the following form:

ûXY ¼
0:5ðSac 1 Sad 1 Sbc 1 SbdÞ � pa � pb

2ð1 1 Sab � pa � pbÞ
: ðA18Þ

This is undefined in the diallelic case when the first individual is heterozygous. For the case in which there are n
equally frequent alleles, this estimator is the same as the Lynch–Ritland estimator.
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