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Many social networks are characterized by a highly uneven distri-
bution of links. The observed skewed distributions have in several
cases been attributed to preferential attachment (PA), a tendency
among nodes in a growing network to form new links preferen-
tially to nodes with high numbers of links. We test the PA
conjecture in sexual contact networks. A maximum likelihood
estimation-based expectation–maximization fitting technique is
used to model new partners over a 1-year period based on the
number of partners in foregoing periods of 2 years, 4 years, and
lifetime. The PA model is modified to account for individual
heterogeneity in the inclination to find new partners and fitted to
Norwegian survey data on heterosexual men and women. Results
show evidence of nonrandom, sublinear PA when comparing the
growth in 3- to 5-year periods. The potential implications of these
findings are discussed.

sexual behavior � sexually transmitted diseases

In comparison with the observed incidence of sexually transmitted
infections in modern societies, the average number of sexual

contacts in national populations is surprisingly low. It has been
suggested that the endemic and epidemic spread is driven by smaller
subsets (core groups) of the population, in which members have
significantly higher numbers of partners and a preference for
selecting partners within the group (1). Several studies have,
however, recently reported a highly skewed distribution of sexual
contacts without a clear core group.

The tail of the sex partner distribution is often modeled by a
simple power law, that is, the probability mass function (pmf) of
sexual partners P( j) have the functional form P( j) � Cj�� for some
excess j � jt, where C and � are positive constants. The first
suggestion of power law scaling was published by Colgate et al. (2)
in 1989 from data on homosexual men seen at a sexually transmitted
infection clinic in London. More recently, Liljeros et al. (3) ob-
served a power law in population data from Sweden, which was later
supported by population studies in Burkina Faso (4), Uganda and
the United States (5), and Britain and Zimbabwe (6). With one
exception (women from the Rakai district in Uganda), the reported
slopes are close to � � 3; the range for men being 2.8 � � � 5.4 and
the range for women being 3.0 � � � 4.2.

The finding of a power law has been subject to some controversy,
and the question has been raised whether a power-law function
adequately fits the data. The available sexual data are limited, and
the published studies reveal power-law scaling of over one to two
orders of magnitude. The limited scaling regime is not sufficient to
distinguish a power law from other heavy-tailed distributions, such
as log-normal or stretched exponential (Weibull), both of which
have characteristic scales and curve away with exponential decay for
large enough j. A study by Handcock (7) suggests that a log-normal
distribution provides the best description of the data when lower
numbers of partners are included.

Here, we address the question of the origin of the skewed
distribution by counting sexual partners in overlapping time inter-
vals. The analysis is restricted to one sex (men or women) at a time.
This separation is necessary because the partner identities are not
known. Presumably, the individuals are not interconnected but have
partners outside the study group. A new contact can be regarded as
adding a new link to an observed node, i.e., to increase the degree
of the node. The separation of men and women has the further

advantage that gender-specific differences in reported numbers of
partners are not mixed in the estimation procedure.

The aim of our analysis is to answer the following questions: To
what extent can we use information on partner numbers to predict
future partner numbers, and, if one can, what does it tell us about
the distribution of partners in the network? We use a statistical
method developed particularly for the present study to analyze
cumulative numbers of sex partners in survey data.

The observation that success breeds success is common in many
situations. In sociology this dynamic phenomenon is called the
Matthew effect (8); in economics, it is called increasing return (9);
and, in complex network theory, it is usually referred to as pref-
erential attachment (PA) (10). We will hereafter use the latter term
to denote a situation in which the chance of having a new partner
increases with the quantity of sexual contacts within a given time
frame.

People do not have an equal probability for having sexual
contacts. For one thing, people are not perceived as being equally
sexually attractive. Second, people have personal preferences re-
garding emotional involvement with sex partners and promiscuity
and different attitudes toward commercial sex. Third, people are
affected by their social environment and their religious and nor-
mative values. In addition to these more or less static individual
properties, there are dynamic social and psychological mechanisms
that could encourage a tendency to acquire new partners. For
instance, studies have shown a positive correlation between knowl-
edge that a person has many partners and the perceived attractive-
ness of that person (11). In addition, having new partners can be
psychologically addictive (12), and flirting skills are likely to im-
prove with practice, potentially resulting in higher numbers of
successful pick-ups.

Power-law distributions and other types of skewed distributions
are widespread in social, biological, technical, and information
networks. A number of generative network models have been
proposed to explain the data (13). Commonly, the models are based
on (i) constant network growth and (ii) preferential linking to nodes
with many connections. The term PA was introduced by Barabási
and Albert (10) in the context of World Wide Web networks. In
their model, new nodes attach links to existing nodes k with a
probability proportional to their degree of links,

pa�k� �
jk�
i

ji
, [1]
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and yields a power-law pmf with P( j) � j�3. Several modified PA
models that take different aspects of the network growth into
consideration have been suggested (13).

As early as 1925, Yule (14) published a stochastic preferential
growth model to describe the uneven distribution of species among
plant genera. The model was later generalized by Simon (15).
Adapted to networks, preference in the Yule–Simon process is
defined with respect to groups of nodes [ j] with identical connec-
tivity j. The probability that a member of group [ j] will receive a link
is proportional to the abundance of links in the group; that is,

pa�� j	� �
n� j�j�
i

n�i�i
, [2]

where n( j) is the number of nodes in the network with degree j. The
model generates an asymptotic pmf P( j) � j�(1
(1/(1��))), where �
is the ratio of the node versus link creation rates. The two models
are closely related, and the Barabási–Albert model may be mapped
into a subclass (� � 1/2) of the Yule–Simon model (16).

PA in evolving networks is measured by calculating the rate �( j)
at which groups of nodes [ j] with identical connectivity form new
links during a small time interval �t (17). The method has been used
to estimate PA in scientific citation and coauthor networks and in
author collaboration networks and the Internet (17, 18). The
function is described by

�� j, t� �

�
k

�jk

n� j, t�
� C�t�j�, [3]

where �jk is the number of new links that attach nodes in group j
during �t and n( j, t) is the quantity of nodes with j links at the start
of time period t. Eq. 3 holds for short time intervals during which
the total number of nodes is roughly constant, N(t 
 �t) � N(t), and
for steady-state networks. This latter condition is usually satisfied
for linearly expanding networks for which � j is constant.

The dependence of �( j) on j is found by plotting the functions.
For a linearly growing network, the functional form of the asymp-
totic pmf can be determined from the � exponent in Eq. 3 (19, 20).
According to the PA hypothesis, �( j) should increase monotoni-
cally with j(� � 1), and linear preference is required for generating
fat-tailed pmfs with P( j) � j��. For sublinear exponents (0 � � �
1), the pmf is a stretched exponential, P( j) � j�� exp(�(b(�)/(1 �

�))j1��), where b is a constant depending on �. The special situation
of absent preference (� � 0) reduces the rate �( j) to a constant. In
this case, P( j) � exp(�j) is in agreement with the Poisson distri-
bution of a random graph. Finally, for (� � 1), the growth leads to
a gelation-like behavior in which one node is basically connected to
all other nodes in the system.

The graphical procedure is hindered by finite-sample effects
producing strong fluctuations for large j, and it is insufficient to
make an inference about the growth process. Here we present a
statistical method that takes these complications into account, and
we use it to make an assessment of PA in sexual networks.

Data
The estimation of PA requires ungrouped data on partner numbers
during at least two consecutive time intervals. To examine temporal
and size-dependent effects, information on sexual contacts in
several successive intervals is needed, preferably covering both
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Fig. 1. Schematics of a sample path showing the interarrival (waiting) times
Ti1, Ti2. The observation period consists of two time intervals, the initial period,
and the study period. The partner numbers in the first period ji are used to
model the number of new partners �ji in the study period (shaded region).
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Fig. 2. Histograms showing the distribution of total partners in the obser-
vation periods for women (white) and men (shaded) in the Norwegian survey:
3-year period (A) and lifetime (B). (A Inset and B Inset) Double-logarithmic
plots of the cumulative average numbers of new partners in the 1-year study
period for women (circles) and men (stars) plotted as a function of the number
of partners j in the foregoing period. Thus, the mean values are group
averages among all individuals having exactly j partners in the initial part of
the observation period.
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short and extended time scales. Not many sexual surveys contain
partner information at this level of detail.

The National Survey of Sexual Behavior in Norway was con-
ducted by the Norwegian National Institute for Public Health in
2002 (21). To the best of our knowledge, it is the only study in which
questions are asked about their exact partner numbers in more than
two time periods. The survey is based on 10,000 written question-
naires that were mailed to a random sample of Norwegians between
the ages of 18 and 49 years. The respondents supplied information
about partner numbers during the previous 1, 3, and 5 years as well
as the total number of sexual contacts. The study had a low response
rate of 35%, with women being slightly overrepresented. The
sample was representative of the Norwegian population with regard
to regional, community size, household income, educational level,
and occupation (21).

We excluded from the analysis respondents who reported having
homosexual contacts (5–10%). Before the analysis, partner num-
bers during the previous year were adjusted to include new partners
only; the procedure involved subtracting one partner from the
group of people having a steady partner for �12 months. The data
used for the analyses in this paper can be provided upon request.

Model
A general framework for statistical inference for the PA process was
developed by Svensson (22). Here we provide a brief description of
the model that was used to estimate transition probabilities in the
contact networks.

The acquisition of new sexual contacts can be modeled as a pure
birth process, with a discrete state space j � {0, 1, 2, . . .}, counting
the total number of sexual contacts in a person’s life, and the
transitions j3 j 
 1 describing the events associated with having a
new partner. A random selection of n individuals is observed during
two overlapping time periods with a shared end point. We name
them the initial period and the study period (see Fig. 1). Our aim
is to study how the numbers of new partners increase during the
study period depending on each person’s individual history of new
partners during the initial period. In the following analysis, we
choose different initial periods, but in all cases the study period is
the last single year covered by the survey. The vector N � N1(�),
N2(�), . . . Nn(�) counts the numbers of new partners during this
interval. For convenience, we set t � t* at the start of the period of
observation, t � 0 at the start of the study period and t � T (� 1
year) at the end of the observation period. With this notation,
Ni(0) � ji is the number of new partners for individual i during the
initial period and �ji is the number of new partners during the study
period. Thus, Ni(T) � ji 
 �ji is the total number of new partners
during the entire observation period. We will set up a model that
describes the distribution of the random variable �ji given ji.

Let � be an intensity vector describing the rate of transitions
between the different states,

� � ��0, �1, . . .� [4]

where each term �j for j � {0, 1, 2, . . .} is the one-step probability
per year that a person with exactly j partners will acquire a new
partner. In accordance with the PA scenario, Eq. 1, the following
parametric model �(�) is assumed.

�j��� � �� j � 0
	j� j 
 1 . [5]

The process of having a first partner is considered here separately.
In this model, the jump intensities for all individuals are assumed

to be equal. One may expect considerable individual variation in
partner numbers depending, for example, on socioeconomic fac-
tors. Lacking information on such auxiliary variables, heterogeneity
is introduced into the model by modifying the intensity vector with
a random proportionality factor �i for each i individual, �3 �i� �
(�i�0, �i�1, . . .). The frailty terms are drawn independently from a
gamma distribution,

g���� �
��

����
���1 exp����� [6]
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Fig. 3. The cumulative probability of new partners Pcum(�j) � �i
j P(�i) as
function of the new partners �j in the 1-year study period. The probabilities
were calculated by using the model parameter (Table 1) and by conditioning
on the initial numbers of partners j1, j2, . . . jn in the study populations. (A)
Results for women in the 3-year observation period. (B) Results for men in the
3-year observation period.

Table 1. Maximum likelihood estimation parameter estimates for the PA model

Data Parameter estimates Deviance (Dev) statistics

Study
periods Obs. �

95%
C.I.

� per
year

95%
C.I. �

95%
C.I.

	 per
year

95%
C.I. Dev

Dev*,
mean (SD) P value

Men
3-year 930 3.50 2.5–4.6 0.27 (0.26) 0.23–0.31 0.62 (0.67) 0.51–0.73 0.76 (0.75) 0.66–0.85 215.2 176.7 (15.4) 0.0062
5-year 919 1.9 1.4–2.6 0.18 (0.17) 0.14–0.23 0.57 (0.61) 0.48–0.66 0.59 (0.58) 0.51–0.70 308.0 278.6 (18.7) 0.0580
Lt 950 9.6 6.4–17.1 0.80 (0.77) 0.64–0.96 0.26 (0.26) 0.19–0.31 0.84 (0.83) 0.74–0.95 1,051.3 319.7 (21.3) �0.001

Women
3-year 1,220 2.9 2.0–4.9 0.19 (0.19) 0.16–0.22 0.54 (0.60) 0.41–0.66 0.65 (0.65) 0.57–0.74 92.0 102.8 (12.6) 0.8036
5-year 1,190 1.5 1.2–2.2 0.14 (0.13) 0.11–0.17 0.57 (0.64) 0.47–0.67 0.44 (0.42) 0.38–0.51 136.5 155.7 (15.4) 0.8943
Lt 1,183 0.5 0.4–0.5 0.63 (0.41) 0.38–0.94 0.29 (0.40) 0.20–0.40 0.34 (0.28) 0.26–0.40 356.1 231.3 (21.2) �0.001

The maximum likelihood estimation parameter estimates for the PA model with random factors � (�̂) together with the 95% bootstrap confidence intervals
(C.I.). The model fit was evaluated by using deviance test statistics (see SI Text). Under the null hypothesis, the derived model can generate the observed data.
Hence, small P values correspond to a lack of fit. For comparison, the estimates derived from the basic preferential model, � (�), have been added in parentheses
for � and 	. Lt, lifetime; Obs., observations.
*Sample of deviance generated from bootstrapping the data.
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with mean g��(�) � 1 and variance 1/�. In this model the intensities
depend on four parameters, � � (�, �, �, 	).

A detailed description of the model is provided in the supporting
information (SI) Text.

Results
Explorative Analysis. The mean age for men and women in the study
groups was 34 and 33 years with an overall uniform age distribution.
Approximately two-thirds of the individuals were cohabiting during
the previous 1 year, and one-third of the men and women were
living singly.

The range of initial states Ni(0) covers on the order of two
decades with the main body of observations centered in the lower
region. Only 1% of the women and 3% of the men reported �10
partners during the primary 2 years during the 3-year study, whereas
the corresponding values for the primary 4 years during the 5-year
study were 2% women and 7% men. In the lifetime study, 26% of
the women and 29% of the men reported having �10 partners when
excluding the previous year.

Fig. 2 depicts the pmf of final states for two of the observation
periods: the 3-year period (Fig. 2A) and the lifetime period (Fig.
2B) (the 5-year period is shown in SI Fig. 5). Some clustering of final
states (10, 15, 20, etc.) is observed. The overrepresentation of
rounded values indicates that the data suffers from inaccurate
recall, and partner numbers Ni(T) 
 10 should be interpreted as
being approximate.

Fig. 2 A Inset and B Inset provide a graphical estimation of PA
in the networks. We show the cumulative rate �( j)cum � �i�j �(i)

to reduce the fluctuations for large j caused by the poor statistics in
that region. In this case, the scaling behavior �( j) � j� is replaced
by �( j)cum � j�
1 (17). We plotted the mean numbers of new
partners ��j�cum � �i�j �i/n(i, t) during the last 1 year as functions
of quantities of partners j during the foregoing periods t � 2 years
and lifetime on logarithmic scales. Two lines have been added to
assist in the interpretation of the graphs. The expected slope in
absence of preference (� � 0) is shown by a solid line. The case of
linear preference (� � 1) is shown by a dashed line. At first glance,
all of the networks seem to fall between these categories.

The short-time longitudinal data (Fig. 2A) displays a linear
regime, which extends to around j � 10, whereas the lifetime
network data (Fig. 2B) appears more complex in that the curves
follow an approximately straight line up to around j � 20–30,
followed by a region with possibly higher slopes.

Maximum Likelihood Estimates. Table 1 shows the parameter esti-
mates for the PA model. The test statistics of the basic PA model
was not satisfactory. It was therefore ruled out as a candidate
model. In addition, no adequate fit to lifetime partner data was
obtained. In the following discussion, we address only the studies
with short time periods.

The � exponent is conferred to values between 0.5 and 0.7. In all
cases, the bootstrap confidence intervals show sublinear PA with
values of �0 and �1. The 	 parameter decreases with the length of
the initial period. This finding is expected given the constant �
parameter. We describe the same outcome, namely the observed
partners during the 1-year study period, regardless of the length of
the initial period. In a longer prestudy period, the partner numbers

Table 2. Frailty model parameter estimates for the stratified data sets during 3- and 5-year observation periods

Data Parameter estimates Deviance (Dev) statistics

Study periods
and groups Obs. �

95%
C.I.

� per
year

95%
C.I. �

95%
C.I.

	 per
year

95%
C.I. Dev

Dev,*
mean (SD) P value

Men
3-year

18–29 y 270 5.7 2.0–6.0 0.83 0.75–1.70 0.52 0.35–0.61 0.95 0.64–1.02 129.9 120.7 (12.1) 0.2246
30–39 y 328 1.5 1.1–3.0 0.26 0.19–0.33 0.66 0.50–0.85 0.63 0.48–0.81 127.4 123.7 (13.5) 0.3906
40–49 y 329 4.5 2.0–16.1 0.13 0.09–1.17 0.80 0.56–0.95 0.60 0.46–0.78 78.8 73.9 (9.8) 0.3071
Single 301 11.5 7.0–27.0 1.26 1.00–1.58 0.50 0.40–0.59 1.24 1.08–1.43 172.3 141.8 (13.1) 0.0101
Cohab 625 1.2 0.8–2.6 0.14 0.11–0.17 0.67 0.42–0.87 0.35 0.27–0.45 98.5 92.3 (12.1) 0.3054

5-year
18–29 y 260 3.4 2.0–5.5 1.13 0.74–1.72 0.48 0.35–0.60 0.77 0.64–0.94 181.4 165.0 (13.8) 0.1189
30–39 y 328 1.3 0.9–2.1 0.13 0.08–0.20 0.63 0.48–0.77 0.49 0.37–0.63 192.5 179.2 (15.5) 0.1965
40–49 y 328 1.8 1.1–3.1 0.08 0.05–0.12 0.65 0.44–0.83 0.47 0.34–0.63 111.6 103.1 (11.7) 0.2335
Single 292 7.6 5.0–13.0 1.26 0.90–1.77 0.46 0.37–0.55 1.10 0.93–1.28 224.9 207.4 (14.9) 0.1191
Cohab 623 0.9 0.7–1.6 0.10 0.07–0.13 0.63 0.43–0.78 0.26 0.20–0.34 145.3 137.5 (14.9) 0.2993

Women
3-year

18–29 y 434 4.5 2.5–16.2 0.46 0.37–0.57 0.64 0.51–0.79 0.62 0.52–0.72 76.5 87.1 (11.2) 0.8270
30–39 y 426 1.6 1.6–3.5 0.12 0.09–0.16 0.36 0.13–0.62 0.71 0.55–0.89 59.8 60.8 (10.1) 0.5401
40–49 y 357 3.3 1.6–17.0 0.12 0.08–0.16 0.50 0.20–0.77 0.62 0.47–0.82 32.3 39.5 (8.1) 0.8105
Single 361 5.5 3.1–13.2 1.33 1.05–1.74 0.32 0.19–0.46 1.14 0.98–1.32 86.8 84.6 (11.2) 0.4215
Cohab 850 5.5 2.0–15.5 0.09 0.07–0.11 0.56 0.34–0.84 0.30 0.24–0.35 51.9 39.4 (8.0) 0.0574

5-year
18–29 y 422 1.8 1.3–3.0 0.64 0.45–0.86 0.60 0.49–0.73 0.45 0.35–0.55 112.6 131.8 (13.9) 0.9164
30–39 y 416 1.5 0.9–2.8 0.07 0.04–0.11 0.57 0.31–0.80 0.42 0.30–0.59 67.2 79.4 (11.3) 0.8601
40–49 y 349 1.2 0.7–3.6 0.08 0.05–0.11 0.36 0.09–0.69 0.50 0.35–0.71 56.7 52.4 (9.5) 0.3232
Single 346 4.5 2.6–8.9 1.96 1.32–3.02 0.38 0.25–0.50 0.92 0.77–1.10 125.1 126.2 (13.4) 0.0082
Cohab 835 2.1 1.2–15.5 0.06 0.04–0.08 0.60 0.40–0.80 0.19 0.14–0.24 75.8 63.7 (10.2) 0.1175

Analysis of data sets stratified by civil status and age. The data are separated into classes of single individuals living alone and those cohabitating (cohab) during
the previous 1-year time period before the study ended. The age-stratified data sets were constructed by grouping the sample population into three 10-year
age cohorts based on age by the end of the survey. The � exponents are found to be distinctly sublinear. The parameter estimates � and 	 are significantly
increased for persons living singly and among young men between the ages of 18 and 29, whereas these baseline parameters are reduced for people in a live-in
relationship. Lt, lifetime; Obs., observations.
*Sample of deviance generated from bootstrapping the data.

Freiesleben de Blasio et al. PNAS � June 26, 2007 � vol. 104 � no. 26 � 10765

A
PP

LI
ED

M
A

TH
EM

A
TI

CS
SO

CI
A

L
SC

IE
N

CE
S

http://www.pnas.org/cgi/content/full/0611337104/DC1
http://www.pnas.org/cgi/content/full/0611337104/DC1
http://www.pnas.org/cgi/content/full/0611337104/DC1


we condition on are larger. Thus, if � is constant, 	 should decrease
with time.

The parameter � is estimated from observations of persons with
no (new) partners during the prestudy period. This population is
likely to depend on the length of the initial period. For a short initial
period, the group may consist of persons with a stable relationship,
sexually inactive individuals and young persons with no sexual
experience. For longer prestudy periods, the population primarily
consists of sexually inexperienced individuals.

Women report significantly fewer partners compared with men
(compare with Fig. 2); this gender inequality is reflected in a
considerable reduction in the baseline �,	 parameters for females.

One way to visualize the model fit is to calculate the expected
numbers of new partners in the 1-year study period conditional on
the observed distribution of initial states. These values may then be
compared with the observed distribution of new partners. Fig. 3 and
and SI Fig. 6 show the cumulative pmf Pcum(�j) � �i
j P(�i) plotted
as a function of the quantity of new partners during the study period
�j on logarithmic axes for the model (solid line) and the data
(symbols). As seen in Fig. 3 and SI Fig. 6, the model provides a good
estimate of the probability distribution of contacts in the test
interval.

Stratified Analyses. A similar analysis was conducted on data sets
stratified by civil status and age (Table 2). We separated the data
into classes of single individuals living alone and those cohabitating
during the previous 1-year time period before the study ended. The
cohabitating status was preferred over marriage status because
�25% (Statistics Norway) of all live-in relationships in Norway are
not registered. The age-stratified data sets were constructed by
grouping the sample population into three 10-year age cohorts
based on age by the end of the survey. Analyses similar to that
shown in Table 2 were conducted on stratified lifetime partner data;
however, the test statistics were not acceptable (data not shown).
The � exponents are found to be distinctly sublinear. The parameter
estimates � and 	 are significantly increased for persons living singly
and among young men between the ages of 18 and 29, whereas these
baseline parameters are reduced for people in a live-in relationship.

Fig. 4 and SI Fig. 7 present the cumulative partner distribution
pmf Pcum (�j) � �i
j P(�i) plotted as function of new partners
during �j. In this case, we calculated the expected numbers of new
partners separately for each stratum conditional on the initial states.
Then the model expectation was found by summing the partner
contributions of each group. The model expectations derived from
stratification by civil status (cohab model) and 10-year cohorts (age
model) are shown in line plots.

As Fig. 4 and SI Fig. 7 show, the modeled distributions of the data
stratified by civil status and age are similar for low partner numbers.
However, the age-stratified models predict more prolonged tails,
which is more similar in shape to the unstratified models (Fig. 3).

Discussion
We have quantified the importance of PA for the formation of new
sexual contacts. For this purpose, a framework for statistical
inference of a generalized PA mechanism was presented, allowing
for random heterogeneity in the subjects. The method was applied
to model the distribution of new sex partners during a 1-year period
using Norwegian survey data.

Individual heterogeneity in the inclination for making sexual
contacts was found essential, as no satisfactory model fit was
obtained for the pure PA model. Instead, the PA frailty model
produced adequate fit to data when conditioning on contact
numbers over the past 2–4 years. Intrinsic growth rates have also
been considered by Barabási and Albert (23); heterogeneity was
introduced to avoid the correlation between age and connectivity,
which otherwise arises naturally in their PA model.

The parameter estimates of the two candidate models studied
here were in agreement, and the much simpler basic model may be

used to gauge their values. This finding is expected because the two
models give identical descriptions of the mean intensities in the
population. The major difference between the two models is that
inclusion of individual growth rates gives frailty models wider
confidence intervals for the estimated parameters.

The most salient finding is a scaling-exponent � � 0.5–0.6 with
95% confidence intervals 0 � � � 1. Interestingly, this finding also
applies to data stratified by age and cohabitation status. The result
is generically of a density mass function of contact numbers
belonging to the stretched exponential family. This finding is
interesting because it suggests that the reported power-law degree
distribution does not emerge from a simple PA process.

However, some caution must be exercised. First, the data mate-
rial analyzed is limited, and the Norwegian setting may be different
from other countries. Second, linear PA growth on the entire graph
is not necessary for a power-law network to emerge. In ref. 24, the
authors report power-law scaling in the degree distribution of a
scientific citation network, with sublinear PA on new nodes,
whereas links between existing nodes are linear by degree. In this
case, the dynamics are governed by the internal attachment process
between old nodes, producing the power-law degree distribution.
Unfortunately, because of the lack of partner identities, this par-
ticular aspect cannot be studied with the present data.

In the majority of cases, the deviance test statistics gave P values
in the range of 0.5–0.8 for women, and 0.05–0.3 for men. Given the
highly simplistic nature of the model, these values may be consid-
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Fig. 4. The cumulative probability of new partners Pcum(�j) � �i
j P(�i) as a
function of the new partners �j in the 1-year study period. The probabilities
are calculated by using the model parameter (Table 2). The individuals are
partitioned based on their age or civil status, and the expected numbers of
new partners in each strata were calculated separately based on the initial
numbers of partners j1, j2, . . . jn. These numbers were then summed to provide
the pmf of the entire population. (A) Results for women in the 3-year obser-
vation period. (B) Results for men in the 3-year observation period.
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ered satisfactory. Thus, the analyses show evidence of sublinear PA
in growing sexual networks.

Young people between 18 and 29 years of age and persons living
singly reported higher partner numbers compared with values in the
ungrouped data. In Norway, there has been a trend toward a
decrease in the age of first sexual encounter during the past 10–15
years. During the same time period, the numbers of lifetime
heterosexual partners, particularly among youngsters, have in-
creased (25); similar findings have been reported in Britain (26, 27).
The stratified analyses gave consistent estimates for the exponent �,
which were also in agreement with the � values of the ungrouped
data. By contrast, the � and 	 parameters, which describe the
contact rates among individuals with 0 or 1 prior partners, were
often distinct. The interpretation of these results is that contact
numbers of people with few partners initially are indicative of
general behavior in the strata. Although the parameter confidence
intervals were quite wide, the model proved sensitive enough to
distinguish both high- and low-value groups.

The finding of insufficient model fit to lifetime partner data is
important and reveals the limitations of the PA model. PA is not a
mechanism that stands alone; it works within a sociodemographic
context. The tendency of an individual to engage in multiple sexual
contacts varies with steady partnership and age, in addition to other
aspects not addressed here, such as changing social norms and
residency, among others. All of these factors causes the model
assumption of increasing contact rates with past partner numbers
to break down over the long term.

It should be noted that the interpretation of lifetime partner data
are not straightforward as we compare individuals by their total
number of partners up to some given point in time. Because of this
‘‘right censoring,’’ the years of active sexual life among subjects vary
substantially. Young people tend to report the fewest partners while
simultaneously having high partner change rates. This behavior is
inconsistent with the PA scenario and may contribute to the lack of
fit to lifetime data. However, no satisfactory model fit was obtained
from the age-stratified data (data not shown). This result in turn
suggests that the PA scenario is not adequate to model distributions
of new partners when conditioning on long-time partner data.

The ability to generalize the present study is limited by several
factors. Above all, the response rate of 35% is quite low and is lower
than reported values for other European national sexual surveys.
This low response rate naturally raises the concern that respondents
may differ in some systematic way from those who refused partic-
ipation; for example, women with extremely high numbers of
partners may be underrepresented in national surveys (28). How-
ever, we note that the present analysis focuses on the speed at which
new partners are obtained. Thus, a low response rate will bias our
results only if the responders differ from the general population in
their propensity to have new partners during the 1-year study

period. It is not necessary that the survey reflect the contact
numbers during the initial period in a correct way, because our
analyses are made conditional on these numbers.

Studies of sexual behavior are based on self-reports and are
exposed to various forms of recollection bias, principally recall
difficulties and self-disclosure bias, that is, deliberate misinforma-
tion about true behavior, as well as other methodological problems
(29). Recall errors may increase with the length of the recall period
(30), and contacts seem to be remembered more easily by people
with infrequent partner changes (31). The uncertainty of partner
numbers was discernible in a clear preference for rounded numbers
among persons with many partners. We tested the effect of data
clustering by fitting the model to smoothed data, replacing initial
and final values Ni(0), Ni(T) with whole numbers within a range
�10% of the original values, and by assuming a flat distribution
curve. The procedure improved the model fit substantially for men
in the 2- to 4-year studies. The P values were increased by a factor
of 10, thus signifying that data clustering impinges on model
performance. The procedure did not noticeably affect the param-
eter estimates. Among women, the effect of data smoothing was
negligible, as partner numbers 
10 were reported only rarely.
However, the results are highly preliminary. The crude supposition
of symmetric variation around the reported values contradicts the
gender-specific finding that men and women tend to over- and
underreport their partner numbers (32). In addition, recall bias also
has been found among individuals reporting one to two partners
during a 5-year period (33). Further studies in this area are clearly
merited.

When analyzing data stratified by live-in partnerships, no dis-
tinction was made as to the cohabitation status of individuals before
the 1-year study period. Although the length of the last steady
partnership was known, other live-in relationships could not be
controlled for. This inconsistency could explain the considerable
variation in model fit for these strata.

One effect of PA is that the variation in partner turnover rate in
a cohort will increase over time. The current variation in the risk for
sexually transmitted infection may therefore partly be a function of
the individuals’ earlier sexual history instead of sociodemographic
differences. PA may, for example, explain the lack of sociodemo-
graphic predictors (except age) for genital chlamydia (34). Thus,
strategic intervention programs that focus on traditional risk groups
may be less effective because a substantial group of individuals with
a high number of partners might not be targeted.
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