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ABSTRACT

For most common diseases with heritable components, not a single or a few single-nucleotide
polymorphisms (SNPs) explain most of the variance for these disorders. Instead, much of the variance
may be caused by interactions (epistasis) among multiple SNPs or interactions with environmental
conditions. We present a new powerful statistical model for analyzing and interpreting genomic data that
influence multifactorial phenotypic traits with a complex and likely polygenic inheritance. The new
method is based on Markov chain Monte Carlo (MCMC) and allows for identification of sets of SNPs and
environmental factors that when combined increase disease risk or change the distribution of a
quantitative trait. Using simulations, we show that the MCMC method can detect disease association when
multiple, interacting SNPs are present in the data. When applying the method on real large-scale data
from a Danish population-based cohort, multiple interactions are identified that severely affect serum
triglyceride levels in the study individuals. The method is designed for quantitative traits but can also be
applied on qualitative traits. It is computationally feasible even for a large number of possible interactions
and differs fundamentally from most previous approaches by entertaining nonlinear interactions and by
directly addressing the multiple-testing problem.

MOST common diseases are multifactorial and
influenced by several factors that can be of both

genetic and environmental origin (Lander and Schork

1994; Weiss 1994). The more prevalent of these dis-
orders include cancer, diabetes, obesity, hypertension,
and premature cardiovascular morbidity and mortality.
Numerous genetic variations have been implicated as
major pathogenic factors in various Mendelian disor-
ders. However, the success in identifying the genetic
factors underlying complex traits has at times been
limited (Glazier et al. 2002; Hirschhorn et al. 2002).
Many studies have been challenged by a presumed low
effect of each genetic variant, small study populations,
confounding effects such as population stratification,
and, possibly, the use of highly simplistic genetic models.

Even though conditions such as diabetes harbor
strong genetic components, not a single or a few single-
nucleotide polymorphisms (SNPs) explain most of
the genetic variance for these disorders (Risch and
Merikangas 1996). It is hypothesized that much of
the genetic variation may be caused by the interaction
(epistasis) of multiple SNPs and interaction with en-
vironmental conditions (Cordell 2002). The disease
penetrance associated with each allele is low and the

impact of genetic components may vary depending on
the genetic and environmental background (Carlson

et al. 2004). Great progress has been achieved in the last
few years using simple linear models (Cockerham and
Zeng 1996; Falconer 1996; Schaid et al. 2002; Baker

2005). However, for large-scale data the methods often
cannot detect interactions that are believed to have a
substantial impact on the development of complex
diseases (Culverhouse et al. 2004), because the models
include only linear interactions and because the sol-
utions that have been developed to address the multiple-
testing problem lead to a drastic reduction in the
statistical power (Cardon and Bell 2001). When mod-
eling all the possible interactions between environmen-
tal factors and many SNPs at different loci using classical
methods, the number of necessary parameters becomes
very large as the number of SNPs increases (Nelson

et al. 2001; Culverhouse et al. 2004). This is one of the
main reasons why SNP–SNP interactions and SNP–
environment interactions are rarely modeled in associ-
ation studies (Carlborg and Haley 2004) even though
these interactions are essential in uncovering the eti-
ological background for complex diseases.

Some of the more successful methods for incorporat-
ing higher-order interactions are based on clustering
algorithms. The combinatorial partitioning method
(Nelson et al. 2001) was one of the first methods to
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model higher-order interactions without any main
effect. This method evaluates all possible partitions and
is not computationally feasible for large-scale data. The
popular multifactor-dimensionality reduction (MDR)
(Ritchie et al. 2001) for binary traits reduces the
number of partitions by labeling the possible combina-
tions as either high risk or low risk. The results are then
evaluated through cross-validation or permutation test-
ing, which compensates for multiple testing.

Several methods based on regression and classifica-
tion trees allow for some interactions and are extremely
fast (Breiman et al. 1984; Freund and Schapire 1997;
Huang et al. 2004). One of these is the random forest
method (Breiman 2001). This method uses a bootstrap
sample of the data to construct a tree and uses the
nonsampled (called ‘‘out of bag’’) data for cross-validation.
Multiple bootstrap samples are used to construct a forest
of trees and the significance of each parameter is de-
termined from the out-of-bag samples.

We propose using Markov chain Monte Carlo (MCMC)
to overcome some of the problems described. MCMC is
a stochastic computational approach that is very useful
in Bayesian statistics where it can be used to estimate the
posterior distribution of the parameters using Monte
Carlo integration. This is achieved by generating sam-
ples from an ergodic Markov chain that has the same
stationary distribution as the posterior distribution.
MCMC provides a convenient method for dealing with
a large parameter space when only parts of the posterior
distribution are of interest. The new method explores
sets of effects (risk sets) that increase the risk, or the
phenotypic value, for individuals who fulfill the crite-
rion defined by the sets. A risk set may contain one or
more genetic or environmental conditions. The MCMC
method then provides a probability that a particular risk
set exists, i.e., that the conditions specified by the risk
truly cause an increase in the phenotypic value or a
higher disease risk. Methods that explore such a large
range of models (multiple combinations of effects)
often have very little power because they do not effi-
ciently combine the evidence for association from dif-
ferent models. The new Bayesian method addresses this
problem by combining information from many differ-
ent models, for example, by evaluating the effect of all
possible interactions when testing the effect of a single
SNP. The method is described in materials and methods

and the software for the method is called BAMSE and
can be found at http://biostat.ku.dk/�ande/BAMSE

MATERIALS AND METHODS

Risk sets: In the context of this method, a risk set is a subset
of the parameter space that partitions the individuals on the
basis of their genotypes and environmental factors. Let V
denote all possible sets of SNPs and environmental factors
(discrete or continuous). Let the jth group of individuals
whose genetic and environmental profiles fit a risk set Tj � V
denote a potential risk group Gj. Individuals not in any of the

risk groups are placed in G0. We set the upper bound, mr, on
the number of risk sets so that the number of risk sets nm 2 {0,
1, . . . , mr} is finite. An example of a risk set could be {weight .
90 kg, sex is male, SNP3 is a heterozygote} and the individuals
who fit this description constitute a risk group. Given a
quantitative trait yi for individual i 2 Gj and assuming that
the trait for every individual in a given risk group is in-
dependent and normally distributed with equal variance, the
observations yi are modeled as yi �

Pnm

j¼0 Ifi2GjgN ðaj ;s
2Þ,

where nm is the number of risk sets, and I is the indica-
tor function. Let m b ðT1;T2; . . . ;Tnm

;a0;a1;a2; . . . ;anm
;sÞ

be a state from the space M. If the phenotype is binary (case–
control design) the phenotype is modeled using a binomial
distribution where a j is the probability for being a case in the
jth risk group.

Each risk set Tj defines a genetic and environmental profile
and all individuals must fit this profile to be part of the
associated risk group Gj. The space of the lth component T l

j for
the jth risk set is defined as Vl and it is a finite discretization of
a compact subspace of R or a finite subset of N, depending on
the lth parameter. For example, a SNP parameter has seven
states given that individuals who are heterozygous and ho-
mozygous for major and minor alleles are all present in the
sample (see Equation A4). This corresponds to one state for
each possible combination of genotypes. For the continuous-
risk parameters, such as environmental factors, a threshold t
can be defined that excludes individuals with observations that
exceed this threshold. The space is defined as either T l

j ¼ {a:
a . t} or T l

j ¼ {a: a , t}. Let the jth risk set Tj be the set of the
risk parameters Tj ¼ fT 1

j ;T
2
j ; . . . ;T

np

j g for np parameters.
In some instances an individual may fit several risk sets.

In this case an individual is placed in the risk group with the
highest mean ai. Since not all of the observations (SNPs and
environmental factors) are necessarily thought to affect the
trait in a causative combination, not all of them need to define
a risk set. Therefore, only some T l

j ’s are needed to restrict the
jth risk group and the number of components, henceforth
called the active risk components (for risk set j), will there-
fore be restricted to na 2 {1, 2, . . . , ma}, where ma # np. This
means that a risk set can be restricted to a maximum of ma

active components. If only the kth component is active for the
jth risk set then Tj ¼ fT 1

j ;T
2
j ; . . . ;T k

j ; . . . ;T
np

j g ¼ fV1;V2; . . . ;
Vk�1;T

k
j ;Vk11; . . . ;Vnp

g, which means that only the kth com-
ponent restricts the jth risk group.

Priors: The means, aj’s, for the risk sets are assumed to be
normally distributed with the empirical average y as mean and
a variance calculated from the length of the range of the
observed values R so that a�N(j, k�1), where k is a multiple of
R�2 and j ¼ y. The prior for k is the same prior in Richardson

and Green (1997).
For the quantitative traits the variance is chosen to be

uniformly distributed on (0, ‘). The priors for the distribution
of the active risk components are uniformly chosen. The
priors for the number of active risk components na and the
number of risk sets nm are chosen to be geometrically
distributed, pna

� GðpaÞ and pnm
� GðprÞ, respectively. Both

distributions are normalized to sum to one. The priors for
components defining the SNP and environmental factors are
chosen to be uniformly distributed.

The Markov chain: The chain is updated using the
Metropolis–Hasting algorithm with acceptance probability

aðm;m9Þ ¼ min 1;
Lðm9Þpðm9Þqðm jm9Þ
LðmÞpðmÞqðm9 jmÞ

� �
ð1Þ

of jumping from the current state m to a proposed state m9.
p(m) is the prior for the mth state, q(m9 j m) is the proposal
probability of proposing state m9 given the current state m, and
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L(m) is the likelihood for state m. The method is implemented
so that the parameters are updated one at a time when pos-
sible. However, when updating the number of active compo-
nents or the number of risk sets, updates of several parameters
must simultaneously be proposed. A new risk set can be pro-
posed with a random choice of parameters or a risk set can be
deleted, which is sometimes called the death/birth move.
Details regarding the proposal algorithm are provided in the
appendix.

The posterior probability of a certain risk set Tk can be
approximated as

pðTk jdataÞ ¼ 1

N � B

XN
i¼B

IfTk2mig;

where B is the burn-in, N is the number of iterations, and mi

is the ith sampled state. Likewise, the posterior probability
for the number of risk sets being equal to x is

pðnm ¼ x jdataÞ ¼ 1

N � B

XN
i¼B

Ifx¼nmi
g;

where nmi
is the ith sampled number of risk sets and I is the

indicator function. This probability can be used to evaluate
whether there are any factors, genotypical or environmental,
that affect the trait.

Simulations: To evaluate the sensitivity and selectivity of the
method several simulations were performed under different
genetic models. Simulations were performed assuming 500
unrelated individuals with 20 uncorrelated SNPs and assum-
ing equal variance for affected and unaffected individuals. The
frequency of the minor allele was chosen to be 0.2 for all the
SNPs and the mean phenotypical value for unaffected indi-
viduals was 100 with a standard deviation of 10. The same
variance was chosen for the affected individuals but with vary-
ing means. However, in two genetic scenarios linkage disequi-
librium (LD) was simulated using coalescent simulations
based on the ms program (Hudson 2002), and the frequen-
cies of the SNPs were thus random variables. In these
simulations, a region was simulated under a neutral infinite
size model assuming a crossover at rate of 1/4N0 for a 50,000-
bp-long segment per generation, where N0 is the effective
population size. A random selection of 20 SNPs with a minor
allele frequency .0.05 was included in the nonepistatic
scenario. For the epistatic scenario 20 SNPs were selected
from two regions and a SNP with a minor allele frequency
between 0.17 and 0.23 from each region was selected as a
susceptibility SNP. Throughout, a burn-in of 10,000 iterations
and a run time of 100,000 were chosen for the MCMC analysis
by examining the convergence of the likelihood score and
using the potential scale reduction factor (PSRF), also called the
‘‘shrinking factor’’(Gelman and Rubin 1992), for the param-
eters that are always sampled. The shrinking factor was
visualized at several intervals of the chains as recommended
in Brooks and Gelman (1998). The risk parameters that were
frequently, but not always, sampled were transformed into
Bernoulli variables (0 for sampled and 1 for nonsampled) and
then tested in the same manner as the other parameters.

To evaluate the power of the MCMC-based method com-
pared with that of a linear model and random forests,
sensitivity and selectivity were calculated for the three methods
under different genetic models. The result is presented as
ROC curves for general use of the MCMC method, the random
forest, and a one-locus linear model. We evaluate the ability of
the methods to detect any effect in the data and to identify
specific susceptibility loci.

The sensitivity and selectivity for the linear model is
calculated using an F-test comparing the full one-locus model

to the null model of no genetic impact (three parameters vs.
one parameter). For the MCMC method, the posterior prob-
ability of at least one risk set ½p(nm . 0 j data)� was used to
detect an effect in the data and the posterior probability of
SNP i belonging to a risk set divided by the posterior
probability for there being at least one risk set ½p(T i � T j
data)/p(nm . 0 j data)� was used for identifying the suscepti-
bility SNPs. The estimated increase in mean squared error
was used for identifying SNPs using the random forest method
and the estimated explained variance was used to detect an
effect in the data. The random forest implementation in the
statistical software R version 2.3.1 was used. Five hundred trees
for each data set were chosen and seven variables were ran-
domly sampled as candidates at each split. When identifying
the SNPs, the susceptibility SNPs act as the true positives and
the other SNPs as false positives. For detecting an effect in data,
the simulations were compared with another set of simulations
without any genetic effect. For the linear model the best
(lowest) P-values from the two sets of simulations were com-
pared. The same data sets were used for the three methods.

Gene–gene–environment interactions affecting serum tri-
glycerides: Inter99 is a population-based cohort of 6741 individ-
uals randomly recruited using the central person registry from
the western part of Copenhagen County (Glümer et al. 2003).
Only individuals with Danish ancestry by self report were in-
cluded. A second group of individuals consisting of type 2
diabetes patients was recruited at Steno Diabetes Center. An oral
glucose tolerance test was used to determine the glucose toler-
ance status of each individual according to the World Health

Organization (1999): normal glucose tolerant (NGT), impaired
fasting glycemia (IFG), impaired glucose tolerance (IGT), and
type 2 diabetes (T2D). Smoking habits were quantitated on the
basis of interviews and questionnaires for the Inter99 cohort.

RESULTS

Simulations: We have performed extensive simula-
tions to evaluate the performance of the new method
and compare the results with the performance of the
single-locus linear model and the random forest
method. Although there are many methods we could
also have evaluated we have restricted ourselves to these
methods because they can handle quantitative traits and
are computationally feasible for the simulated data. The
new MCMC method suffers only a slight reduction in
power compared to the single-locus linear model as-
suming a single SNP with a dominant effect or an ad-
ditive effect (Figure 1). This is true both for the detection
of an effect in the data and for the identification of the
particular SNP involved. This may be somewhat sur-
prising given that the MCMC method allows for effects
of multiple SNPs and interactions among SNPs. In
contrast, the random forest method suffers a severe
reduction in power compared to the linear model un-
der these parameter settings. Similarly, under additive
effects of two SNPs, the linear model and the MCMC
method perform almost identically. In contrast, the
random forest method has much lower power. In the
presence of two interacting SNPs, or two pairs of inter-
acting SNPs, the new MCMC method has a distinct
advantage over the two other methods (Figure 2), par-
ticularly in detecting an effect. With three interacting
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SNPs, the effect is even more pronounced. The differ-
ence in power is manyfold at a low false-positive rate.
However, in the presence of LD the advantage of the
MCMC is somewhat reduced, which is due to the vary-
ing SNP frequency in the simulations.

In general, the MCMC-based method outperforms
the normal linear model when dealing with interac-
tions, especially multiple combinations of interactions,
while the linear model in some cases may perform
slightly better when dealing with a single susceptibility
SNP with additive effects. The random forest method
performs better than the linear model at detecting interact-
ing SNPs, but much worse at detecting the effect of a single
locus. On the basis of a limited number of simulations the
three methods seem fairly robust against phenocopy and
small departures from normality (data not shown).

To illustrate the efficacy of the method when the
number of individuals is large we simulated 100 SNPs
from five regions and 5000 unrelated individuals with
effect sizes so that the linear model could not achieve
significance after Bonferroni correction. Phenotypes
were simulated on the basis of a second- and a third-
order interaction, i.e., five susceptibility SNPs. A de-
scription of the simulated data and the result from the
simulation can be seen in Figure 3 and Table 1. Figure 3

and Table 1 show that the MCMC method provides very
strong evidence for association ½p(nm . 0)¼ 1� and that
the method easily identifies the five susceptibility SNPs
and the two specific combinations. The sampling from
the stationary distribution starts within a few thousand
iterations, which is ,1 min on a standard PC.

Gene–gene–environment interactions affecting se-
rum triglycerides: To illustrate the method we applied it
to the data described in materials and methods for a
�1131 T . C polymorphism in the APOA5 gene and a
�250 G . A, an IVS1 1 49 C . T, and a Ser215Asn
polymorphism in the LIPC gene. APOA5 and LIPC
are two of several genes where common alleles, many
in high linkage disequilibrium, have shown a strong
association with serum lipids such as triglycerides and
cholesterol (Kao et al. 2003; Lai et al. 2003; Klos et al.
2005; Oliva et al. 2005). It has been hypothesized that
APOA5 interacts with lipoprotein lipases that hydrolyze
the apolipoproteins. Furthermore, it has been shown
that APOA5 binds to the lipases (Merkel et al. 2005).
APOA5 has been shown to be expressed only in the liver
(Pennacchio et al. 2001), where the hepatic lipase en-
coded by LIPC is also found. Hepatic lipase hydrolyzes
triglycerides and has been shown to enhance the uptake
of lipoproteins (Thuren 2000). The effect of the�1131

Figure 1.—ROC curves for the three
methods in nonepistatic genetic scenarios
Each genetic scenario represents 1000 sim-
ulations of 500 individuals with 20 SNPs.
The prior for the MCMC method is cho-
sen as j ¼ y, k ¼ 100=R2, s � U(0, ‘),
pna
� Gð0:5Þ, and pnm

� Gð0:5Þ. In all sce-
narios unaffected individuals have a phe-
notype drawn from N(100, 100). (A)
Affected individuals have at least one mi-
nor allele at a specific locus and have a phe-
notype drawn from N(102.5, 100). (B)
Affected individuals have either one or
two minor alleles at a specific locus and
have a phenotype drawn from N(102.5,
100) or N(105, 100), respectively. (C) Af-
fected individuals have at least one minor
allele at one of two specific loci or at both
loci and have a phenotype drawn from
N(102.5, 100) or N(105, 100), respectively.
(D) The same as in A but there is linkage
between the loci.
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T . C polymorphism in the APOA5 promoter has shown
a consistent association with serum triglycerides in
various studies in different ethnic groups. Recently, a
small association study ( Jiang et al. 2005) indicated that
plasma glucose levels may interact with an APOA5 poly-
morphism, giving higher plasma triglyceride levels
among type 2 diabetic patients, but failed to show any
interactions among nondiabetic subjects. Association
studies of the APOA5�1131 T . C variant in the Inter99
cohort have shown that the effect on serum triglyceride
of the deleterious allele is modulated by other factors that
affect serum triglyceride levels (G. Andersen, T. Sparsø,
A. Albrechtsen, S. Castella, C. Glümer, K. Borch-
Johnsen, T. Jørgensen, R. Nielsen, T. Hansen and
O. Pedersen unpublished results). These factors in-
clude glucose tolerance status, gender, and smoking
habits. The interactions were found using a linear model
with two-way interaction terms. Using a linear model it
was not possible to include all possible interaction terms
among all factors. No interaction was found with the
three SNPs in LIPC and the APOA5 variant using a linear
model. However, since the effect of the APOA5 poly-
morphism is strongly modulated through glucose toler-
ance status, gender, and smoking habits it is possible that
an association with serum triglycerides can be observed

only through higher-order interactions. Therefore, the
APOA5 variant, the three LIPC variants, sex, smoking
habits, and glucose tolerance status were included in the
MCMC method. The adjustment factors age and body
mass index (BMI) were also included, assuming a linear
relationship. The glucose tolerance status and the smok-
ing habits each have four categories (NGT, IFG, IGT, and
T2D and never smoked, used to smoke, occasional
smoker, daily smoker, respectively). Both environmental
factors were assumed to be discrete ordinal variables.

We applied the MCMC method two times on 5300
individuals without missing data from the Inter99 co-
hort using 5,000,000 iterations in each run. The two
chains gave similar results and the parameters sampled
in each iteration can be seen in Figure 4. Convergence
diagnostics were performed using the method of
Gelman and Rubin (1992) and the multivariate shrink-
ing factor was ,1.01. The serum triglyceride levels were
logarithmically transformed and two extreme outliers
were excluded (6–8 SD from the mean after transforma-
tion). The method sampled 6–14 risk sets (see Figure 4B),
where 10 was the most frequent sample. All the factors
used in the method were frequently sampled (see Figure
4C). Not surprisingly, the environmental factors were
sampled in each iteration.

Figure 2.—ROC curves for the three
methods in epistatic genetic scenarios Each
genetic scenario represents 1000 simula-
tions of 500 individuals with 20 SNPs.
The prior for the MCMC method is cho-
sen as j ¼ y, k ¼ 100=R2, s � U(0, ‘),
pna
� Gð0:5Þ, and pnm

� Gð0:5Þ. In all sce-
narios unaffected individuals have a phe-
notype drawn from �N(100, 100). (A) In
this simulation the affected, drawn from
N(107.5, 100), are individuals carrying at
least one risk allele at two specific loci.
(B) In this simulation the affected, drawn
from N(107.5, 100), are individuals carry-
ing at least one risk allele at three specific
loci. (C) Affected are individuals that have
at least one minor allele at one of two spe-
cific combinations of two loci. There are
two possible risk combinations and four
risk loci. (D) The same as in A but there
is linkage between the loci.
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The final results can be seen in Table 2. Even though
there was no main effect of the three LIPC variants, they
all show an association with serum triglyceride levels in
combination with both genetic and environmental fac-
tors. Using the same criteria for the risk sets as seen in
Table 2, plots for the genotypes and mean serum tri-
glyceride levels when LIPC�250 G . A, LIPC IVS1 1 49
C . T, or LIPC Ser215Asn were part of the criteria are
shown in Figure 5. The presence of several factors in a
risk set does not necessarily imply an interaction but
could also be additive effects between the factors. One
of the risk sets that indicates a strong epistatic effect is
the risk set consisting of smoking nonnormal glucose
tolerance status (IFG, IGT, T2D) individuals with a
combination of APOA5 and LIPC IVS1 1 49 C/T alleles
(see Figure 5A). The (unadjusted) P-values using a
linear model for these stratifications of the data are also

Figure 3.—Results for a simulated scenario with 100 SNPs
and 5000 unrelated individuals. Five 500,000-bp-long regions
were simulated using the ms program. SNPs with a minor al-
lele frequency of ,0.05 and the SNPs in high LD (r2 . 0.95)
were removed. Then 20 SNPs were randomly selected from
each region and one SNP from each of the five regions with
a minor allele frequency between 0.17 and 0.23 was chosen as
a susceptibility SNP. Phenotypes were simulated so that the in-
dividuals with at least one minor allele at SNP8 and SNP34
had a phenotype drawn from N(103, 100) and individuals
with at least one minor allele at SNP46, SNP77, and SNP82
had a phenotype drawn from N(104, 100). Individuals with
minor alleles at all five susceptibility SNPs had a phenotype
drawn from N(107, 100) and individuals without any of the
two combinations had a phenotype drawn from N(100,
100). The prior for the MCMC method is chosen as j ¼ y,
k ¼ 100=R2, s � U(0, ‘), pna

� Gð0:5Þ, and pnm
� Gð0:5Þ.

The posterior distribution for the number of risk sets is
shown at the top and the posterior probabilities for a SNP pa-
rameter being part of a risk set is shown at the bottom. Also,
the P-values for the full single-locus linear model are shown as
x’s and the dashed and dotted lines denote P-values of 0.05
and 0.0005, respectively. The frequently sampled risk sets
can be seen in Table 1.
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shown for illustration purposes. For risk set 6 we tested
for epistasis between these SNPs for the smoking IFG,
IGT, and type 2 diabetics using a linear model with
covariates for being carriers of the minor alleles. To
verify this, using standard methods, we followed up this
finding by also performing the test for interactions on
another cohort of 1008 IFG, IGT, and type 2 diabetic
individuals consisting mostly of type 2 diabetics. A total
of 683 of the individuals were smokers. The P-value of
replication was 0.003 and it was the same allele combi-
nation that gave heightened serum triglyceride levels. It
should be noted that most of the individuals in the
follow-up group are under treatment, which may po-
tentially influence the results.

DISCUSSION

The MCMC approach appears to have overcome
many of the major difficulties in modeling higher-order
interactions in large-scale population-based data. For
many SNPs no method can explore all of the possible
interactions. However, the MCMC method uses the
marginal effects for a low-order interaction to find the
higher-order interactions. For example, if a fifth-order
interaction exists in the data, then the phenotypical
mean of the group of individuals with three of the five
factors will probably be different from that for the rest of
the individuals. The Markov chain will then spend more
time in this state and by exploring the ‘‘local’’ area will

find the fifth-order interaction (see appendix for up-
dates of the Markov chain).

A related fully Bayesian MCMC method, called
BAMA, has recently been developed (Kilpikari and
Sillanpaa 2003). However, there are some important
differences between our method and BAMA. The
BAMA method assumes no interactions among loci,
that all alleles have different effects, and that the effects
from each locus are additive. Another related method is
the Monte Carlo version of logic regression (Kooperberg

and Ruczinski 2005). This method uses Boolean ex-
pressions to model covariates in a linear model and thus
allows for higher-order interactions. Monte Carlo logic
regression uses maximum-likelihood estimates for the
coefficients in the model. The current MCMC method
models all multiple combinations of SNPs and does not
assume any linear relationship between the effects of any
combination of SNPs and environmental factors. How-
ever, our method does allow adjustment factors to be
included in the model if a linear relationship is assumed.
We chose to compare our method with random forest
because it does not make any linear assumptions.

Computational speed: The speed of the algorithm is
highly dependent on the number of individuals and the
number of sampled risk sets. For the simulated data,
where the number of sampled risk sets is rather low
and the number of individuals is few (500), application
of the method takes ,1 min, while under the larger
simulation condition (5000 individuals, 100 SNPs) each

Figure 4.—Result for the
MCMC analysis of SNPs and
environmental factors af-
fecting triglyceride. A total
of 5300 individuals with
three SNPs and three en-
vironmental factors were
tested against fasting serum
triglycerides. The triglyc-
eride levels were logarith-
mically transformed before
testing. j ¼ y, k ¼ 100=R2,
s � U(0, ‘), nm � G(0.5),
and na � G(0.5) but ,5.
The total run time was
5,000,000 with a thinning
factor of 100. (A) The sam-
pled likelihood score before
removing a 50,000-iteration-
long burn-in. (B) The pos-
terior distribution of the
number of risk sets. Only
nonempty risk sets were
counted. (C) The posterior
for a parameter being part
of a risk set. LIPC1 is the
LIPC IVS1 1 49 C . T
SNP, LIPC2 is the LIPC

Ser215Asn SNP, and LIPC3 is the�514 T . C variant. GLU is the glucose tolerance status. (D and E) The values of the adjustment
factors age and BMI. (F) The unadjusted mean for the individuals not placed in a risk set. The burn-in is shown as a dashed line.
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replicate takes a few minutes. When the method was
applied on the Inter99 sample, the MCMC method found
multiple risk sets defined by up to four factors, which
could not be accomplished using most other methods.
For example, modeling all possible interactions using a
standard linear model would entail including 2592
parameters in the model.

Power: The main advantage of the MCMC method is
that it allows multiple effects simultaneously, thereby
reducing the variance and allowing information to be
pooled among effects. This gives the method more
power than the linear models in most genetic scenarios
when dealing with multiple susceptibility SNPs. Simu-
lations showed that the MCMC can have more than
twice the power of the linear model to detect two two-
way interactions when the average number of false
positives is low (,1). When there are interactions pres-
ent in the data, then many combinations of SNPs will, to
some extent, be associated with the trait even without
any main effect. However, when compensating for mul-
tiple testing only information from the most strongly
associated combination is used. The MCMC method
combines information from many SNPs and risk
sets in the calculation of the posterior probability and,
thus, if many combinations are associated, the MCMC

method compensates for multiple testing at a much
lower cost.

While no method can entirely circumvent the prob-
lem of ‘‘the curse of dimensionality’’ (Bellman 1961),
our simulations show that the new method is feasible for
at least 100 SNPs. Although it may not be worthwhile to
entertain the possibility of three-way or four-way inter-
actions in data sets with thousands of SNPs (there are
1011 possible three-way interactions for 10,000 SNPs),
the method can still be efficiently applied to such large
data sets if the state space is constrained to exclude high-
order interactions.

The new method is too slow for modeling, for ex-
ample, 500,000 SNPs even without interactions. None-
theless, while we see our method as most suitable for
candidate gene studies, we also note that application in
large-scale genomewide studies is possible. For these
studies, we recommend using the method by applying it
independently to different genic regions, in addition to
using standard methods. If multiple SNPs within the
same genic region have an effect, such an application of
the method should greatly increase the mapping power
compared to methods that analyze each SNP separately.

Priors and assumptions: The MCMC method seems
to perform well under a range of different genetic

Figure 5.—Bar plots for some of the risk sets
with high posterior probability. The mean serum
triglyceride levels, with standard error bars, dis-
tributed on the genotypes are shown. The cohort
is stratified according to the environmental fac-
tors for the risk sets in Table 2. Due to individuals
belonging to two or more risk groups, the num-
ber of individuals in the bar plot might differ
from the risk sets in Table 2. The numbers in
the bars represent the number of individuals with
this genotype.
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models and does not assume the same genetic model for
the different risk sets. The factors used in the method
can be either biallelic SNPs or environmental risk fac-
tors that can be continuous or discrete ordinal. All
environmental factors are treated as binary traits, but
the threshold that divides the data need not be defined
in advance. The environmental factor can be included
in two ways, either as the measured values or trans-
formed to the sorting order of the values. By using the
latter, the prior for the number of individuals included
or excluded from a risk set is then uniformly distributed
where, if the actual values were used, the prior for the
threshold would be uniformly distributed in the range
of the values of the environmental factor. The priors for
the mean of each risk set (h, k) can have a great effect on
the posterior distribution of the number of risk sets
(see, for example, Richardson and Green 1997 with
discussion). If the mean is chosen as the midrange of
the trait instead of the empirical average, the MCMC
method is likely to predict a higher number of risk sets.
This, however, is highly dependent on k (the prior var-
iance for the means) or the multiple of k, where a small
multiple gives a rather flat prior distribution.

Caveats: Label switching, where different risk sets
partition the data in the same way, is a potential problem
in this MCMC method. Defining the risk sets to have a
higher mean than the set of individuals not in a risk set
"i: ai . a0 largely eliminates this problem. However, a
label-switching problem can still remain. For example, a
risk group might contain all or none of the individuals,
which means the data are partitioned in the same way as
if there were no risk sets. This problem can be addressed
in the calculation of posterior probabilities by appro-
priate editing of the MCMC output data, and it is, in any
case, partially alleviated by assigning low prior proba-
bility to states with a high number of risk sets. In our
implementation of the method, the number of non-
empty risk sets is calculated.

It is important to note that the posterior probabilities
estimated using the MCMC method do not have a
frequentist interpretation. For example, in repeated
simulations without a genetic effect, a posterior proba-
bility of .0.4, for there being at least one risk set, was
virtually never observed. Practitioners desiring to report
a frequentist P-value can do so by applying the method
in combination with a standard permutation procedure.
For small data sets, similar to the data sets simulated
in this article, such permutations are easily completed
on a single stand-alone computer. Permutation testing
on large and complex data sets would require access
to a cluster of processors.

The MCMC method can detect a range of different
genetic effects, whether they be main effects, epistatic,
gene–environment, or a mixture of them. In most ge-
netic scenarios with multiple causative factors, the
method has equal or more power to detect an effect
and identify the causal combination of genetic factors

than the more conventional linear model. The method
can model higher-order interactions and find significant
reproducible combinations of both genetic and environ-
mental factors that influence serum triglyceride levels.
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APPENDIX

Pseudocode: The algorithm can be written in pseu-
docode as

runtime¼N
while (runtime – –){

update SNP parameters
update environmental parameters
update a mean for a random risk set
update adjustment factors
update the number of active risk components

update the positions of the active risk component
update the missing genotypes
update a mean for a random risk set
update the number of risk sets using delete or create
mean_update¼5
while(mean_update – –){

update of variance
update a mean for a random risk set

}
sample the parameters

}

where N is the number of iterations. In each update a
proposal update is either accepted or rejected.

Update of means: Since a reasonable choice for a
mean should be no higher than the maximum pheno-
typic value maxp and no lower than the minimum phe-
notypic value minp, the parameter space for a mean is
defined as ½minp, maxp�. The proposed mean a9i of risk
set i is sampled either from N(j, k�1) or from U(minp,
maxp). The latter is used when the acceptance rate of
the updates falls below a specified threshold. This may
typically happen when the Markov chain visits states with
many risk sets.

The acceptance probability for this update is

aðm;m9Þ ¼ min 1;
Lðm9ÞqðaiÞpða9i Þ
LðmÞqða9i ÞpðaiÞ

� �
: ðA1Þ

To avoid some of the problems with label switching
the risk sets T1;T2; . . . ;Tnm

can be chosen to have a
higher mean than T0. When updating the mean for one
of the risk sets it is restricted to ½a0, maxp� and T0 is
restricted to ½minp;minnm

i¼1ai �.
Update of the variance: The variance is updated by

simulating a uniform U(s� w, s 1 w) random variable,
where w is some specified constant. If the proposed
value, s9, is outside (0, ‘), i.e., less than zero, it is mirrored
back into the space

s9 ¼ �s$ s$ , 0
s$ s$ 2 ð0;‘Þ;

�
ðA2Þ

where s99 is the unmirrored proposal variance sampled
from U(s�w, s 1 w). This ensures that q(m jm9)¼ q(m9 j
m) and reversibility.

The acceptance probability for this update is

aðm;m9Þ ¼ min 1;
Lðm9Þ
LðmÞ

� �
ðA3Þ

because the prior densities are uniformly distributed.
Update of adjustment factors: This update is per-

formed similarly to the update of the variance, but
without any restrictions in R.

Update of risk parameters: There are seven different
possible partitions, excluding the empty space, of the
discrete space of the SNP risk parameters, when there
are three possible one-locus genotypes,
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1 fWTg
2 fHEg
3 fHOg
4 fWT ;HEg
5 fHE ;HOg
6 fWT ;HOg
7 fWT ;HE ;HOgðcalled nonactiveÞ; ðA4Þ

where partition 7 allows all genotypes. Updates are
proposed by sampling from their uniform prior density
U {1, 2, 3, . . . , 6} and the acceptance probability is the
same as (A3). The updates for being active are proposed
separately.

The environmental parameters allow the individuals
to enter risk sets if they have environmental values that
are below or higher than a given threshold t j

i . The ith
environmental parameter takes values in the interval
between the observed minimum and maximum envi-
ronmental values. Again the proposals are sampled from
their uniform prior density and the acceptance proba-
bility becomes (A3).

Updating the number of active risk components: In
the presence of many environmental and genetic fac-
tors, a random risk set is likely to result in an empty risk
group. Therefore, it will in most cases lead to significant
savings of computational time to define an upper limit
for the number of components that are active in a risk
set. The maximum number of active components in a
risk set, ma, can be defined by the user.

The probability of deactivating a given active risk
component for risk set i when there currently are nai

active components is defined as 1/nai
and the probabil-

ity of activating a given inactive risk component is
1=ðnp � nai

Þ. The acceptance probability for deactivat-
ing a risk component becomes

aðm;m9Þ ¼ min 1;
pðn9ai Þpadðn9ai ÞLðm9Þnai

pðnai Þpadðnai ÞLðmÞðnp � nai 1 1Þ

� �
;

ðA5Þ

where p(nai
) is the prior for the number of active

components in the ith risk set and pad
ðnai
Þ ¼ np

nai

� �
is

the prior for the distribution of the active components.
The acceptance probability for activating a risk

component is

aðm;m9Þ ¼ min 1;
pðn9ai

Þpadðn9ai
ÞLðm9Þðnp � nai

Þ
pðnai Þpadðnai ÞLðmÞðnai 1 1Þ

� �
:

ðA6Þ

Updating the active risk component: Risk sets are also
updated by simultaneously proposing a deactivation of
one component and an activation of another compo-

nent. The components chosen to be activated or de-
activated are chosen with equal probability. Because the
priors are also uniformly distributed, the resulting ac-
ceptance probability is given by (A3).

Updating the number of risk sets: To allow different
combinations of genotypic and phenotypic factors to
have different effects, we allow multiple risk sets with
different means. Using reversible jumps (Green 1995),
the Markov chain can jump between parameter spaces
of different dimensionality. To ensure reversibility, a
random component c is used so that the mapping from
m to m9 is one-to-one. The mapping, when creating a new
risk set, is defined as

a9n9m

T9n9m

a$
T$
s9

0
BBBB@

1
CCCCA ¼

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

0
BBBB@

1
CCCCA

c1

c2

a
T
s

0
BBBB@

1
CCCCA; ðA7Þ

where 1 is the identity matrix, 0 is a zero matrix,
a9 ¼ ða$;a9n9m Þ, and T9 ¼ ðT $;T9n9m Þ. The Jacobian for
this mapping is the identity matrix and thus does not
need to be included in the acceptance probability.

The number of active risk components in the new risk
set n9ai

is uniformly proposed from {1, 2, . . . , ma}, and the
positions of each active risk component are also chosen
with equal probability. When proposing a new risk set
the mean of the new risk set, the SNPs, and the en-
vironmental factors are sampled from their prior den-
sity. The acceptance probability then reduces to

aðm;m9Þ ¼ min 1;
Lðm9Þpðn9mÞpðn9ai Þ
LðmÞpðnmÞqðn9ai Þ

� �
; ðA8Þ

where pðn9ai
Þ is the prior for the number of active

components in the proposed risk set (i) and qðn9ai
Þ is the

probability of proposing this number.
Updating missing genotypes: The priors for the

missing genotypes are calculated on the basis of the fre-
quencies of the observed genotypes, pj, at locus j and
assuming Hardy–Weinberg equilibrium

pðgj ¼ iÞ ¼ Ii¼0p2
j 1 Ii¼12pjð1� pjÞ1 Ii¼2ð1� pjÞ2; ðA9Þ

where i is the number of minor alleles and gj is the state
of the genotype.

All the missing genotypes for one SNP are updated at
the same time and proposed from the prior distribution
so that the acceptance probability is given by (A3).

The priors for the genotypes can also be specified
for each individual, which can be very efficient when
the SNPs are in LD. These priors can be estimated, for
example, using the posterior estimates from the fast-
PHASE software (Scheet and Stephens 2006).
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