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ABSTRACT

We present a new approach for estimation of the population-scaled mutation rate, u, from microsatellite
genotype data, using the recently introduced ‘‘product of approximate conditionals’’ framework. Com-
parisons with other methods on simulated data demonstrate that this new approach is attractive in terms of
both accuracy and speed of computation. Our simulation experiments also demonstrate that, despite the
theoretical advantages of full-likelihood-based methods, methods based on certain summary statistics
(specifically, the sample homozygosity) can perform very competitively in practice.

PATTERNS of genetic variation in population samples
contain important information on both the biolog-

ical mechanisms (e.g., mutation, recombination, gene
conversion, selection) and aspects of population de-
mographic history (e.g., population expansions, bottle-
necks, and migration rates). However, extracting this
information is often tricky. The simplest methods are
based on matching summaries of the data (e.g., expected
heterozygosity or average pairwise distances between al-
leles) to their expected values. Although these methods
are attractive in their simplicity, summarizing the geno-
type data with a single number in this way risks losing
information. More complex methods that use sophisti-
cated computations to approximate the full likelihood of
the data (Griffiths and Tavaré 1994a,b; Kuhner et al.
1995; Iorio et al. 2005) are more efficient in principle,
but typically are difficult to implement, and may take
impractical amounts of time to produce reliable results
(Stephens and Donnelly 2000; Fearnhead and
Donnelly 2001). This has limited their usefulness in
practice. Indeed, in some settings the computational
complexities of full-likelihood-based approaches are so
daunting that many researchers have turned to approx-
imate methods (e.g., Hudson 2001; McVean et al. 2002;
Fearnhead and Donnelly 2002; Li and Stephens

2003), often with considerable success (e.g., Crawford

et al. 2004; McVean et al. 2004). Thus far, applications of
these approximate methods have been to data on single-

nucleotide polymorphisms (SNPs). Here we extend one
of these methods, the PAC likelihood approach of Li

and Stephens (2003), to estimate the scaled mutation
parameter u (¼ 2Nm, where N is the effective haploid
population size and m is the mutation probability per
meiosis) from microsatellite data. Simulation results sug-
gest that this method is as accurate as full-likelihood-
based approaches and considerably faster.

Models and methods: We consider a simple scenario,
where we genotype a single microsatellite locus in n
haploid individuals, or n/2 diploid individuals, sampled
from a random-mating population that has been evolv-
ing neutrally with constant (haploid) size N according
to a Wright–Fisher model. Let a1; . . . ; an denote the
observed alleles (number of repeats of the microsatel-
lite motif). We assume that the locus evolves according
to a symmetric stepwise mutation mechanism, where if a
mutation occurs in a transmission then the offspring’s
allele length increases or decreases (with equal proba-
bility) by one from the progenitor allele. Although this
model is simplistic, it is widely used and is the basis for
all the methods of estimating u that we consider here.
However, our approach could be easily modified to deal
with other mutation models (e.g., those described in
Calabrese and Durrett 2003).

There exist two broad categories of approach for
estimating u in this context. The first is moment esti-
mators based on summary statistics. Kimmel et al. (1998)
include two such estimators (their Equations 14 and 15).
The first one, the homozygosity estimator, is given by

ûH ¼ 0:5 P̂
�2
0 � 1

� �
; ð1Þ
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where P̂0 is an unbiased estimate of the population
homozygosity,

P̂0 ¼
n
P

r
k¼1 p2

k � 1

n � 1
; ð2Þ

where r is the number of different alleles found in the
population, and pi is the sample frequency of the ith al-
lele. The second estimator is

ûV ¼ ð2=ðn � 1ÞÞ
Xn

i¼1

ðai � �aÞ2; ð3Þ

where �a is the mean of the ai’s. The estimator ûH is based
on the limiting expected homozygosity in a continuous-
time Wright–Fisher model, whereas ûV is based on the
limiting expected value of the within-population com-
ponent of genetic variance in the same model Kimmel

et al. (1998).
The second category is full-likelihood-based approaches,

including maximum-likelihood and Bayesian approaches,
which base inference on the likelihood

LðuÞ ¼ Prða1; . . . ; an j uÞ: ð4Þ

In principle full-likelihood-based approaches are more
efficient than moment estimators based on summary
statistics. However, they are considerably harder to imple-
ment because the likelihood (4) cannot be computed di-
rectly. Instead, the likelihood can be approximated using
computational methods such as Markov chain Monte
Carlo (MCMC) or importance sampling. Wilson and
Balding (1998) and Beerli and Felsenstein (2001) de-
scribe two such approaches. Wilson and Balding (1998)
take a Bayesian approach, specifying prior distributions
for N and m, and use an MCMC scheme to draw samples
from the posterior distribution of u. This method is imple-
mented in the software MICSAT, which we downloaded
from http://www.maths.abdn.ac.uk/�ijw/downloads/
download.htm. Beerli and Felsenstein (2001) also
use a (different) MCMC scheme; but instead of per-
forming a Bayesian analysis, they use it to compute a
likelihood surface for u (and also, in the case of samples
from multiple populations, a set of migration rates
among populations; however, here we deal with a sam-
ple from a single random-mating population, and so
their approach can be used to estimate u alone). This
method is implemented by the program Migrate (version
1.7.3), which we downloaded from http://evolution.
genetics.washington.edu/lamarc/migrate.html.

In this article we take a different approach, following
Li and Stephens (2003) who suggest approximating
the likelihood (4) by exploiting the identity

Prða1; . . . ; an j uÞ
¼ Prða1 j uÞPrða2 j a1; uÞ . . . Prðan j a1; . . . ; an�1; uÞ:

ð5Þ

Although the conditional distributions on the right-
hand side of this equation are unknown for most mod-
els of interest, they are amenable to approximation (e.g.,
Stephens and Donnelly 2000; Fearnhead and
Donnelly 2001; Li and Stephens 2003). Substituting
such an approximation, p̂ say, into the right-hand side
yields an approximate likelihood, which Li and Stephens

(2003) term the ‘‘product of approximate conditionals’’
(PAC) likelihood:

LPACðuÞ ¼ p̂ða1 j uÞp̂ða2 j a1; uÞ . . . p̂ðan j a1; . . . ; an�1; uÞ:
ð6Þ

Li and Stephens (2003) applied this idea to estimate
recombination rates (but not mutation rates) from SNP
data and showed the resulting estimates to be compet-
itive with the best available methods for that problem.

Here we show that an analogous approach also works
for estimating u from microsatellite data. For the con-
ditional distributions p̂ðak11ja1; . . . ; ak ; uÞ on the right-
hand side of (6) we use the approximation suggested
by Stephens and Donnelly (2000). This approxima-
tion is based on the idea that the next sampled allele,
ak, will differ by a random number of mutations (which
will typically be a small number of mutations and quite
possibly 0 mutations) from a randomly chosen exist-
ing allele (a1; . . . ; ak). Stephens and Donnelly (2000,
p. 616) assume that the number of mutations, m, has a
geometric distribution, with Pr(m ¼ 0) ¼ k/(k 1 u). The
assumption of a geometric distribution is motivated by
the fact that the resulting approximation is exact for the
case k¼ 1; and the assumption on Pr(m¼ 0) is motivated
by the fact that the resulting approximation is exact
[and results in the well-known Ewens sampling formula
(Ewens 1972)] for so-called ‘‘parent-independent mu-
tation’’ (PIM) models, where the type of a mutant
offspring is independent of the type of the progenitor
allele. Of course, the stepwise mutation is not PIM, so
the approximation is not exact in our setting. Part of our
aim here is to show that the approximation is good
enough to provide accurate estimates for u.

Mathematically, the approximation suggested by
Stephens and Donnelly (2000) is

p̂ðak11 j a1; . . . ; ak ; uÞ ¼ ð1=kÞ
Xk

i¼1

X‘

m¼0

ð1� qkÞqm
k ðP mÞaiak11

;

ð7Þ

where qk ¼ u/(k 1 u) and P is a mutation matrix, whose
(i, j)th element is the probability that the type of an
offspring is of type j, given that the progenitor is of type i
and a mutation occurs. To ease comparison with other
approaches, we assume a symmetric stepwise mutation
mechanism, so that

Pij ¼
0:5; if j i � j j ¼ 1
0; otherwise:

�
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We note that, unlike in Stephens and Donnelly (2000),
we do not impose any reflecting boundaries on the
mutation process, although this would be straightfor-
ward to do. (Thus, the matrix P has infinitely many rows
and columns.) It would also be straightforward to in-
corporate nonstepwise moves (e.g., Nielsen 1997) or
indeed any other desired form for P.

This choice of P has the convenient, although not es-
sential, property that the approximation (7) simplifies, to

p̂ðak11 j a1; a2; . . . ; ak ; uÞ

¼ ð1=kÞ
Xk

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� qk

1 1 qk

s
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q2

k

q� �
=qk

� � jai�ak11j
:

ð8Þ
This follows from rewriting (7) as

p̂ðak11 j a1; . . . ; ak ; uÞ ¼ ð1=kÞ
Xk

i¼1

ð1� qkÞðI � qkPÞ�1
aiak11

ð9Þ

and noting that the matrix with (i, j)th element

ðI � qP Þ�1
ij ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q2

q� �
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q2

q� �
=q

� � ji�j j

ð10Þ

is the inverse of (I � qP). Equation 10 can be verified by
straightforward algebra, multiplying a row of (I� qP) by
a column of (1 � qP)�1 defined by (10).

Substituting (8) into (6) for k ¼ 1; . . . ;n � 1 gives a
PAC likelihood for this problem. Note that, as in Li

and Stephens (2003), the resulting PAC likelihood is
not invariant to the ordering of the sampled alleles a1,
a2, . . . , an. To deal with this, we take the same approach
as Li and Stephens (2003); we average (4) over 10 ran-
dom permutations of a1, a2, . . . , an. [Results (not shown)
obtained using a single random permutation were
similar in accuracy.] We use ûPAC to denote the value
of u that maximizes this function [found numerically
by computing LPAC(u) on a dense grid of values for u].

Figure 1.—Comparison of the ‘‘bias’’ (a–c) and ‘‘accuracy’’ (d–f) of different estimators. Each section has five curves, one for
each estimator: s, ûH; n, ûV; x, ûMICSAT; #, ûMigrate; and h, ûPAC. In a–c the curves show the median value of logû� logu for different
haploid sample sizes n¼ 10, 20, 40, and 80. In d–f each curve shows the median of j logû� logu j for the same values of n. We used a
coalescent-based simulation program, kindly provided by P. Fearnhead, to simulate samples of microsatellite alleles randomly
sampled from a population evolving according to the Wright–Fisher model, with stepwise mutation. (This model underlies all
the methods we compare here.) For each different u, and for each different n, we simulated 50 data sets. For each data set
we estimated u using each of the methods and compared the estimated value of u with the true value of u used to generate
the data. Approximate run times for a single data set of size n ¼ 80, on a desktop computer with 3GHz CPU, were �10 min
for MICSAT, �45 min for Migrate, �10 sec for our method, and ,1 sec for the summary statistic methods.
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Comparisons: We compared the properties of our
PAC-based estimator ûPAC with other available methods
described above: the moment-based estimators ûH and
ûV and the full-likelihood-based estimators ûMICSAT and
ûMigrate. To be precise, ûMICSAT is the mean of 10,000
draws from the posterior distribution for u obtained
using the program MICSAT with default parameter
values, and ûMigrate is the value of u that maximizes the
approximate likelihood computed using Migrate, again
with default parameter values.

Figure 1 compares ‘‘bias’’ (or, more accurately, me-
dian error) and ‘‘accuracy’’ (median absolute error) of
the resulting estimates, on a log scale. Making compar-
isons on the log scale means that, for example, under-
estimating u by a factor of 2 is considered equally
good—or bad—as overestimating by a factor of 2. We
use medians rather than means because the means are
infinite, due to the fact that there is a small finite pro-
bability of each estimator being 0 (and therefore giving a
log of �‘); see also Li and Stephens (2003).

For the scenarios we consider, ûPAC, ûH, ûHU, and
ûMICSAT are consistently better (smaller bias and smaller
mean absolute error) than ûV and ûMigrate. If anything
the results for ûPAC seem very slightly better than the
other three, especially for small values of u (according to
a paired Wilcoxon signed-rank test, the improvement in
accuracy over ûMICSAT is significant at P , 0.05 for all
values of n considered at u ¼ 2 and for n ¼ 10, 20, 80 at
u¼ 8; the improvement over ûH is significant at P , 0.05
for all values of n considered at u ¼ 2, for n ¼ 20, 80 at
u ¼ 8, and for n ¼ 10, 20, 40 at u ¼ 32). However, the
differences may be too small to be practically important,
and in some sense a direct comparison with ûMICSAT is
inappropriate, since it is based on a particular prior dis-
tribution for u.

One additional notable finding from our simulations
is that, between the summary statistic estimators, ûH per-
forms considerably better than ûV. Indeed, the finding
that ûH performs competitively with the likelihood-
based methods is, as far as we are aware, novel. While
we have no intuitive explanation for this good perfor-
mance, the poor performance of ûV might perhaps have
been expected, for the following reason. Equation 3
for ûV can be rewritten as ûV ¼ ð1=nðn � 1ÞÞ

Pn
i¼1

Pn
j¼1

ðai � ajÞ2. Thus ûV is the mean squared pairwise dif-
ference between sampled microsatellite repeats. In the
context of sequence data, the corresponding estimate for
u (per base pair) is the mean pairwise distance (per base
pair) between sampled haplotypes, also known as the
nucleotide diversity, and this is known to be an incon-
sistent estimator for u in that context (e.g., Donnelly and
Tavaré 1995).

We interpret the poorer performance of ûMigrate as
indicating that, even in this relatively simple setting, with
only a single parameter to be estimated and no migra-
tion, the default run lengths we used were insufficient to

provide an accurate approximation to the maximum-
likelihood estimates. In more complex settings, involving
migration, for example, obtaining an accurate estimate
of the likelihood surface, and the location of its maxi-
mum, seems likely to be still more challenging. Although
some work would be necessary to extend our PAC-
likelihood method to these settings, our results here,
and in Li and Stephens (2003), suggest that this effort
may be worthwhile.
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submitted version of this manuscript. This work was supported by
National Institutes of Health grant HG/LM02585 to M.S.

LITERATURE CITED

Beerli, P., and J. Felsenstein, 2001 Maximum likelihood estima-
tion of a migration matrix and effective population sizes in n sub-
populations by using a coalescent approach. Proc. Natl. Acad.
Sci. USA 98(8): 4563–4568.

Calabrese, P., and R. Durrett, 2003 Dinucleotide repeats in the dro-
sophila and human genomes have complex, length-dependent
mutation processes. Mol. Biol. Evol. 20: 715–725.

Crawford, D., T. Bhangale, N. Li, G. Hellenthal, M. Rieder et al.,
2004 Evidence for substantial fine-scale variation in recombina-
tion rates across the human genome. Nat. Genet. 36: 700–706.
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