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ABSTRACT

The recent development of Affymetrix chips designed from assembled EST sequences has spawned
considerable interest in identifying single-feature polymorphisms (SFPs) from transcriptome data. SFPs are
valuable genetic markers that potentially offer a physical link to the structural genes themselves. However,
most current SFP prediction methodologies were developed for sequenced species although SFPs are
particularly valuable for species with complex and unsequenced genomes. To establish the sensitivity and
specificity of prediction, we explored four methods for identifying SFPs from experiments involving two
tissues in two commercial barleys and their doubled-haploid progeny. The methods were compared in terms
of numbers of SFPs predicted and their ability to identify known sequence polymorphisms in the features, to
confirm existing SNP genotypes and to match existing maps and individual haplotypes. We identified .4000
separate SFPs that accurately predicted the SNP genotype of .98% of the doubled-haploid (DH) lines. They
were highly enriched for features containing sequence polymorphisms but all methods uniformly identified
a majority of SFPs (�64%) in features for which there was no sequence polymorphism while 5% mapped
to different locations, indicating that ‘‘SFPs’’ mainly represent polymorphism in cis-acting regulators. All
methods are efficient and robust at predicting markers for gene mapping.

SEVERAL recent studies have explored the possibility
of using transcript abundance data from cRNA

hybridizations to Affymetrix microarrays (Affymetrix,
Santa Clara, CA) to reveal genetic polymorphisms that
can be used as markers to genotype individuals in map-
ping populations (Borevitz et al. 2003; Cui et al. 2005;
Ronald et al. 2005; Rostoks et al. 2005a,b; West et al.
2006).

Each gene on an Affymetrix gene chip is typically
represented by 11 different 25-bp oligos covering fea-
tures of the transcribed region of that gene. Each of
these features is present as a ‘‘so-called’’ perfect match
(PM) and mismatch (MM) oligonucleotide. The PM ex-
actly matches the sequence of a particular standard
genotype, often one parent of a cross, while the MM dif-
fers from this in a single substitution in the central, 13th
base. If two individuals differ in the amount of mRNA
produced by the particular tissue under study, this
should result in a relatively uniform difference in their
hybridizations across the 11 features. Alternatively, if the
two individuals produce the same amount of mRNA but
contain a genetic polymorphism within their DNA that

coincides with one particular feature (or features if they
overlap), this may also give rise to differential hybrid-
izations but now confined to that feature alone. Such
differences have been termed single-feature polymorphisms
(SFPs) (Borevitz et al. 2003). The third and probably
most frequent possibility is that the individuals differ
both in gene expression and in one or more feature poly-
morphisms. Thus, in principle, it is possible to explore
both general expression effects and specific SFP poly-
morphisms using the same data set. The former could
be the result of genetic polymorphism in that gene or in
a trans- or cis-regulator that affects transcription, while
the second is most likely, though not exclusively, due to
polymorphism in the gene itself that affects hybridiza-
tion success. Some of these expression differences and
SFPs may be distributed bimodally in a population and
hence can be ‘‘Mendelized’’ as genetic expression markers
(GEMs) or SFP markers, respectively (West et al. 2006).

The ability to recognize SFPs reliably for a large number
of genes opens up the possibility of carrying out expres-
sion QTL (eQTL) studies (‘‘genetical genomics’’) ( Jansen

and Nap 2001; Brem et al. 2002; Schadt et al. 2003;
Morley et al. 2004; Mehrabian et al. 2005) while simul-
taneously genotyping ‘‘immortal,’’ biparental populations
such as recombinant inbred or doubled-haploid lines
(RILs or DHLs). Much of the previous work on genetical
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genomics has been based on sequenced and well-
characterized model species such as yeast, mouse, and
Arabidopsis (Brem et al. 2002; Borevitz et al. 2003; Bing

and Hoeschele 2005; Bystrykh et al. 2005). In these
cases the features on the chip are frequently based on
the gene sequence of one of the parents while the phys-
ical and genetical chromosomal locations of these genes
are precisely known. The location of eQTL can then be
compared with the gene location to distinguish cis- and
trans-regulated genes. Genetical-genomics approaches
have also been applied to other species for which marker
genotypes of the population (RILs, DHLs, etc.) are
known, thus allowing eQTL studies to be performed
( Jansen and Nap 2001; Alberts et al. 2005; DeCook

et al. 2006). However, in such cases, the physical/
genetical linkage relationships between the genes and
the probe features on the array will not normally be
known. The ability to map the features as SFPs and the
eQTL using the same data set would be particularly valu-
able because it could provide this physical link between
marker (SFP) and gene. Such studies could be comple-
mented with additional, preexisting and mapped mark-
ers, providing potential causal links between markers
and SFPs as well as anchoring SFPs to particular chro-
mosomes. The comparisons between SFPs, eQTL, and
QTL for conventional phenotypic traits provide a pow-
erful route to identify QTL candidate genes and study
gene networks.

Various methods have been proposed for identifying
sequence polymorphisms. Winzeler et al. (1998) dem-
onstrated that hybridization of labeled genomic DNA to
oligonucleotide microarrays could identify sequence
polymorphisms. The technique has been successfully
employed to identify and genotype genetic markers
across the whole genome of budding yeast (Brem et al.
2002; Steinmetz et al. 2002). Borevitz et al. (2003)
succeeded in employing the approach to identify the
polymorphism embedded in single probe sequences in
more complex species such as Arabidopsis thaliana and
termed them ‘‘single feature polymorphism.’’ The idea
was extended to hybridize cRNA to expression micro-
arrays for detecting SFP markers in barley (Cui et al.
2005; Rostoks et al. 2005a,b).

Ronald et al. (2005) were probably the first to use
expression data assayed for a segregating population of
budding yeast from Affymetrix microarrays to identify
SFPs between two parental strains and to genotype the
segregants at the SFPs. The approach has relied heavily
on information about the match between probe and
transcript sequences (for details, see materials and

methods). Its use may thus be limited to the cases where
transcript sequences are largely known by making use of
a reference strain or variety in the analysis, such as in yeast
and Arabidopsis. Second, some of the inferred SFPs may
be due more to differential expression between two par-
ental genotypes, i.e., GEMs (West et al. 2006), than to
genuine sequence polymorphisms.

In this article we are concerned with the relative
efficiencies of four different SFP prediction methods
and explore the nature of the polymorphisms they are
detecting. We develop two new statistical methods for
identifying SFPs by modeling expression data from rep-
licated Affymetrix microarrays on two commercial barley
varieties Steptoe (St) and Morex (Mx) and for genotyp-
ing and mapping SFPs in a doubled-haploid population
from a cross of these two parental lines. The new meth-
ods are compared with the approaches proposed by
Ronald et al. (2005) for predicting SFPs by use of cRNA
microarray data and that by Winzeler et al. (1998),
which is appropriate for screening for sequence poly-
morphisms by use of genomic DNA microarray data.
The expression analysis was performed on Affymetrix
Barley1 chips using RNA taken from two tissues, seedling
leaves and embryo-derived tissue from the germinating
grain. We explore these four approaches to identify and
map SFPs and test the reliability of our genotype pre-
dictions (i) using existing sequence information of the
features in the parents of the cross, (ii) using SNP geno-
type information for the predicted polymorphic genes
among the doubled-haploid (DH) lines, and (iii) by con-
structing DH graphical genotypes produced from map-
ping SFPs to compare with those from known SNPs. Our
major aim is to define and validate a robust procedure
for fast and reliable SFP genotyping in mapping pop-
ulations that is appropriate to model organisms as well as
agriculturally important but less tractable species. In this
context, validation involves identifying the sources of
the polymorphisms that are being recognized by each
method.

MATERIALS AND METHODS

Mapping population: We used mRNA from seedling leaves
and embryo-derived tissue from germinating grains for ex-
pression profiling from 35 recombinant lines of a St 3 Mx
doubled-haploid population (Kleinhofs et al. 1993). These
lines (the ‘‘minimapper’’ set) were selected from a larger
population of 150 DH lines on the basis of informative recom-
bination events, allowing markers to be positioned evenly
across all chromosomes. Of the 35 DH lines, 5 were removed
for technical reasons explained in the discussion. The re-
maining 30 DH lines plus three replicates of each parent are
referred to as the ‘‘trial set’’ of lines.

Plant material, RNA isolation, and GeneChip hybridiza-
tions: Plant material was generated essentially as described
previously (Druka et al. 2006) but with some modifications
specific to these studies. To obtain seedling leaf tissue, 10 ster-
ilized seeds per line were sown in each of three replicate
13-cm2 pots. One pot of every member of the trial set was ran-
domized in each of three randomized blocks and each block
was placed in a separate Snijders growth cabinet set at 17� with
16-hr light/12� 8-hr dark periods at a light intensity of 400 mE
m�1 sec�1. After 12 days, leaves of 7–8 seedlings from each pot
were collected, bulked, and flash frozen in liquid nitrogen;
tissues from all three replicate pots of each line were bulked
for RNA isolation. To obtain embryo-derived tissue from the
germinating grain, 30–50 sterilized seeds per line of the trial
set were germinated on a petri plate between three layers of
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wet 3-mm filter paper in the dark, for 16 hr at 17� and 8 hr at
12�, for 96 hr total. Embryo-derived tissue [mesocotyl, co-
leoptile, and seminal roots: 1.3-radicle and coleoptile emer-
gence stage (GRO:0007236)] from three grains was dissected
as a single tissue piece and flash frozen in liquid nitrogen.
Germination and collection were repeated for all lines with
complete randomization of the petri plates on each of three
occasions. For each line, tissues from all three occasions were
bulked before RNA isolation.

RNA was isolated, processed, and hybridized to the Barley1
GeneChip (complete description and references at http://
www.affymetrix.com/products/arrays/specific/barley.affx Af-
fymetrix product no. 900515 GeneChip Barley Genome Array),
using previously described Trizol procedures (Caldo et al.
2004). The labeling, hybridization, and GeneChip data acqu-
isition were conducted at the GeneChip facility at Iowa State
University (http://www.biotech.iastate.edu/facilities/genechip/
Genechip.htm). Forty-one Affymetrix Barley1 GeneChips were
allocated to the trial set for each tissue. For simplicity these two
tissues are referred to as ‘‘leaf’’ and ‘‘embryo’’ in the text.

Altogether there were 22,840 different probe sets on every
chip. Each probe set was represented by 11 features (each of
25-bp oligos) present both as a perfect match (PM) and as a
mismatch (MM), giving a total of 501,622 probe features.

Data access: All detailed data and protocols from these ex-
periments have been deposited in BarleyBase/PLEXdb (http://
barleybase.org; http://plexdb.org/), a MIAME-compliant ex-
pression database for plant GeneChips (Shen et al. 2005). Data
files have also been deposited in ArrayExpress (http://www.
ebi.ac.uk/arrayexpress) as accession nos. E-TABM-111 (leaf)
and E-TABM-112 (embryo).

Sources of check data: Tests of the accuracy and reliability
of the SFP predictions were made using two sources of data
derived from a recently developed Barley SNP database
(Rostoks et al. 2005a,b). Partial DNA sequence was available
for a sample of 518 genes on the Affymetrix chip for both
parents, St and Mx. These provided SNP information upon
which the set of 129 DH lines, including our subset of 35, were
genotyped. This sequence information also allowed us to iden-
tify individual oligonucleotide probes on the Affymetrix chip
that contained sequences that differed between St and Mx.
There were 167 features of 5698 (518 genes 3 11 features) that
contained a SNP and these came from 123 genes. Of these
genes, 95 had just 1 feature containing a SNP but some had $2
(e.g., 1 had 9 and 2 had 5).

ANALYTICAL METHODS

Method 1: Consider one probe pair of a probe set that
represents any gene on an Affymetrix microarray. The
perfect-match and mismatch sequences of this probe pair
are a1a2 � � � a12a13a14 � � � a25 and a1a2 � � � a12 �a13a14 � � � a25,
where �a13 differs from a13. The corresponding transcript
sequence is denoted by b1b2 � � � b12b13b14 � � � b25, which is
known to have a certain degree of similarity with the
probe sequences but is usually unknown exactly. The
binding affinity between the transcript and probe nucle-
otides is parameterized as f1; f2; � � � ; f12, f13; f14; � � � ; f25,
where

fk ¼ xkdk with xk ¼
1 if bk ¼ ak

�1 otherwise;

�
ð1Þ

where dk represents the molecular binding affinity be-
tween the transcript and probe at nucleotide k. The

hybridization intensity values of the jth probe pair of the
ith gene, PMij and MMij for perfect match and mis-
match, respectively, can be written as PMij ¼ ji

P25
k¼1 fjk

and MMij ¼ ji

P25
k¼1 f 9jk with fjk ¼ f 9jk when k 6¼ 13, where

ji is the abundance parameter of the transcript. Thus,
the expected difference between the perfect-match and
mismatch intensities has the form

yij ¼ PMij �MMij ¼ jiðx13 � x913Þd13

¼
2jid13 if b13 ¼ a13

0 if b13 6¼ a13 and b13 6¼ �a13

�2jid13 if b13 ¼ �a13:

8><
>: ð2Þ

Equation 2 explains the multiplicative model proposed
by Li and Wong (2001) in which ji is defined as the
model-based expression index and ðx13 � x913Þd13 as the
probe intensity index. One of the important features
revealed by this model is that the difference between
the PM and MM hybridization intensity values is largely
determined by the match between transcript and probe
sequences at the nucleotide where the two (perfect and
mismatch) probe sequences differ. This is useful for the
present analysis in at least two respects. First, it holds
regardless of whether the transcript sequence perfectly
matches either of the probe sequences. Second, variation
in the PM–MM difference is largely explained by the
extent to which the transcript sequence matches either of
the two probe sequences at the nucleotide site where the
two probe sequences differ. Thus, this information can be
used in the following analysis.

We consider two genotypes, Mx (Morex) and St (Step-
toe). A general form for the difference between PM and
MM hybridization intensities at the jth probe for gene i
can be written as

yXij
¼ PMXij

�MMXij
¼ jXi

dXj
1 eij ; ð3Þ

with X ¼ Mx or St and eij being a normally distributed
residual variable. In the design of the expression exper-
iment described above, there are three (replicate) expres-
sion profiles for each of the two parental genotypes. The
parameters in Equation 3 can be estimated from 3 3 2
311 hybridization intensity values for each of the two
genotypes by implementing the restrained iterative least-
squares algorithm as first proposed by Li and Wong

(2001). On the basis of the estimates d̂Mij

� �
j¼1; ... ;11 and

d̂Sij

� �
j¼1; ... ;11

, we calculate xij ¼ d̂Mij
=d̂Sij

( j¼1, 2, � � � , 11)
and sort them into an ascending order xij*

� �
j*¼1; ... ;11

with j* being the permutated value of j. The jth probe is
chosen as a candidate of a SFP if

����xij � �xil

����. lsil, where

�xil and sil are the mean and standard deviation of all
those xik*f g that exclude j* and do not satisfy the
inequality for a prior given constant l. It can readily
be seen that inference of the SFP candidates has
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effectively avoided the influence of differential expres-
sion level between the two genotypes.

To integrate expression data from the doubled hap-
loid lines into further confirmation and prediction of
genotypes of the candidate SFPs diagnosed from the
above, we consider the following three different forms
of transformation,

zXij
¼ logðPMXij

=MMXij
Þ ¼ log

ð
P

j 6¼13 dXij
1 dXi13 1 eijÞ

ð
P

j 6¼13 dXij
1 d�Xi13

1 eijÞ

" #

ð4:1Þ

zXij
¼

PMXij
�MMXij

PMXij

¼ dXi13 1 eijP
j¼1;13ðdXij

1 eijÞ
ð4:2Þ

zXij
¼

PMXij
�MMXij

MMXij

¼ dXi13 1 eijP
j¼1;13ðdXij

1 eijÞ
; ð4:3Þ

which are common in at least two aspects. First, they are
independent of expression level of the gene in question,
and, second, those individuals having the same geno-
type at the transcript sequence are expected to have the
same value of zXij

. Thus, zXij
can be used as a discrimi-

nation function to predict the genotypes of the DH lines
at the candidate SFPs. For any given candidate SFP
probe, zXij

can be calculated for each of the parental
genotypes and each of n DH individuals on the basis of
each of Equations 4.1–4.3, yielding a series zM1;ij zM2;ij

�
zM3;ij zS1;ij zS2;ij zS3;ij zDH1;ij zDH2;ij � � � zDHn ;ijg. The SFP probe
is inferred if the three observations of zMij

and three
observations of zSij

form two clusters when a two-mean
clustering analysis is carried out with the sample. At the
same time, zDHk ;ij is inferred to have a Mx genotype if
pk ¼ fMxðzDHk ;ijÞ= fMxðzDHk ;ijÞ1 fStðzDHk ;ijÞ

� �
. 0:95 or a St

genotype if pk , 0:05; otherwise its genotype is un-
certain, where fX ðzDHk ;ijÞ ¼ exp½�ðzDHk ;ij � uX Þ2=2s2

X �=ffiffiffiffiffiffiffiffiffiffiffiffi
2ps2

X

p
and uX and s2

X are, respectively, the mean and
variance of the three values of zXij

(X ¼ Mx or St). With
the predicted genotypes of the doubled-haploid indi-
viduals, we calculate a t-statistic for the difference be-
tween two genotype samples of zXij

-values. The P-value of
the t-test is used to assess the statistical efficiency of the
genotype prediction.

Method 2: Ronald et al. (2005) developed an approach
for predicting SFP and genotypes at the SFP in a yeast
segregating population on the basis of the proposition
that the binding affinity of a transcript sequence to its
complementary probe sequence can be adequately pre-
dicted from the positional-dependent-nearest-neighbor
(PDNN) model (Zhang et al. 2003) as

Îij ¼ Ni=½1 1 expðEijÞ�1 N �=½1 1 expðE�ij Þ�1 B: ð5Þ

For those species such as yeast considered by Ronald

et al. (2005), perfect-match probe sequences are known

to exactly match their corresponding transcript se-
quences in one of the parental strains from which the
segregating population was created. In the standard
strain, Îij may be recognized as the expected value of
perfect-match hybridization intensity of the jth probe
for the ith gene. Under the PDNN model, Ni is defined
as the expression index for the gene i and has a form of

Ni ¼
P

Iij � B � N �=ð1 1 expðE�ijÞÞ
h i

=lij

n o
P

1=½ð1 1 expðEijÞÞlij �
; ð6Þ

where lij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Iij ½1 1 expðEijÞ�

p
and Iij is the observed

perfect-match value. Eij and Eij* are energy parameters
depicting, respectively, specific and nonspecific RNA–
DNA binding and depend on nucleotide sequence of
the target probe. Each of the energy parameters involves
40 unknown parameters (see Zhang et al. 2003 for
details). Together with N *, the nonspecific binding pa-
rameter, and B, the constant background parameter,
Equations 5 and 6 involve a total of 82 unknown param-
eters to be estimated from n 3 11 perfect-match inten-
sity values and probe sequences for each of the arrays in
question by minimizing the so-called fitness function

F ¼ 1

n 3 11

Xn

i¼1

X11

j¼1

½logÎij � logIij �2; ð7Þ

where n is the number of genes interrogated. Ronald

et al. (2005) compared Iij=Îij of a yeast strain against that
of the reference yeast strain. Significance of the com-
parison was taken as evidence to support inference of
SFP associated with the probe.

Method 3: This was first proposed by Winzeler et al.
(1998) to identify SFP from genomic DNA microarrays.
Constancy in abundance of molecules interrogated for
all genes is probably the most distinct feature of geno-
mic DNA microarray data when compared to RNA mi-
croarray data. However, the two methods share a
common principle in screening SFP, i.e., identification
of the probes whose signal intensities contrast with the
uniformity between the two genotypes for the remain-
ing probes in the same set. The method would be ap-
propriate to survey SFPs at least for those genes whose
expression is not so different that the effect of the SFP-
associated probe will be hidden by variation in gene
expression between the two genotypes. Thus, an obvi-
ous risk of using this method to predict SFPs is that
genes differentially expressed between two genotypes
are likely to be predicted as SFP-associated genes even
though there is no genetic polymorphism in the coding
sequence of the genotypes. A detailed description of the
method can be found elsewhere (Brem et al. 2002).

Method 4: The background adjusted, normalized
PM values for each probe from all 30 DH lines and
the three replicates of each parent (36 in total) are
separated into two clusters by k-mean clustering. Probes
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with nonoverlapping clusters are identified as follows.
The means and standard deviations of each cluster are
determined and the probability of every member of each
cluster belonging to the other cluster is estimated using
the normal deviate zi¼ (xi�mj)/sj, where xi is the score of
an individual from cluster i and mj and sj are the mean
and standard deviation of cluster j. We used a zi $ 2.576
(P # 0.01) to indicate 99% probability that probe i does
not belong to the other cluster, otherwise it is treated as a
missing datum. This is repeated for all members of both
clusters and the total number of missing data is calcu-
lated. We accepted only those probes that had no more
than 1 missing individual of 36 and for which the parents
were consistently different in all three replicates.

SFP mapping: SFP genetic linkage maps were con-
structed using JoinMap version 3.0 (Van Ooijen and
Voorrips 2001). The SFP markers were assigned to link-
age groups using anchor markers with minimal LOD ¼
3.0.

The programs developed to carry out the SFP predic-
tions presented in this article are written in FORTRAN-90
and we are willing to provide executable versions with
instructions on request. We hope to provide more user-
friendly Windows-based applications in the longer term.

RESULTS

We explored two new (methods 1 and 4) and two
existing methods (Winzeler et al. 1998; Ronald et al.
2005) for identifying SFPs and genotyping lines on the
basis of the SFPs predicted from Affymetrix gene ex-
pression profiled on two tissues (leaf and embryo) of two
commercial varieties of barley (Morex 3 Steptoe) and
their doubled-haploid progeny. Method 1 was devel-
oped to separate hybridization affinity between probe
and transcript sequences (i.e., probe effect) from tran-
script abundance (gene expression). Candidacy of an
SFP-associated probe was determined by three criteria:
(i) its estimated probe effect deviated significantly from
the distribution of estimates of the probe effect for the
remaining probes of the same probe set, (ii) the es-
timated probe effect differed significantly between the
two parental lines, and (iii) the difference was stably
inherited and segregated in the offspring of the parents.
Method 4, on the other hand, makes no attempt to sep-
arate SFPs from GEMs and simply identifies features
that can be Mendelized across the DH lines. It was used
as a final control against which to assess the SFP pre-
dictions of the other three. In all cases the association of
genotypes to DH lines is achieved using k-means clus-
tering with consistent separation of the two parents
across replicates. The methods are described in more
detail in materials and methods.

A single probe set on the array generally, but not
always, represents 11 features of a single gene. So for sim-
plicity in the text, we refer to probe sets as genes and the
individual probes as features. The initial predictions of

possible SFP containing features and genes are given
in supplemental Table S1 at http://www.genetics.org/
supplemental/. The numbers predicted by methods 1–3
to contain SFPs vary with the method of prediction, with
method 1 identifying the most genes but fewer features
per gene than the other two. Moreover, method 1 has the
highest proportion of genes represented by just a single
feature while the other two methods yield many genes
with multiple features, some identifying as many as 11.
The very high numbers of features in genes identified
by methods 2 (Ronald et al. 2005) and 3 (Winzeler et al.
1998) suggest that they may be detecting GEMs. More
genes are identified with SFPs from embryo than leaf
tissue but this is partly a reflection that more genes were
expressed in this tissue (17,218 for embryo and 16,004
for leaf). Overall, �25% of possible genes on the chip
are identified as containing features with SFPs. The per-
centage of SFP-bearing genes in which just one feature
was identified is high, 55–76%.

SFP genotype predictions compared to information
from 518 gene sequences: We first consider the SFP
predictions for the genotypes of the 30 DH lines and
compare them with the known SNP genotypes that are
used as the ‘‘gold standard’’ of genotype assignment. For
each method and tissue, the genes containing the pre-
dicted SFPs were compared with the 518 genes for
which SNP data were available and all matching genes
were identified. The numbers of matching genes and
features for the three methods and tissues are given in
Table 1 for the 30 DH lines. The genes sequenced for
SNP identification represent only 2.3% of the genes on
the chip (518/22,801); therefore we would expected
this same percentage of matching genes if the predic-
tion methods were identifying SFP-containing genes at
random. Table 1 shows that, in fact, they identify be-
tween 29 and 53% of the SNP-bearing genes.

A more useful test of the accuracy of the SFP pre-
dictions is the extent of their agreement with the known
SNP genotypes of the DH lines using those features/
genes shown in Table 1. The predicted DH genotypes
(St or Mx) for each of these identified SFPs were com-
pared with the corresponding SNP genotypes for the
same genes using two criteria: (A) the percentage of the
possible 30 DH genotypes predicted (for some features

TABLE 1

Number of SFPs detected by the three methods that match
genes for which SNPs have been identified (518 in total)

Leaf Embryo

Methods 1 2 3 1 2 3

Features 253 381 227 438 672 455
Genes 185 204 149 277 259 236
Genes as % of maximum

(518)
36 39 29 53 50 45
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the genotype cannot be unambiguously determined in
certain lines) and (B) the percentage of these predic-
tions that agree with the SNP genotype. These values
were computed for all SFPs predicted by each method
on both tissues.

When we looked at the accuracy of these initial SNP
genotype predictions across methods and tissues we
found the following classes: (i) 40% of SFPs matched all
the DH SNP genotypes exactly, (ii) 21% failed to match
between 3.3 and 10% (i.e., 1–3 wrong of 30), (iii) 11%
failed between 10 and 19.9%, while (iv) 28% incorrectly
predict $ 20% of the DH genotypes. This supports the
view that the class iv and possibly class iii SFPs are due to
variation in trans-acting factors and are probably gene
expression markers. Thus, 61% of SFPs (groups i and ii)
are probably due to polymorphism in the gene itself
or a closely linked regulator, while 28–39% are due to
different, loosely linked genes, of indeterminate origin.
We removed the class iv genes from the next stage of
the analysis, on the grounds that they were probably

not erroneous genotype predictions but instead were
genuine polymorphisms, albeit in different genes such
as trans-acting regulators. However, we consider them
again later.

Using prediction criteria A and B above, we explored
how the success rates varied as more stringent signifi-
cance thresholds were used to assess the SFP predictions.
Each method provided a P-value based on the discrim-
inant function for every SFP prediction and the pre-
dictions were sorted against these P-values. We then
asked the question, ‘‘If we choose all predictions with a P
# PT (where PT is a given threshold), what are the overall
success rates of the predictions?’’ Plots of these success
rates (three methods and two tissues) for varying
PT-values are given in Figure 1. They show that all three
methods rapidly approach very high success rates for
both criteria, although method 1 is more conservative in
terms of numbers of SFPs predicted. At a threshold of
P # 10�18, all methods predict �98% of the genotypes
with �99% accuracy, which is more than comparable to

Figure 1.—Change in (A) percentage of DH
genotypes predicted by SFPs and (B) percentage
of accuracy of predictions across the three meth-
ods and two tissues (leaf and embryo). P is expo-
nent, n in P # 10�n.
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many conventional marker-based methods. At a lower
threshold of P # 10�15, the prediction rate drops to
�95% but accuracy is still high at �98%. We decided to
use the more stringent threshold for all further analyses.

We looked at all predicted SFPs (including the puta-
tive SFP predictions) at this stringent threshold and
checked the accuracy with which they predict the SNP
genotypes of the 30 DH lines as we did above. We found
that the overall proportion of genes that disagreed with
the SNP genotypes by .10% across all three methods
and both tissues was entirely consistent at �6% (x2

[5 d.f.] ¼ 7.75, P ¼ 0.17), less than one-third of those
predicted earlier before we applied the threshold. Thus,
94% of SFPs cosegregate well with their SNP while
6% do not.

Using the available partial sequences of 518 genes in
St and Mx together with the known sequence of all 11
features on the Affymetrix chip for these same genes, it
was possible to explore the overlap between the pre-
dicted SFPs and identifiable differences in the sequence
of these features between St and Mx. The results of this
comparison are shown in Table 2.

Partial sequences were available for 518 genes for
both St and Mx and these sequences fully overlap 4680
features present on the Affy chip: 82% of all possible
5698 (¼ 518 3 11) features. Of these 4680 ‘‘informative’’
sequences, only 167 (4%) actually contained a sequence
difference between St and Mx (Table 2, column 2). We
now look at the probes predicted (at P # 10�18) to
contain SFPs by each of the three methods in both
tissues and that also overlap the set of 4680 informative
features (Table 2). We find complete consistency in
the proportion of SNP-bearing features identified
(x2

½d:f :¼5� ¼ 3:98, P ¼ 0.55) and all are highly enriched
with features containing SNPs (33% overall compared
to 4% by chance alone). So, all methods preferentially
identify features in which the matching probe sequence
does differ between St and Mx. Very significantly, how-
ever, all methods consistently identify a high proportion
of SFPs, �67%, in features for which there is no se-
quence polymorphism of any type between St and Mx.

Predictions based on whole data set: The total num-
bers of SFPs matching the two thresholds are shown in
Table 3 for each method and tissue separately, together

with the total number predicted initially. All methods
predict a large number of SFPs, but method 2 always
predicts the most while method 1 is more conservative.
Because we showed above that methods 1–3 were
entirely consistent in their predictions based on SNPs
and on feature sequence, we combined the predictions
across methods and, where the same gene had been pre-
dicted by more than one method, we chose the one with
smallest P-value. This resulted in identifying between
1853 and 4374 unique SFPs depending on tissue and
threshold (Table 3).

The number of genes detected as containing SFPs
that are common to the three methods for all predicted
probes and under the two thresholds is illustrated in
Figure 2. It shows quite clearly that method 2 alone ac-
counts for most of the total SFP-containing genes
(80–85%, depending on the tissue or threshold), while
methods 1 and 3 lag considerably behind. If we consider
combining two methods, then method (M)2 plus M1 or

TABLE 2

The numbers of predicted SFPs compared to the presence of sequence polymorphism in
features from leaf and embryo tissues

Leaf Embryo

Methods Sequence of all probes 1 2 3 1 2 3

SNP present 167 (4) 11 (30) 50 (37) 16 (27) 52 (35) 84 (31) 46 (36)
No SNP 4513 26 85 45 93 189 83

The percentages of SFPs containing SNPs among the informative features are shown in parentheses. x2
½5d:f :�-

test of homogeneity across tissues and methods ¼ 398; P ¼ 0.55.

TABLE 3

Total numbers of SFP predictions (gene–feature combinations)
and those unique genes matching the two thresholds for

each method and tissue

Threshold
All

predictions # 10�15 # 10�18

Leaf tissue
Method 1 7,870 1,714 698
Method 2 8,426 4,089 2,425
Method 3 6,980 2,687 1,549
Total 23,276 8,490 4,672
Total unique

genes across
all methods

— 2,791 1,853

Embryo tissue
Method 1 12,137 4,590 3,243
Method 2 14,420 7,968 5,655
Method 3 12,791 5,688 3,883
Total 39,348 18,246 12,781
Total unique

genes across
all methods

— 4,374 3,283
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M2 plus M3 raise the total percentage of genes identi-
fied to the mid- to high 90s. However, given that method
3 involves considerably more computer space and time,
it would appear that it makes practical sense to combine
the predictions of methods 1 and 2, which together iden-
tify between 91 and 97% of possible informative genes.

Many genes (42%) are common to the two tissues
when we pool all methods and identify unique probe
sets. However, there are many more unique SFPs iden-
tified for the embryo tissue (49% vs. 9% for the leaf tis-
sue) at a threshold of P # 10�18. At this threshold, 91% of
all SFPs (3282) were identified in embryo tissue, 14% of
all genes on the chip.

The final two approaches to verifying the SFPs involved
mapping them and constructing haplotypes (graphical
genotypes) for all chromosomes of the 30 DH lines.
These were compared with those from the correspond-
ing gold standard obtained from SNPs. We combined
the genes and features, together with their SFP genotype
predictions, identified by all methods, which had a
P # 10�18. Where there were several probes from the
same gene or duplicate features in this list, we selected
the single feature from each gene across all methods
with the smallest P-value. This yielded 1853 and 3283
unique genes from leaf and embryo, respectively (Table
3). We attempted to map these using the small popula-
tion of 30 DH lines, deliberately using a different subset
of genes for leaf (1853) and embryo tissue (1754) of
which 1504 and 1523, respectively, mapped successfully;
the �16% with mapping problems is typical of such a
small mapping population. Of these, �62% cosegre-
gated largely because of the small population, but .400
individual marker ‘‘bins’’ were mapped for each tissue

(supplemental Table S2 at http://www.genetics.org/
supplemental/).

We added 21 SNP markers that had previously been
mapped in a population of 129 St 3 Mx DH individuals
to these sets of SFP markers to act as anchors for identi-
fying and orientating each chromosome. The total map
length of the seven barley chromosomes was estimated
as a little over 1100 cM (Kosambi) with comparable
lengths for individual chromosomes from both tissues
(supplemental Table S2 at http://www.genetics.org/
supplemental/). As expected given the small mapping
population, map lengths were biased upward relative to
the SNP-based map from 129 DH lines. The haplotypes
of the individual chromosomes indicated that there
were �2% double recombinants involving single loci
scattered across these 210 ‘‘line-by-chromosome’’ hap-
lotypes. This was as expected given that the threshold for
accepting the SFPs initially was chosen for 99% accuracy.
Such double recombinants are readily detected and
replaced as ‘‘missing’’ genotypes. Comparison of each
of the 210 SFP haplotypes with those based on SNPs
shows almost complete congruence with both crossover
numbers and locations. Figure 3 illustrates this compar-
ison for the seven chromosomes of a randomly chosen
line (SM135) (the full set is available on request).

Finally, we used method 4, which makes no attempt to
separate GEMs from true SFPs, as a control against which
to compare the other three methods. Methods 1–3 were
combined for this comparison because they were con-
sistent in their ability to identify SFPs as judged by their
match to SNP genotypes and to known feature poly-
morphisms, and unique SFPs were identified. The pre-
dictions from methods 1–3 (test set) vs. method 4
(control) are shown in Table 4. We see that the relative

Figure 2.—Venn diagrams illustrating overlap between the
three methods on both tissues at the 10�15 and 10�18 thresh-
olds in terms of predicted genes.

Figure 3.—Haplotypes of chromosomes from line SM135
drawn to compare SFP (left) and SNP (right) predictions.
Solid bars, St; open bars, Mx.
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numbers of polymorphisms detected in leaf and embryo
are almost identical in test and control sets and method
4 identifies 93% (3354/3608) of those detected by the
other three methods. Likewise, the split between poly-
morphisms common or unique to each tissue are very
similar (x2

½2� ¼ 5:46; P ¼ 0.07, NS). The proportion of
polymorphisms that provide good agreement to their
corresponding SNP genotypes is not significantly dif-
ferent between test and control (x2

½1� ¼ 0:041; P¼ 0.84)
nor are the proportions of identified features that
match known polymorphic features between St and
Mx (x2

½1� ¼ 0:09; P ¼ 0.77). This indicates that the
feature polymorphisms predicted are a mixture of true
SFPs and GEMs with a large proportion of GEMs. This
is a reflection of poor performance of methods 2 and
3 in separating true SFPs from GEMs. However, it should
be noted that method 1 conferred an improved re-
solvability in separating the SFPs from the GEMs because
it identified the most genes but far fewer features per
gene than the other methods.

DISCUSSION

We have attempted to test the principle that useful
gene-based molecular genetic markers could be easily
and reliably obtained from expression data even in non-
sequenced species using populations for which the chip
features were not specifically designed. The availability
of such an approach has wide value in genetical analysis
of crop and ecologically important plants and of some

farm animals and also in complementing information
available in sequenced model organisms. It is particu-
larly useful in supporting genetical genomic analyses.

Method 1, developed in this article, differs method-
ologically in several respects from its rivals in the earlier
and most recent literature on the subject. First, this
method has made proper use of information extract-
able from Affymetrix expression microarrays without
relying heavily on the match between transcript and
probe sequences as in Ronald et al. (2005). The latter
requires prediction of PM hybridization intensity for
every probe interrogated on the arrays from their se-
quence information through the PDNN model (Zhang

et al. 2003). Obviously, an accurate prediction of the PM
intensities is the basis for an accurate diagnosis of SFPs
and in turn reliable genotyping at the SFPs. The less well
a transcript sequence matches its probe counterpart,
the more seriously the prediction will be biased and
hence the greater risk of a false SFP prediction. Further-
more, the PDNN model, which involves as many as 82
unknown parameters, might be recognized as far less ro-
bust statistically than the multiplicative model depicted
in Equation 3 of this article. Second, method 1 was de-
veloped to distinguish variation in the hybridization
intensity due to genuine sequence polymorphism from
that due to differential gene expression. This is partic-
ularly important for an accurate assessment of expres-
sion level of a gene by removing probe(s) that contains
SFPs and also for effectively avoiding potential auto-
correlation between SFP detected within a gene and
expression of the gene. Third, instead of using PM

TABLE 4

Summary of predictions from ‘‘test’’ methods 1–3 designed to identify SFPs against
‘‘control’’ method 4 designed to identify all expression-based single-locus

polymorphisms (SFPs and GEMs)

Initial predictions Test methods 1–3 (P # 10�18) Control method 4

Leaf tissue SFPs 1853 2131
Embryo tissue SFPs 3283 3598
Combined and unique SFPs 3608 3953
SFPs common to test and control 3354

SFPs common to both leaf and embryo 1527 (42%) 1776 (45%)
SFPs unique to leaf 325 (9%) 355 (9%)
SFPs unique to embryo 1755 (49%) 1822 (46%)

x2
½2� ¼ 5:46; P ¼ 0.07, NS

SFPs match to SNP genotypes of 30 DHLs 208 205
Good agreement (.90%) 198 (95%) 196 (95%)
Poor agreement (#90%) 10 (5%) 9 (5%)

x2
½1� ¼ 0:041; P ¼ 0.84, NS

SFPs match to St/Mx informative features 175 188
Feature has sequence polymorphism 64 (37%) 66 (35%)
Feature has no sequence polymorphism 111 (63%) 122 (65%)

x2
½1� ¼ 0:09; P ¼ 0.77, NS
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information alone (Cui et al. 2005; Ronald et al. 2005;
West et al. 2006), diagnosis of SFPs and prediction of
genotypes at the SFP markers were based on the differ-
ences between PM and MM intensities based on the mul-
tiplicative model that has proved adequate in capturing
the essential features of Affymetrix microarray data (Li

and Wong 2001). The PM–MM model is usually supe-
rior to the model with PM alone because of its better
control of nonbiological, systematic variation (Harr

and Schlotterer 2006). It is clear that method 1 is
conservative in its predictability of the number of genes
containing SFPs in comparison to method 2 but it is also
clear that the method is much more efficient in avoiding
identifying GEMs as expected from its design.

Method 1 developed in this study was compared to
only two of the approaches available in the current liter-
ature. Method 3, originally developed by Winzeler et al.
(1998), was the first attempt to screen for SFP by making
use of high-density oligonucleotide arrays. It is appro-
priate for SFP predication only from genomic DNA mi-
croarray data. With DNA microarray data, one can expect
uniformity in the amount of DNA molecules hybridized
onto a microarray chip across all genes. The method was
chosen for comparison here because it provides a direct
assessment of the added difficulties and bias in model-
ing expression microarray data. Analytically quite simi-
lar to method 1, method 2 (Ronald et al. 2005) was the
first designed to predict SFP from RNA microarray data
but it did not incorporate sufficiently effective analytical
mechanisms to account for possible large variation in
abundance of transcripts among different genes. We ad-
dressed this problem and made significant improvements
to overcome it.

There have been several recent reports on developing
statistical methods for SFP prediction from RNA micro-
array data. Cui et al. (2005) considered a different design
of microarray experiment for identification of SFP be-
tween different inbred genotypes. Their analysis was
designed for the circumstance where each of the inbred
genotypes was repeated several times in the microarray
experiment. Although their analysis was also based on
an estimate of probe affinity effect from a simple addi-
tive linear model of log-scaled perfect-match signals, a
question remains whether the probe affinity parameter
is estimated with a comparable adequacy to that from the
multiplicative regression analysis that combines infor-
mation from both perfect- and mismatch signals as in
the present study. Li and Wong (2001) demonstrate that
the additive model shows a systematic pattern indicating
lack of fit whereas the multiplicative model is able to
capture the essential pattern of variation in observed
hybridization signals across different probes of a probe
set surrogating a gene.

West et al. (2006) attempted to identify SFP indepen-
dent of a gene expression level by calculating a summary
measure, SFPdevi ¼ ½xi � �x;i �=xi , where xi is the perfect-
match value of the ith probe in a given probe set and �x;i

is the mean perfect-match values of all remaining probes
excluding the ith probe. An SFP was declared if two par-
ental genotypes had nonoverlapping ranges of SFPdev
values separated by an empirically chosen distance.
When an SFP was inferred between parental genotypes,
genotypes of RILs initiated from the parental lines were
to be inferred if SFPdev values of the RILs showed a
bimodal distribution. The algorithm was demonstrated
by analyzing an experiment profiling gene expression of
Arabidopsis in which the two parental strains were re-
spectively replicated 16 times and each of the 148 RILs
was repeated twice. It has been demonstrated by Li and
Wong (2001) that the perfect hybridization value of a
probe from Affymetrix expression microarrays is a com-
plex compound of two major effects: expression level of
the gene and level of hybridization success between
transcript and probe sequences. The SFPdev measure
does not reflect the essential components of the infor-
mation about the probe-based hybridization signal and
ignores the use of mismatch information even though
very stringent discrimination criteria were invoked in
searching for probes with outlying hybridization signals.
Thus, the SFP prediction based on the SFPdev measure
may neither take appropriate account of the influence
of expression level nor use all the available information
from a microarray experiment effectively.

This study considered a much less demanding design
of expression microarray experiments than those afore-
mentioned. Without setting replication for offspring
individuals (DH lines here) in the barley microarray ex-
periment, we suggested use of Equations 4.1–4.3 as
proxy for the probe-effect estimates. When expression
profiling is repeated for the offspring as for parental
lines, the probe-binding affinity parameters can be di-
rectly estimated and used in the next clustering analysis.
We anticipate that this will improve performance of the
method developed in this study.

We have shown that it is easily possible to use the
information from Affymetrix expression arrays to accu-
rately identify .4000 robust polymorphic molecular ge-
netic markers. These SFPs represent �18% of the total
barley genes on the chip and we show how they can be
used to predict the genotypes in an F1-derived, doubled-
haploid population. We have produced threshold crite-
ria that guarantee a genotyping accuracy of these SFPs in
such a population of at least 98% with 99% of genotypes
being predicted. We also show how these rates decline
with less stringent thresholds so that users can choose a
suitable one for their particular situation. The approach
is robust and works with transcripts derived from dif-
ferent tissues, although the number of identified SFPs
is partly correlated with the number of genes active in
a particular tissue, as would be expected. The #2% ge-
notyping errors largely result in double recombinants
around a SFP in a single haplotype during genetic map-
ping and so can be easily identified and replaced as
missing data points.
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These SFPs have been shown to be highly represented
among SNP-containing genes and in chip features for
which the parent strains differ in sequence. They result
in maps and chromosomal haplotypes that are coincident
with those produced with the current gold-standard SNP
markers. Using the high stringency threshold of P #

10�18, �95% of SFPs cosegregate in the DH population
with SNP markers in the same gene while a further�5%
are the result of polymorphism elsewhere in the genome.
The latter could be due to duplicate genes, chance se-
quence alignments with RNA from elsewhere, or they
may be the product of polymorphic trans-acting regu-
lators. Predictably, these latter SFPs show no relation to
the presence of parental polymorphism in the sequence
represented by the probe feature. When we try to map
the 10 SFPs from methods 1–3 that do not match the
SNP genotypes we find that all except one easily map
elsewhere on the genome. Significantly, 2 of them map
to the precise position occupied by the SNP identified
in a different mapping population, Oregon/Wolfe
(Contig54187/10 and -7811/7), and hence could in-
dicate duplicate genes. Of the 9 poorly fitting SFPs iden-
tified by method 4, 7 are in genes that map well to other
locations. Five of these 9 were also detected by methods
1–3, including 1 that failed to map to any chromosome
and the 2 above found in Oregon/Wolfe.

Of the 95% of SFPs that map to the same location as
the SNP,�36% match a feature known to have a sequence
polymorphism as opposed to the 4% expected by chance
alone. These probably represent true SFPs in the struc-
tural genes. The remaining�64% occur in the absence of
sequence polymorphism in any of the identified features
and thus are probably GEMs. The 5% of SFPs that do not
map to the known position of the gene clearly are part of
these, leaving�59% that must be polymorphic in regions
so close to the genes as to be cosegregating, probably cis-
acting expression regulators. This suggests that over
all predicted SFPs, �36% are true SFPs, �59% are cis-
acting expression regulators, and �5% are trans-acting
regulators or duplicate genes. It also appears that the
number of trans-acting genes identified reduced as
our detection stringency increased. Such an effect was
recently reported in two tissues in rats, where generally
the cis eQTL detected had much greater LOD scores than
the trans-acting eQTL (Yamashita et al. 2005).

The causes of the polymorphism are not important if
one simply wants to generate robust genetic markers
that are useful both for high-density mapping and to
provide additional markers in species such as wheat and
some Solanaceae where polymorphism is low. All meth-
ods accurately detect true polymorphisms. However,
great caution should be exercised in assuming that the
polymorphism is independent of overall expression or
indeed due to sequence differences in the gene itself
given that �64% of SFPs do not coincide with polymor-
phic features in the target genes, irrespective of the
method used. This is also a concern for eQTL analysis

because features containing SFPs should be removed to
avoid autocorrelation.

The ability to genotype a population, while simulta-
neously measuring gene expression, is extremely valu-
able, particularly in an agricultural context where
mislabeling and other quality assurance issues can easily
occur. They can confirm the identity of the individual
source material because the SFP genotype can be checked
against previously obtained SNP genotypes. Thus they
provide a simple ‘‘fingerprinting’’ method that can also
be used for intellectual property issues or distinctiveness
diagnostics. We were able to use this feature to un-
ambiguously identify and remove data from 5 of the
original 35 DH lines that had been wrongly labeled at
some stage prior to our receiving the expression data.

Using a species-designed chip, the SFP approach can
be used to map and carry out genetical genomics and
eQTL analysis on any novel population, even though a
previous map is unavailable. The identity of individual
chromosomes may be determined through SFP synteny
in crosses with chromosomal anchor markers. It could
be used, for example, to explore novel populations pro-
duced from wide crosses among Arabidopsis accessions,
using a generic Arabidopsis chip.

Obviously this same approach can be, and has been
(West et al. 2006), applied to RILs, and there should be
no major difficulty in extending the basic principles of
SFP prediction to heterozygous populations such as F2’s,
given the evidence that differential expression for most
genes is indeed consistent with Mendelian inheritance
(Knight 2004). Providing there are expression data
from the F1, the candidates for SFP can be screened in
the same way as in this article and prediction of indi-
vidual SFP genotypes in the segregating F2 population
could be treated as a mixed-population model. How-
ever, the power may be low compared to DHs or RILs be-
cause the contrasts between the three subpopulation
means are decreased and the expression-based markers
may well be dominant.

This research was supported by a research grant from the Bio-
technology and Biological Sciences Research Council and the National
Environmental Research Council of the United Kingdom. Z.W.L. is
also supported by the National Natural Science Foundation and the
Basic Science Research Program ‘‘973’’ of China.

LITERATURE CITED

Alberts, R., P. Terpstra, L. V. Bystrykh, G. de Haan and R. C.
Jansen, 2005 A statistical multiprobe model for analyzing cis
and trans genes in genetical genomics experiments with short-
oligonucleotide arrays. Genetics 171: 1437–1439.

Bing, N., and I. Hoeschele, 2005 Genetical genomics analysis of a
yeast segregant population for transcription network inference.
Genetics 170: 533–542.

Borevitz, J. O., D. Liang, D. Plouffe, H. S. Chang, T. Zhu et al.,
2003 Large-scale identification of single-feature polymor-
phisms in complex genomes. Genome Res. 13: 513–523.

Brem, R. B., G. Yvert, R. Clinton and L. Kruglyak, 2002 Genetic
dissection of transcriptional regulation in budding yeast. Science
296: 752–755.

Bystrykh, L., E. Weersing, B. Dontje, B. Sutton, M. T. Pletcher

et al., 2005 Uncovering regulatory pathways that affect

Robustness of SFP Genotyping 799



hematopoietic stem cell function using ‘genetical genomics’.
Nat. Genet. 37: 225–232.

Caldo, R. A., D. Nettleton and R. P. Wise, 2004 Interaction-
dependent gene expression in Mla-specified response to barley
powdery mildew. Plant Cell 16: 2514–2528.

Cui, X., J. Xu, R. Asghar, P. Condamine, J. T. Svensson et al.,
2005 Detecting single-feature polymorphisms using oligonucle-
otide arrays and robustified projection pursuit. Bioinformatics
21: 3852–3858.

DeCook, R., S. Lall, D. Nettleton and S. H. Howell, 2006 Ge-
netic regulation of gene expression during shoot development
in Arabidopsis. Genetics 172: 1155–1164.

Druka, A., G. Muehlbauer, I. Druka, R. Caldo, U. Baumann et al.,
2006 An atlas of gene expression from seed to seed through
barley development. Funct. Integr. Genomics 6: 202–211.

Harr, B., and C. Schlotterer, 2006 Comparison of algorithms for
the analysis of Affymetrix microarray data as evaluated by co-
expression of genes in known operons. Nucleic Acids Res. 34: e8.

Jansen, R. A., and J. P. Nap, 2001 Genetical genomics: the added
value from segregation. Trends Genet. 17: 388–391.

Kleinhofs, A., A. Kilian, M. A. Saghai-Maroof, R. M. Biyashev,
P. Hayes et al., 1993 A molecular, isozyme and morphological
map of the barley genome. Theor. Appl. Genet. 86: 705–712.

Knight, J. C., 2004 Allele-specific gene expression uncovered.
Trends Genet. 20: 113–116.

Li, C., and W. H. Wong, 2001 Model-based analysis of oligonucleo-
tide arrays: expression index computation and outlier detection.
Proc. Natl. Acad. Sci. USA 98: 31–36.

Mehrabian, M., H. Allayee, J. Stockton, P. Y. Lum, T. A. Drake et al.,
2005 Integrating genotypic and expression data in a segregating
mouse population to identify 5-lipoxygenase as a susceptibility
gene for obesity and bone traits. Nat. Genet. 37: 1224–1233.

Morley, M., C. M. Molony, T. M. Weber, J. L. Devlin, K. G. Ewens

et al., 2004 Genetic analysis of genome-wide variation in human
gene expression. Nature 430: 744–747.

Ronald, J., J. M. Akey, J. Whittle, E. N. Smith, G. Yvert et al.,
2005 Simultaneous genotyping gene-expression measurement

and detection of allele-specific expression with oligonucleotide
arrays. Genome Res. 15: 284–291.

Rostoks, N., J. O. Borevitz, P. E. Hedley, J. Russell, S. Mudie et al.,
2005a Single-feature polymorphism discovery in the barley
transcriptome. Genome Biol. 6: R54.

Rostoks, N., S. Mudie, L. Cardle, J. Russell, L. Ramsay et al.,
2005b Genome-wide SNP discovery and linkage analysis in bar-
ley based on genes responsive to abiotic stress. Mol. Genet.
Genomics 274: 515–527.

Schadt, E. E., S. A. Monks, T. A. Drake, A. J. Lusis, N. Che et al.,
2003 Genetics of gene expression surveyed in maize, mouse
and man. Nature 422: 297–302.

Shen, L., J. Gong, R. A. Caldo, D. Nettleton, D. Cook et al.,
2005 BarleyBase—an expression profiling database for plant
genomics. Nucleic Acids Res. 33: 614–618.

Steinmetz, L. M., H. Sinha, D. R. Richards, J. I. Spiegelman, P. J.
Oefner et al., 2002 Dissecting the architecture of a quantitative
trait locus in yeast. Nature 416: 326–330.

Van Ooijen, J. W., and R. E. Voorrips, 2001 JoinMap 3.0. Software for
the Calculation of Genetic Linkage Maps. Plant Research Interna-
tional, Wageningen, The Netherlands.

West, M. A. L., H. Leeuwen, A. Kozik, D. K. Kliebenstein, R. W.
Doerge et al., 2006 High-density haplotyping with microarray-
based expression and single feature polymorphism markers in
Arabidopsis. Genome Res. 16: 787–795.

Winzeler, E. A., D. R. Richards, A. R. Conway, A. L. Goldstein,
S. Kalman et al., 1998 Direct allelic variation scanning of the
yeast genome. Science 281: 1194–1197.

Yamashita, S., K. Wakazono, T. Nomoto, Y. Tsujinoand T. Kuramoto,
2005 Expression quantitative trait loci analysis of 13 genes in
the rat prostate. Genetics 171: 1231–1238.

Zhang, L., M. F. Milles and K. D. Aldape, 2003 A model of molecular
interactions on short oligonucleotide microarrays. Nat. Biotech. 21:
818–821.

Communicating editor: J. B. Walsh

800 Z. W. Luo et al.


