## Full-Length Proviruses of Baboon Endogenous Virus (BaEV) and Dispersed BaEV Reverse Transcriptase Retroelements in the Genome of Baboon Species

ANTOINETTE C. VAN DER KUYL,\* JOHN T. DEKKER, AND JAAP GOUDSMIT

Human Retrovirus Laboratory, Academic Medical Centre, 1105 AZ Amsterdam, The Netherlands

Received 6 March 1995/Accepted 19 June 1995

Baboon endogenous virus (BaEV) is present in multiple copies in many Old World monkey species. BaEV proviruses may contain open reading frames for all major genes, as is indicated by the rescue of infectious virus particles from baboon and gelada tissues after cocultivation with permissive cells. We have analyzed full-length BaEV proviral structures in a baboon (*Papio cynocephalus*) genomic library and found no evidence for the rearrangements or large deletions commonly observed in endogenous virus genomes from other mammalian species. The two proviruses studied were integrated next to or nearby long interspersed repeat sequence (LINE) transposable elements. Additionally, isolated dispersed fragments with 100% and approximately 77% homology, respectively, to part of the BaEV reverse transcriptase gene were detected. These presumed retroelements were present in an  $\sim$ 10-fold excess compared with the full-length proviral genomes. PCR amplification and sequencing of BaEV reverse transcriptase and *env* fragments from the lambda clones and from the genomic DNA of other baboon species showed that there is little sequence variation present in BaEV DNA in the baboon genome.

A substantial part (estimated to be 0.1 to 0.6% in humans) of the eukaryotic genome consists of retroviral and retrovirusrelated sequences. Several of these sequences are results of ancient retroviral infections and are inherited as stable Mendelian genes. In contrast to horizontally transmitted exogenous retroviruses, endogenous retroviral elements are present in the genome of every cell of all individuals of a species. Copy numbers, however, sometimes vary between individuals, as was observed for endogenous feline leukemia virus (FeLV)-related sequences in domestic cats and endogenous murine leukemia virus (MuLV) in mice (16, 34). Also, polymorphism of different classes of MuLV proviruses has been detected in mouse strains (37). Occasionally, endogenous viral particles have been observed in primates as well as in rodents (reference 7 and references therein). A possible involvement of endogenous viruses in cancer pathogenesis has been implicated (for a review, see reference 18). Besides, endogenous viruses can act as sources with which exogenous retroviruses can exchange sequence information. In that way, endogenous viruses could contribute substantially to outbreaks of exogenous viral activity, which are observed from time to time in vertebrates.

Type C endogenous oncoviruses have been reported in rodents, reptiles, birds, pigs, cats, and primates (reference 29 and references therein). For primates, four endogenous type C viruses have been isolated from Old World monkeys so far. Two endogenous viruses originate from macaques: MAC-1 from the stump-tailed macaque (*Macaca arctoides*) and MMC-1 from the rhesus monkey (*Macaca mulatta*) (27, 38). MAC-1 and MMC-1 are closely related, and are possibly different isolates of the same virus. A third type C virus, CPC-1, was isolated from a *Colobus polykomos* (30). DNA hybridization showed that CPC-1 sequences can be detected in other Old World monkeys and are present in approximately 50 to 70 copies per diploid genome. The fourth and best-characterized type C virus is baboon endogenous virus (BaEV), which was that only one out of four clones was nondefective (13). Restriction-site heterogeneity was observed between different BaEV genomes (11, 13). PCR amplification of a small fragment of the BaEV reverse transcriptase (RT) gene showed that limited sequence variation both in and between species exists (31). There is no conclusive evidence showing that BaEV integrations in humans and apes exist. A complete BaEV probe gave only a low level of hybridization with human, gibbon, and orangutan genomic DNA (6). More significant values were reached with chimpanzee and gorilla DNA. Using PCR, Shih et al. (31) were not able to detect BaEV RT fragments in human DNA, but they did detect amplification products with chimpanzee and gorilla DNA. Human ERV-1 and ERV-3 sequences have moderate homology with type C viruses, including BaEV, but ERV-1 and ERV-3 are defective singlecopy sequences located on chromosomes 18 and 7 respectively

originally isolated from baboon tissue by cocultivation with

permissive cell lines (2, 40). However, BaEV appears to be

chimeric, containing a type D env gene (17). Normally, BaEV

is not expressed in baboons, although viral particles and RNA

can be detected in placental tissue (2, 39). The complete nu-

cleotide sequence of the M7 baboon isolate of BaEV has been

determined (17). DNA hybridization, Southern blotting, and

PCR amplification have shown that BaEV is present in many

Old World monkey species (1, 4, 8, 31). Although BaEV ge-

nomes are estimated to be present in 50 to 100 copies per cell

(31), many of the integrated genomes are probably defective.

The baboon embryo fibroblast cell strain BEF-3, enriched

in BaEV sequences, releases infectious BaEV particles upon

transfection of permissive cells. BEF-3 provirus cloning showed

cluding BaEV, but ERV-1 and ERV-3 are defective singlecopy sequences located on chromosomes 18 and 7, respectively (12). BaEV can also not be detected in New World monkeys (1), suggesting that the virus entered the germ line after the Old World-New World monkey split (approximately 30 to 40 million years ago). In cat species originating from the Mediterranean basin, an endogenous virus (RD114) with strong homology to BaEV was detected by DNA hybridization (3). This finding could be explained by the possible infection of a Mediterranean cat ancestor with the primate virus, as cat spe-

<sup>\*</sup> Corresponding author. Mailing address: Human Retrovirus Laboratory, Academic Medical Centre, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands. Phone: 31 20 566 4522. Fax: 31 20 691 6531.

TABLE 1. Primers used to amplify BaEV sequences

| BaEV Primer                  | Position $(nt)^a$           | Sequence                        |
|------------------------------|-----------------------------|---------------------------------|
| LTR1 upstream                | 38 to 62 and 7990 to 8014   | 5' GGTTCTGTTTGTTCGTGGCGCAGGC 3' |
| LTR2 downstream              | 530 to 555 and 8483 to 8507 | 5' GATGTTAGAATCACGTTCCTTAGGG 3' |
| RT1 upstream                 | 3505 to 3524                | 5' TGGACTCGACTTCCCCAGGG 3'      |
| RT2 downstream               | 3852 to 3871                | 5' CAGTTCCCAGGAATTCACGC 3'      |
| ENV1 upstream                | 6210 to 6234                | 5' GCAGTAACCCCTCATATAGTCCAAG 3' |
| ENV2 upstream <sup>b</sup>   | 6282 to 6301                | 5' CTACGCGGGGTTTGACGACC 3'      |
| ENV3 downstream <sup>b</sup> | 6469 to 6488                | 5' GGCCCGCTTGGGGAGGTGTC 3'      |
| ENV4 downstream              | 6611 to 6634                | 5' CTTGTACATCACTGGTGCCCCCAG 3'  |

<sup>a</sup> Nucleotide numbering according to the published BaEV sequence of Kato et al. (17).

<sup>b</sup> env primers ENV2 and ENV3 amplify a 167-bp fragment located inside the 377-bp fragment generated by the primer set ENV1/ENV4.

cies from the New World and Asia and the larger African cats lack homologous virus sequences.

Little is known about the structure and evolution of BaEV in the baboon genome. For the related type C endogenous retroviruses RD114, FeLV, and MuLV, different evolutionary patterns do exist. RD114, present in approximately 20 copies in the cellular genome of the domestic cat, has a relatively conserved gag-pol region but has many substitutions and deletions in env (28). Another pattern is present in endogenous FeLV, in which integrated copies have large deletions in gag-pol and shorter ones in the env gene, compared with exogenous FeLV (34). Many endogenous MuLV proviruses have lost all or almost all of their *env* genes, while others contain deletions in gag or pol or both (36). The present study was designed to gain insight into the molecular genetic organization of BaEV in the baboon genome. A baboon genomic library in the lambda DASH<sup>R</sup>II vector, constructed from kidney tissue of a normal 18-year-old male Papio cynocephalus, was obtained from Stratagene (La Jolla, Calif.) and screened with probes homologous to BaEV long terminal repeat (LTR), RT, and env sequences. The products of PCR amplifications of Papio ursinus DNA with appropriate sets (LTR1/LTR2, RT1/RT2, and ENV1/ ENV4) of BaEV-specific primers (Table 1) were cloned with the TA cloning system from Invitrogen (San Diego, Calif.), and these plasmids were used to generate <sup>32</sup>P-labelled specific probes. LTR1/LTR2 amplifies 467 bp of the BaEV LTR, RT1/ RT2 amplifies 327 bp of the BaEV RT gene, and ENV1/ENV4 amplifies 377 bp of the env gene.

Serum samples were obtained from the following baboon species: Papio anubis (olive baboon), P. cynocephalus (yellow baboon), and *Papio hamadryas* (hamadryas or sacred baboon). Additionally, blood cells were obtained from P. ursinus (chacma baboon). The origins of the samples were as published before (41). DNA from gelada baboons (Theropithecus gelada) was a gift from Todd Disotell (University of New York, New York). Total DNA was extracted from the samples by a procedure with silica and guanidinium thiocyanate (9), and RT and env fragments were amplified from the DNA (with primer sets RT1/RT2 and ENV1/ENV4), cloned into the TA vector, and sequenced. All PCR amplifications were performed according to the following protocol: denaturation, 5 min 95°C; amplification, 35 cycles of 1 min 95°C, 1 min 55°C, 2 min 72°C; extension, 10 min 72°C. Sequencing was done with an Applied Biosystems 373A automated sequencer, following the manufacturer's protocols.

Initially, approximately 36,000 plaques of the baboon library were screened with a BaEV *env* probe. Five positive plaques were obtained (named 12.1, 12.2, 23.1, 25.1, and 25.2) and purified. After a second screening with BaEV LTR and BaEV RT probes, with duplicate filters containing approximately 26,000 plaques, 10 additional clones were isolated. Only 1

plaque (31.1) of these 10 reacted with both probes; the other 9 hybridized only to the RT probe. Of these 9, 4 (30.1, 33.1, 36.1, and 37.1) were (partly) characterized. Lambda DNA was isolated from purified positive plaques with the Wizard Lambda Preps DNA purification system from Promega (Madison, Wis.). Inserts were first characterized by PCR with BaEVspecific primer sets for the LTR, RT, and env gene. Results of the PCRs are shown in Table 2. For three clones (12.1, 12.2, and 31.1), correct PCR fragments were obtained with all three sets (LTR, RT, and the env outer primer set ENV1/ENV4), while one clone (25.1) was positive for LTR, RT, and the ENV1/ENV3 primer set. This suggested that clones 12.1, 12.2, and 31.1 possibly contained full-length viruses, although the presence of only one LTR can be confirmed by PCR. A recognition site for the enzyme Sau3A (used to construct the genomic library) is present between primers ENV3 and ENV4 in the reference sequence, which could explain the PCR result for clone 25.1, assuming it to be an artificially truncated viral sequence. The enzyme NotI was used to determine the size of the lambda clone insert, which was found to be approximately 16 to 22 kb in all clones. Subsequently, the clones were characterized by digestion with the restriction enzymes BamHI, EcoRI, NotI, StuI, and XhoI and several others (all from Boehringer GmbH, Mannheim, Germany); separation on 0.5% agarose gels; Southern blotting (with  $20 \times SSC$  [1 $\times SSC$  is 0.15 M NaCl plus 0.015 M sodium citrate] and positively charged nylon membranes [Boehringer]); and hybridization with biotinlabelled LTR, RT, and env probes, with the nonradioactive

TABLE 2. PCR results for lambda clone inserts

| Clana  | Proba <sup>a</sup> | Primer set <sup>b</sup> |         |                        |  |  |  |  |
|--------|--------------------|-------------------------|---------|------------------------|--|--|--|--|
| Ciolic | 11000              | LTR                     | RT      | env                    |  |  |  |  |
| 12.1   | env                | LTR1/LTR2               | RT1/RT2 | ENV1/ENV4 <sup>c</sup> |  |  |  |  |
| 12.2   | env                | LTRI/LTR2               | RT1/RT2 | ENVI/ENV4°             |  |  |  |  |
| 25.1   | env                | LTRI/LTR2               | RT1/RT2 | ENVI/ENV3              |  |  |  |  |
| 31.1   | RT/LTR             | LTR1/LTR2               | RT1/RT2 | ENV1/ENV4 <sup>c</sup> |  |  |  |  |
| 23.1   | env                | $LTR1/LTR2^{d}$         |         | ENV2/ENV3 <sup>e</sup> |  |  |  |  |
| 25.2   | env                | LTR1/LTR2 <sup>d</sup>  |         | ENV2/ENV3 <sup>e</sup> |  |  |  |  |
| 30.1   | RT                 |                         | RT1/RT2 |                        |  |  |  |  |
| 33.1   | RT                 |                         | RT1/RT2 |                        |  |  |  |  |
| 36.1   | RT                 |                         | RT1/RT2 |                        |  |  |  |  |
| 37.1   | RT                 |                         | RT1/RT2 |                        |  |  |  |  |

<sup>*a*</sup> Probe initially used to screen the baboon library.

<sup>b</sup> Primer sets which gave a positive PCR signal are shown.

<sup>c</sup> Outer primer set.

<sup>d</sup> The fragment obtained was not of the correct size.

<sup>e</sup> Inner primer set.



FIG. 1. Characterization of four baboon genomic lambda clones containing BaEV sequences. The complete BaEV genome is 8,507 nt in size (17) and is shown in the upper part of the figure. Viral fragments used for PCR and hybridization are indicated. The *pol* fragment is located within the RT part of the gene. Each individual clone contains an insert of approximately 18 to 22 kb of baboon genomic DNA. Sequences flanking the viral information are indicated by dashed lines, and the approximate positions of *Eco*RI (*E*) sites relative to the BaEV sequences are shown. Each viral clone contains an additional *XhoI* (*X*) site at the 3' end of the *pol* gene relative to the reference sequence. For clone 12.2, the utmost left *Eco*RI site shown is the one present in the lambda Dash<sup>R</sup>II vector, and the orientation of the insert has been determined to be 3' to 5' with respect to the vector sequences. *B*, *Bam*HI; *S*, *StuI*.

detection system from Boehringer. The probes were prepared by PCR amplification (with biotin-dCTP) of plasmids containing appropriate BaEV fragments, which had been used previously to screen the genomic library. These procedures confirmed that clones 12.2 and 31.1 contain full-length viruses with no apparent deletions or insertions, while the BaEV sequence of clone 25.1 had been artificially terminated in the env gene downstream of the probe used. This was also the case for clone 12.1, although for this clone a Sau3A site more downstream in the env gene was used (probably at position 7125 or at position 7397, as the *StuI* site at position 7430 was no longer present). A schematic representation of the obtained BaEV clones is shown in Fig. 1. Sequencing of the RT and env fragments amplified from the four lambda clones (Fig. 2 and 3) showed that they were highly homologous to each other and to the BaEV reference sequence. Because there is no 3' integration site present in two of the four obtained BaEV clones because of Sau3A digestion of the proviral DNA, we have investigated only the 5' viral integration site sequences in all four clones. For clones 12.1 and 25.1, each containing a single LTR, the sequencing was done directly from the lambda DNA with the reverse complement of primer LTR1 (5' GCCTGCGCCACG AACAAACAGAACC 3'). In the case of clones 12.2 and 31.1, 5' integration sites were subcloned as EcoRI-XhoI fragments into plasmid pSP73 (Promega) digested with EcoRI and XhoI, and the sites were sequenced with the T7 sequencing primer. The sequences adjoining the 5' LTR are shown in Fig. 4. It is clear that all proviruses obtained have integrated in a different part of the baboon genome, confirming that no two clones are the same. The sequence adjoining the viral 5' LTR of clone 12.1 was shown to be part of a long interspersed repeat sequence

(LINE) L1 repeat (showing 83 to 89% homology with human LINE repeats), while the upstream sequences in the other three clones could not be identified (with EMBL release 37). A second LINE repeat was accidentally subcloned and sequenced from the lambda DNA of clone 12.2 (result not shown), indicating that this provirus is located in the proximity of such an element, or vice versa. LINE copy numbers are sufficiently high in the primate genome to detect these repeats in a certain part of the genome by chance, but it could also be possible that both retroviruses and retroelements prefer the same genomic location, explaining why we found LINE repeats in at least two out of four lambda clones, while it is also believed that LINE repeats can still be inserted de novo (for a review, see reference 33). The integration of retroviral DNA into the host genome has been found to be dependent upon several factors, e.g., the particular target sequence (containing a small [4- to 6-bp] direct repeat), the tertiary structure of the DNA (like that of intrinsically bent DNA), and the presence of DNA binding proteins (14, 21, 26, 32). The viral integration machinery prefers transcribed DNA regions (23) and nucleosomal DNA (26), while acceptor sites are DNase I-hypersensitive regions (42). For BaEV, a highly preferred integration locus, termed BEVI, was found on human chromosome 6 (10, 20). The locus is characterized by the presence of multiple *PstI* sites, which were found to be present at the 3' ends of the de novo integrated viruses. At the 5' end of clone 12.1, we detected a PstI site located at a single-nucleotide distance from the viral LTR, which should be regarded as a mere coincidence, considering the absence of further sequence information on the BEVI locus. Interestingly, in the two full-length clones 12.2 and 31.1, the two 5' nucleotides of the viral LTR are missing, as expected in retroviral integration (15), but clone 12.1 apparently contains the complete LTR, while three nucleotides are lacking in clone 25.1. Possibly the extra nucleotides observed in clone 12.1 were contributed by the host genome, and the nucleotide apparently missing in clone 25.1 could have been mutated from A to C in the course of time. Another explanation could be that the viral integration machinery is sometimes defective.

Clones 23.1 and 25.2, which did not amplify with RT primers and did not amplify correctly with LTR primers, also did not hybridize to the corresponding probes and hybridized only weakly to the env probe on a Southern blot. Sequencing of the fragments amplified from these clones with ENV2/ENV3 showed that although they have strong homology to the env gene of BaEV (approximately 80% at the nucleotide and amino acid level), they are quite different from all BaEV sequences obtained so far (Fig. 3). Both sequences are closely related but not identical to each other. It must be noted that although primers LTR1 and LTR2 did not correctly amplify a product from these clones, an approximately 700-nucleotide (nt) fragment was obtained in each case. These PCR products have probably no other homology with BaEV than (part of) the primer sequences, as no hybridization of the digested lambda DNA was observed with a BaEV LTR fragment, even after prolonged exposure. Sequence analysis should clarify whether the 700-nt fragment has LTR-like features. Sequence results obtained with the reverse complement of primer ENV2 showed that upstream of primer ENV2 both clones also have a strong homology to each other, but any homology to BaEV was completely lost, and similarity to any other known (retro) virus could also not be found (unpublished observation). The predicted BaEV signal peptide-GP70 boundary is located in the ENV2 primer sequence, suggesting that a completely different signal peptide is present in these two putative env genes. PCR amplification with the primer set ENV2/ENV4 gave a

|                        | 10               | 20 30                                   | 40               | 50 60         | 70                                      | 80  | 90        | 100 110       |
|------------------------|------------------|-----------------------------------------|------------------|---------------|-----------------------------------------|-----|-----------|---------------|
| Batv pol<br>Pursinus 1 | TICAAAAACICICCCA | CICICIICGAIGAGGC                        | ILILLALAGGGGALLI | ACCEACTICLESA | CLLAGCA.ICCAGAAG                        | G   | CAGIAIGIA | GAIGACCICCICI |
| 2                      |                  |                                         |                  | Â             |                                         |     |           |               |
| 3                      |                  |                                         |                  |               | ······.                                 |     |           |               |
| 4                      |                  | T                                       |                  | A             |                                         |     |           |               |
| 5                      |                  |                                         |                  |               | ••••••                                  |     |           |               |
| 67                     |                  |                                         |                  | A             | ·····                                   |     |           |               |
| , 8                    |                  |                                         |                  | Δ             |                                         |     |           |               |
| ,<br>9                 |                  |                                         |                  | A             |                                         |     |           |               |
| 10                     |                  | • • • • • • • • • • • • • • • • • • • • |                  | A             | · · · · · · · · · · · · · · · · · · ·   |     |           |               |
| P.cyno 1               |                  |                                         |                  |               | A                                       |     |           |               |
| 2                      |                  |                                         |                  |               | •••••••                                 |     |           |               |
| P.anubis 1             |                  |                                         |                  | <del>T</del>  | ••••••                                  |     |           |               |
| 4                      |                  |                                         |                  |               | ·····                                   |     |           |               |
| ž                      | C                |                                         |                  |               | • • • • • • • • • • • • • • • • • • • • |     |           |               |
| P.hamadry 1            | C                |                                         |                  |               |                                         |     |           |               |
| 2                      | C                |                                         |                  |               |                                         |     |           |               |
| 3                      | C                | • • • • • • • • • • • • • • • • • • • • |                  |               | · · · · · · · · · · · · · · · · · · ·   |     |           |               |
| T.gelada 1             | C                |                                         | •••••            |               | ••••••                                  |     |           |               |
| 2                      |                  | - *                                     |                  |               | ••••••                                  |     |           |               |
| 12 1 PT                |                  |                                         |                  |               |                                         |     |           |               |
| 12.2 RT                | N                |                                         |                  |               |                                         |     |           |               |
| 25.1 RT                |                  |                                         |                  |               |                                         |     |           |               |
| 31.1 RT                | C                |                                         |                  |               |                                         |     |           |               |
|                        |                  |                                         |                  |               |                                         |     |           |               |
| 30.1 RT                |                  |                                         |                  |               | ••••••                                  |     |           |               |
| 33.7 KI                | (                |                                         |                  |               | ••••••                                  |     |           |               |
| 36.1 RT                | A-               | AA-                                     | TTC-A            | G             | ΔΔ - Δ                                  | TTA |           |               |
| 37.1 RT                | Â                | ÂÂ-                                     | TTC-A            | G             | AA-A                                    | TTA |           |               |
| P.hamadry 4            | CG               |                                         | TTC-AT           | <br>GG        | G-                                      | A   | A         | c             |
|                        |                  |                                         |                  |               |                                         |     |           |               |
|                        |                  |                                         |                  |               |                                         |     |           |               |
|                        | 120              | 170 1/0                                 | 150              | 140 170       | 100                                     | 100 |           | <b>040</b> 0  |
| BaEV pol               | 120              | 440                                     | ATTACCCATCTA     |               |                                         |     |           |               |
| Pursinus 1             |                  | -G                                      |                  |               |                                         |     |           | AATTTGTCAGACC |
| 2                      |                  | •G                                      |                  |               |                                         |     |           |               |
| 3                      |                  | -G                                      |                  |               |                                         |     |           |               |
| 4                      |                  | -G                                      |                  |               |                                         |     |           |               |
| 5                      |                  | ·G                                      |                  | G             |                                         |     | •••••     | •••••         |
| 6 7                    |                  | ·G                                      |                  |               |                                         |     |           |               |
| ן<br>פ                 |                  | - u                                     |                  |               |                                         |     |           |               |
| ő                      |                  | -G                                      |                  |               |                                         |     |           |               |
| 10                     |                  | -G                                      |                  |               |                                         |     |           |               |
| P.cyno 1               |                  |                                         |                  |               |                                         |     |           |               |
| 2                      |                  | •G•                                     |                  | •••••         |                                         | c   |           |               |
| P.anubis 1             |                  | -GT                                     |                  |               |                                         | C   |           |               |

| BaEV pol<br>P.ursinus 1 | TGGCGGCCCCCACAAA       | GAAAGCCTGCACGCAAGGTACTAGGCATCTACTCCAGGAACTAGGTGAGAAAGGATACCGGGCAT<br>-G          | CTGCCAAGAAGGCACAAATTTGTCAGACC             |
|-------------------------|------------------------|----------------------------------------------------------------------------------|-------------------------------------------|
| 23                      |                        | •G                                                                               |                                           |
| 4 5                     |                        | -6                                                                               |                                           |
| 6                       |                        | -6                                                                               |                                           |
| 7                       |                        | - G                                                                              |                                           |
| 8                       |                        | -GGG                                                                             |                                           |
| 10                      |                        | -6                                                                               |                                           |
| P.cyno 1                |                        |                                                                                  |                                           |
| 2                       |                        | -6                                                                               | -C                                        |
| P.anubis 1              |                        | -G                                                                               | -C                                        |
| 3                       |                        | -GTA                                                                             | -C                                        |
| 4                       |                        | -GTT                                                                             | -C                                        |
| P.hamadry 1             | T                      | -GTTTT                                                                           | -C                                        |
| 3                       |                        | -GCI                                                                             |                                           |
| T.gelada 1              |                        | -GTGG-                                                                           | -C                                        |
| 2                       |                        | -GTAG-                                                                           | -C                                        |
| 12 1 PT                 |                        | -GTT                                                                             |                                           |
| 12.2 RT                 | •••••                  | -G                                                                               | -CA                                       |
| 25.1 RT                 |                        | •G                                                                               |                                           |
| 31.1 RT                 |                        | -GTT                                                                             | -C                                        |
| 30.1 RT                 |                        | -6TT                                                                             |                                           |
| 33.1 RT                 |                        | -ĞŤŤ                                                                             | -C                                        |
| 36.1 RT                 | TA                     | -GAT-TCTTGA                                                                      | -CAC-AG                                   |
| 37.1 RT<br>P.hamadry 4  | TT<br>TT               | -GAT-TACTTGAA                                                                    | -CG                                       |
| FIG 2 RT se             | quences amplified from | total DNA of four baboon species (P ursinus P cynocenhalus [P cyno] P anubis $I$ | <i>hamadwas</i> [P hamadry]) and the gela |

FIG. 2. RT sequences amplified from total DNA of four baboon species (*P. ursinus, P. cynocephalus* [P.cyno], *P. anubis, P. hamadryas* [P.hamadry]) and the gelada baboon (*T. gelada*), from four BaEV clones (12.1, 12.2, 25.1, and 31.1), and from four lambda clones (30.1, 33.1, 36.1, and 37.1) detected with a BaEV RT probe are shown. The BaEV sequence (nt 3526 to 3849) of Kato et al. (17) is shown in the upper line. Identical nucleotides are indicated by dashes; gaps introduced for optimal alignment are indicated by dots.

positive signal for clone 25.2 but not for 23.1 (result not shown), indicating that the downstream homology to BaEV has not disappeared altogether. Possibly, these two clones represent endogenous retroviral elements belonging to a family of

viruses with BaEV-like *env* genes and probably do not represent BaEV genomes with multiple substitutions, as we have sequenced endogenous virus clones from other species of African monkeys with high-level identity to the BaEV *env* frag-

| BaEV pol<br>P.ursinus 1           | 230<br>AAGGTAACTTAC | 240<br>CTGGGGTACAT | 250<br>Actgagtgag | 260<br>GGAAAAAGGT(        | 270<br>GGCTCACCCC | 280<br>Tgggcgcata( | 290<br>GAGACTGTGG | 300<br>CTCGCATTCCA | 310<br>ACCGCCCCGGA                      | 320<br>Atcccagagag |
|-----------------------------------|---------------------|--------------------|-------------------|---------------------------|-------------------|--------------------|-------------------|--------------------|-----------------------------------------|--------------------|
| 2                                 |                     |                    | •••••             |                           |                   |                    |                   | ••••••             | 3                                       |                    |
| 4                                 |                     |                    |                   |                           |                   |                    |                   |                    |                                         |                    |
| 5                                 |                     |                    |                   |                           |                   |                    |                   |                    |                                         |                    |
| 7                                 |                     |                    | •••••             | ••••••                    |                   |                    | ••••••••          |                    | -T                                      |                    |
| 8                                 |                     |                    |                   | • • • • • • • • • • • • • |                   |                    |                   |                    |                                         |                    |
| 10                                |                     |                    |                   |                           |                   |                    |                   |                    |                                         |                    |
| P.cyno 1<br>2                     |                     |                    |                   |                           |                   |                    |                   |                    |                                         |                    |
| P.anubis 1                        |                     |                    |                   | •••••                     |                   |                    |                   |                    | • • • • • • • • • • • • • • • • • • • • |                    |
| 2<br>3                            |                     | T                  |                   | A                         |                   | T                  |                   |                    |                                         |                    |
| A B bamadry 1                     |                     |                    |                   | •••••                     |                   |                    |                   |                    |                                         |                    |
| 2                                 |                     |                    |                   |                           |                   |                    |                   |                    |                                         |                    |
| T.gelada 1                        |                     |                    |                   |                           |                   |                    |                   |                    |                                         |                    |
| 2                                 |                     |                    |                   |                           |                   |                    |                   | -T                 |                                         |                    |
| 12.1 RT                           |                     |                    |                   |                           |                   |                    |                   |                    |                                         |                    |
| 12.2 RT                           |                     | •••••              |                   |                           |                   |                    |                   |                    |                                         |                    |
| 31.1 RT                           |                     |                    |                   | ••••••                    | •••••             |                    |                   |                    |                                         |                    |
| 30 1 PT                           |                     |                    |                   |                           |                   |                    |                   |                    |                                         |                    |
| 33.1 RT                           |                     |                    |                   |                           |                   |                    |                   |                    |                                         |                    |
| 36.1 RT<br>37.1 RT<br>P.hamadry 4 | A<br>A<br>AT        | T<br>T<br>T        | CA<br>CA<br>CA    | G                         | T<br>T            |                    | -A                | A<br>A<br>C        | TAA-<br>TAA-<br>AAA                     | GG                 |
|                                   |                     |                    |                   |                           |                   |                    |                   |                    |                                         |                    |

FIG. 2-Continued.

ments from baboons (unpublished observation). These species included monkeys of the Papionini tribe (which includes baboons, mandrills, mangabeys, and geladas), but homologous sequences were also amplified from the more distantly related *Cercopithecus aethiops* (African green monkey). The finding of these homologous *env* clones also questions the proposed type C/type D chimeric descent of BaEV. Extensive homology between BaEV, RD114, and the simian type D viruses, which all share the same cellular receptor (35), is predominantly located at the 3' end of the *env* gene. This part putatively encodes the transmembrane protein P20E in BaEV and probably has the same function in the other viruses. However, until now no virus showed extensive homology with the GP70 *env* region of BaEV.

In an initial filter screening, several clones obtained from the baboon genomic library hybridized only to the RT probe of BaEV and not to an LTR probe. Four of these were isolated and tested by PCR. The results (Table 2) show that the four clones (30.1, 33.1, 36.1, and 37.1) amplify only with RT primers, although very weak large double bands were obtained with the primer set LTR1/LTR2 (not shown). Sequence analysis of individual clones of the RT1/RT2 PCR products produced a surprising result, as two different but highly related RT sequences were present in the four lambda clones (Fig. 2). The RT sequences of two clones (30.1 and 33.1) were identical to BaEV RT (from nt 3505 to 3871), while the other two (36.1 and 37.1) were more divergent (showing approximately 77%) homology to BaEV). Sequences 36.1 RT and 37.1 RT were almost identical to each other. Compared with the relative amounts of clones hybridizing to other parts of the BaEV genome (env or LTR), the clones exclusively positive for BaEV RT are present in an ~10-fold excess. Restriction analysis of two of these clones (36.1 and 37.1; result not shown) indicated that they are not identical and that each contains at least a small, but possibly the same, part of a BaEV-like RT gene (estimated size between 366 and 945 nt), while the complete

*pol* gene of BaEV is 3,590 nt long (protease, nt 2575 to 2958 of the BaEV reference sequence; RT, nt 2959 to 4989; integrase, nt 4990 to 6165). Preliminary sequencing results (not shown) indicate that clone 36.1 contains 620 nt of BaEV-like RT sequence (nt 3311 to 3926), flanked by a mosaic of sequences with homology (ranging from 73 to 92%) to BaEV *gag-pol* fragments. It is known that solitary LTRs derived from the endogenous type B virus HERV-K are dispersed in the human genome in approximately 5,000 to 25,000 copies (19, 24). Homology between these sequences and the putative ancestor virus is 70 to 90%.

To estimate the level of sequence divergence in the BaEV RT gene for individual animals and between different baboon species, RT sequences were PCR amplified from total DNA with the primer set RT1/RT2 and were sequenced (Fig. 2). Very few sequence differences were present for single individuals and between the baboon species examined, including the more distantly related gelada baboon (T. gelada). Sequence 25.1 RT was identical to sequence P.ursinus 3, while sequences 12.1 RT, 31.1 RT, P.hamadry 2, P.hamadry 4, and P.anubis 3 were all identical. Sequence 12.2 RT was most closely related to P.hamadry 1 and P.hamadry 4. Sequences differing in a single nucleotide could be amplified from the same allele by Taq polymerase. Only once (in a P. hamadryas DNA sample) was a sequence (P.hamadry 4) with homology to the divergent sequences 36.1 RT and 37.1 RT found. This suggests that the primer sequences are not completely conserved in this sequence and that the divergent RT is amplified with low efficiency. No substitutions were observed in any sequence in the conserved RT domain YXDD (25), where X is V in BaEV (nt 92-103 in Fig. 2).

To estimate the level of sequence divergence for the BaEV env gene for individual animals and between different baboon species, env sequences were PCR amplified from total DNA with the primer set ENV1/ENV4 and were sequenced (Fig. 3).

| BaEV evry       ATGGGATTCACAACGAATATCTTCTTATACACCTAGTACTGGTCTACGCGGGGTTTGACGACCCTGGCAAGGCAATAGGCCAATAGACCTAACGAAGCCAATAGGCCGAAGCCAATAGGCCAATGGCCGACCCACGCAAGCCAATGGCCGACCTACGAAGCCAATGGCCGACCCACGCAAGCCAATGGCCGACCCACGCAAGCCAATGGCCGACCCACGCAAGCCAATGGCCGACCCACGCAAGCCAATGGCCGACCCACGCAAGCCAATGGCCGACCCACGCAAGCAGCTTACTTA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | BeV erv       ATGGATTACAAAAGATAATCTCTTATACAACCTAGTGCTGCGGGGGTTGACGACCTCGCAAAGCCATAGAACCTAGTACAAAGCGATAGGCCGACGCACCACCACCACCAAGCCATAGAACCTAGTACAAAGCGATAGGCCGACGCACCACCACCACCACCAAGCCATAGAACCTAGTACAAAAGCGATAGGCCGACGCACCACCACCACCACCACCACCACAAGCCATAGAACCTAGTACAAAAGCGATAGGCCGACGCACCACCACCACCACCACCACCACAAGCCATAGAACCTAGTACAAAAGCGATAGGCCGACGCACCACCACCACCACCACCACAAGCCATAGAACCTAGTACAAAAGCGATAGGCCCACCACCACCACCACCACCACCACCACCACCACCA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                  |                       | 10                           | 20                    | 30                         | 40                | 50                 | 60                | 70                                      | 80              | 90                                      | 100                       | 110                           |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|-----------------------|------------------------------|-----------------------|----------------------------|-------------------|--------------------|-------------------|-----------------------------------------|-----------------|-----------------------------------------|---------------------------|-------------------------------|
| r. d. sinks       2       A         s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | r. d. Since                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | BaEV env                                                                                                                         | 1                     | ATGGGATTCACAACAA             | AGATAATCI             | TCTTATACAAC                | CTAGTACTGG        | TCTACGCGGGG        | TTTGACGAC         | CTCGCAAAGC                              | CATAGAAC        | TAGTACAAAA                              | GCGATATGGC                | GACC                          |
| 3      A         9. cyno       1         1      A         9. anubis       1         2      A         9. anubis       1         3      A         9. anubis       1         4      A         7      A         7      A         9. anubis      A         1      A         1      A         1      A         1      A         1      A         2      A         1      A         1. a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3      A         P. cyno      A         9. cyno      A         P. anubis      A         1      A         P. anubis      A         1      A         1      A         1      A         1      A         1      A         1      A         1      A         1      A         1      A         1      A         1      A         1      A         1      A         1      A         1      A         1      A         1      A         1      A         1      A         1      A         1      A         1      A         1      A         1      A         1      A         1      A         1      A         1      A         1      A         1      A         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | r.ui sinus                                                                                                                       | ż                     | A                            |                       |                            |                   |                    |                   |                                         |                 |                                         |                           |                               |
| P. cyno                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | A       -A         P. cyno       -A         P. anubis       -A         P. anubis       -A         -A       -A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                  | 3                     | A                            |                       |                            |                   |                    |                   |                                         |                 |                                         |                           | ·                             |
| P. cyno 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | P. cyno P. cyn |                                                                                                                                  | 4                     | A                            |                       |                            |                   | •••••              |                   |                                         |                 |                                         |                           |                               |
| P. cyno 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | P. cyno 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                  | 5                     | A                            |                       |                            |                   |                    |                   |                                         |                 |                                         |                           |                               |
| P. anubis<br>P. anubis<br>P. anubis<br>P. anubis<br>P. hamadry<br>T. gelada<br>BaEV env<br>P. ursinus<br>P. anubis<br>P. anubis<br>P. anubis<br>P. hamadry<br>P. anubis<br>P. a                                                                                                                                                 | P. anubis 2A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | P.cyno                                                                                                                           | ĭ                     | Â                            |                       |                            |                   |                    |                   |                                         |                 |                                         |                           |                               |
| P. anubis       3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | P. anubis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                  | 2                     | A                            |                       |                            |                   |                    |                   |                                         | 1               |                                         |                           |                               |
| Praticults 1 2 A A A A A A A A A A A A A A A A A A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | r.a.tudis       2       A         P. anubis       4       A         P. hamadry       A       C         P. hamadry       A       C         I. a.tudis       A       A         I. a.tudis       I.tudis       I.tudis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | B opubio                                                                                                                         | 3                     | A                            |                       |                            |                   |                    |                   |                                         | 1               | ·                                       |                           |                               |
| 3      A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | P. anubis       3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | P.anubis                                                                                                                         | 2                     | ···A····                     |                       |                            |                   |                    |                   |                                         | 1               | ••••••••••••                            |                           |                               |
| P. anubis       4      A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | P. anudbis       4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                  | 3                     | Â                            |                       |                            |                   |                    | T                 |                                         | i               | •••••••••••                             |                           |                               |
| A       A       C         P.hamadry       I      A         T.gelada       I         I. any      A         I. an                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | P.hanadry       1       A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | P.anubis                                                                                                                         | 4                     | A                            | -A                    | · G                        |                   |                    | •••••             | • • • • • • • • • • • • • • • • • • • • |                 |                                         |                           |                               |
| P.hamadry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | P.hamadry       - A           3       - A           1       - A           1       - A           1       - A           1       - A           12.1       env       - A          3       - A           12.1       env       - A          3       - A           3       - A           25.1       env           25.1       env           25.2       env           26.1       130       140       150       160       170       180       190       200       210       220         3                            -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                  | 2                     | A                            | -A                    |                            |                   |                    |                   |                                         |                 | • • • • • • • • • • • • • • • • • • • • | • • • • • • • • • • • • • |                               |
| 1. gelada       2      A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 7      A      A         T.gelada       1      A         12.1 env      A      A         23.1 env      A      A         25.1 env      A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | P.hamadry                                                                                                                        | 1                     | Â                            |                       |                            |                   |                    |                   |                                         | 1               |                                         |                           |                               |
| T.gelada       3      A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | T.gelada       3      A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                  | 2                     | A                            |                       |                            |                   |                    |                   |                                         | 1               | •                                       |                           |                               |
| 1. Jet add       2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1. get add       1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                  | 3                     | A                            |                       |                            |                   |                    |                   |                                         | 1               | ·                                       |                           |                               |
| 3      A         12.1 env      A         12.2 env      A         31.1 env      A         25.1 env      A         23.1 env      A         23.1 env      A         25.2 env      A         120       130       140       150       160       170       180       190       200       210       220         BaEV env       ATGCGATTGCAGGGAGGAACAGCTGCCCGAGCCCCGCTCAGACAGGGGCAGGTCAGGTCAGGTGAGCTAGCT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3      A         12.1 env      A         12.2 env      A         23.1 env      A         24.100 150 160 170 180 190 200 210 220 210 220         25.2 env      A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | i.getada                                                                                                                         | 2                     | A                            |                       |                            |                   |                    |                   |                                         | -G1             | ·                                       |                           |                               |
| 12.1 env      A         12.2 env      A         31.1 env      A         25.1 env      A         23.1 env      A         25.2 env                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 12.1 env      A      A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                  | 3                     | Â                            |                       |                            |                   |                    |                   |                                         | 1               | •••••••••••                             |                           |                               |
| 12.1 env      A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 12.1 env      A         31.1 env      A         31.1 env      A         25.1 env                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                  |                       |                              |                       |                            |                   |                    |                   |                                         |                 |                                         |                           |                               |
| 12.1 env                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 12.1 env      A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 12.1 env                                                                                                                         |                       | A                            |                       |                            |                   |                    |                   |                                         | 1               |                                         |                           |                               |
| 25.1 env                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 25.1 env      A-      C-         23.1 env      TG-GTAGA-ACAG-         25.2 env      TAGA-AC-TAG-         BaEV env       120       130       140       150       160       170       180       190       200       210       220         BaEV env       120       130       140       150       160       170       180       190       200       210       220         BaEV env                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 31.1 env                                                                                                                         |                       | A                            |                       |                            |                   |                    |                   |                                         | 1               | ••••••                                  |                           | A                             |
| 23.1 env      TG-GT-AGA-ACAGAGA-GAGA-C-CTAGAGA-C-CTAG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 23.1 env      TG-GT-AGA-AC-TAG         25.2 env      TG-GA-GA-GA-GA-G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 25.1 env                                                                                                                         |                       | ·A                           |                       |                            |                   |                    |                   |                                         |                 |                                         | c                         |                               |
| 23.1 env      1G-G1AGA-ACAG         25.2 env      1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 23.1 env      1G-G1-AGA-AC-CTAG         25.2 env      AAAAAA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                  |                       |                              |                       |                            |                   |                    |                   | _                                       |                 |                                         |                           |                               |
| 25.2 env       120       130       140       150       160       170       180       190       200       210       220         BaEV env       ATGCGATTGCAGGGAGGACAAGTGTCCCGAGCCCCGTCAGACAGGGTCAGTCA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.5.2 env       120       130       140       150       160       170       180       190       200       210       220         BaEV env       A TACCATTGCAGCGAGGACAAGTGTCCCGAGCCCCCCTCAGACAGGGTCAGTCA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 25.1 env                                                                                                                         |                       |                              |                       |                            |                   |                    |                   |                                         | G-G1            | AG/                                     | A-AC                      | AG                            |
| BaEV env       120       130       140       150       160       170       180       190       200       210       220         BaEV env       ATGCGATTGCAGCGAGGACAAGTGTCCGAGCCCCGTCAGACAGGGTCAGTCA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 120       130       140       150       160       170       180       190       200       210       220         BaEV env       ATGCGATTGCAGCGGAGGACAAGTGTCCGAGCCCCGTCAGACAGGGTCAGTCA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | C).C 604                                                                                                                         |                       |                              |                       |                            |                   |                    |                   |                                         | M               |                                         |                           | AG                            |
| 120       130       140       150       160       170       180       190       200       210       220         BaEV env       ATGCGATTGCAGCGGAGGACAAGTGTCCCGAGCCCCGTCAGACAGGGTCAGTGAACTTGCTCAGGCAAGACAGCTTACTTA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | BaEV env       ATGCGATTGCAGCGGAGGACAAGTGTCCGAGCCAGCCGTCAGCCAGGGACGAGCTAGTCAGGGAGGACAGCCTTACTTA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                  |                       |                              |                       |                            |                   |                    |                   |                                         |                 |                                         |                           |                               |
| Party Priv       And Can de Canada Cana                                                                                                                                                                                                                                                                                                                                                                   | Back et also and data data data data data data data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                  |                       |                              |                       |                            |                   |                    |                   |                                         |                 |                                         |                           |                               |
| P. cyno 1<br>P. anubis 1<br>P. anubis 4<br>P. hamadry 1<br>T. gelada 1<br>T. gel | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | PoEV opv                                                                                                                         |                       | 120                          | 130                   | 140                        | 150               | 160                | 170               | 180                                     | 190             | 200                                     | 210                       | 220                           |
| 3      G-      G-         4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | BaEV env<br>P.ursinus                                                                                                            | 1                     | 120<br>Atgcgattgcagcgga      | 130<br>Iggacaagto     | 140<br>STCCGAGCCCCC        | 150<br>GTCAGACAGG | 160<br>GTCAGTCAAGT | 170<br>GACTTGCTC/ | 180<br>Aggcaagacag                      | 190<br>CTTACTTA | 200<br>Atgcccgacca                      | 210<br>AAAGATGGAAA        | 220<br>ATGTA                  |
| 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | P. cyno       C-         P. anubis       C-         P. anubis       A         C-       C-         P. anubis       C-         C-       C-         P. anubis       C-         C-       C-         C-<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | BaEV env<br>P.ursinus                                                                                                            | 1<br>2                | 120<br>ATGCGATTGCAGCGGA      | 130<br>Iggacaagto     | 140<br>STCCGAGCCCCC        | 150<br>GTCAGACAGG | 160<br>GTCAGTCAAGT | 170<br>GACTTGCTC/ | 180<br>Aggcaagacag                      | 190<br>CTTACTTA | 200<br>Atgcccgacca                      | 210<br>AAAGATGGAAA        | 220<br>ATGTA<br>C-            |
| 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | P.cyno 2<br>P.anubis 1<br>P.anubis 4<br>P.anubis 4<br>P.anubis 4<br>T.gelada 1<br>12.1 env 12.2 env 1<br>11.1 env 25.1 env                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | BaEV env<br>P.ursinus                                                                                                            | 123                   | 120<br>ATGCGATTGCAGCGGA<br>  | 130<br>Iggacaagto     | 140<br>STCCGAGCCCCC        | 150<br>GTCAGACAGG | 160<br>GTCAGTCAAGT | 170<br>GACTTGCTC/ | 180<br>Aggcaagacag                      | 190<br>CTTACTTA | 200<br>Atgcccgacc                       | 210<br>AAAGATGGAAA        | 220<br>ATGTA<br>C-<br>C-      |
| P.cyno       1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | P.cyno       1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | BaEV env<br>P.ursinus                                                                                                            | 12345                 | 120<br>ATGCGATTGCAGCGGA<br>  | 130<br>IGGACAAGTO     | 140<br>STCCGAGCCCCC        | 150<br>GTCAGACAGG | 160<br>GTCAGTCAAGT | 170<br>GACTTGCTC/ | 180<br>Aggcaagacag                      | 190<br>CTTACTTA | 200<br>IATGCCCGACCA                     | 210<br>AAAGATGGAAA        | 220<br>TGTA<br>C-<br>C-<br>C- |
| 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | BaEV env<br>P.ursinus                                                                                                            | 123456                | 120<br>ATGCGATTGCAGCGGA<br>  | 130<br>IGGACAAGTO     | 140<br>STCCGAGCCCCC        | 150<br>GTCAGACAGG | 160<br>GTCAGTCAAGT | 170<br>GACTTGCTC/ | 180<br>Aggcaagacag                      | 190<br>CTTACTTA | 200<br>ATGCCCGACC/                      | 210<br>AAAGATGGAAA        | 220<br>ATGTA<br>              |
| P. anubis      A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | P. anubis      A      C         2      A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | BaEV env<br>P.ursinus<br>P.cyno                                                                                                  | 1234561               | 120<br>ATGCGATTGCAGCGGA<br>  | 130<br>IGGACAAGTO     | 140<br>STCCGAGCCCCC        | 150<br>GTCAGACAGG | 160<br>GTCAGTCAAGT | 170<br>GACTTGCTC/ | 180<br>Aggcaagacag                      | 190<br>CTTACTTA | 200<br>ATGCCCGACC/                      | 210<br>AAAGATGGAAA        | 220<br>TGTA<br>               |
| P. anubis 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | P. anubis      A      A         P. anubis      A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | BaEV env<br>P.ursinus<br>P.cyno                                                                                                  | 123456127             | 120<br>ATGCGATTGCAGCGGA<br>  | 130<br>IGGACAAGTO     | 140<br>STCCGAGCCCCC        | 150<br>GTCAGACAGG | 160<br>GTCAGTCAAGT | 170<br>GACTTGCTC/ | 180<br>AggCAAgaCAg                      | 190<br>CTTACTTA | 200<br>ATGCCCGACC/                      | 210<br>NAAGATGGAAA        | 220<br>TGTA<br>               |
| 9. anubis       3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | P. anubis       3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | BaEV env<br>P.ursinus<br>P.cyno<br>P.anubis                                                                                      | 1234561231            | 120<br>ATGCGATTGCAGCGGA<br>  | 130<br>IGGACAAGTO     |                            | 150<br>GTCAGACAGG | 160<br>GTCAGTCAAGT | 170<br>GACTTGCTC/ | 180<br>Aggcaagacag                      | 190<br>CTTACTTA | 200<br>ATGCCCGACC/                      | 210<br>MAAGATGGAAA        | 220<br>TGTA<br>               |
| P. anubis       4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | P.anubis       4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | BaEV env<br>P.ursinus<br>P.cyno<br>P.anubis                                                                                      | 12345612312           | 120<br>ATGCGATTGCAGCGGA<br>G | 130<br>IGGACAAGTO     | 140<br>STCCGAGCCCCC<br>    | 150<br>gtCAGACAGG | 160<br>GTCAGTCAAGT | 170<br>GACTTGCTC/ | 180<br>AGGCAAGACAG                      | 190<br>CTTACTTA | 200<br>ATGCCCGACC/                      | 210<br>MAAGATGGAAA        | 220<br>TGTA<br>               |
| P.hamadry 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Amadry 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | BaEV env<br>P.ursinus<br>P.cyno<br>P.anubis                                                                                      | 123456123123          | 120<br>ATGCGATTGCAGCGGA<br>G | 130<br>IGGACAAGTO     | 140<br>STCCGAGCCCCC<br>    | 150<br>GTCAGACAGG | 160<br>GTCAGTCAAGT | 170<br>GACTTGCTC/ | 180<br>AGGCAAGACAG                      | 190<br>CTTACTTA | 200<br>ATGCCCGACC/                      | 210<br>MAAGATGGAAA        | 220<br>TGTA<br>               |
| P.hamadry 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | P.hamadry 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | BaEV env<br>P.ursinus<br>P.cyno<br>P.anubis<br>P.anubis                                                                          | 12345612312345        | 120<br>ATGCGATTGCAGCGGA<br>G | 130<br>IGGACAAGTO     | 140<br>STCCGAGCCCCC<br>    | 150<br>GTCAGACAGG | 160<br>GTCAGTCAAGT | 170<br>GACTTGCTC/ | 180<br>AGGCAAGACAG                      | 190<br>CTTACTTA | 200<br>ATGCCCGACC/                      | 210<br>MAAGATGGAAA        | 220<br>TGTA<br>               |
| 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | BaEV env<br>P.ursinus<br>P.cyno<br>P.anubis<br>P.anubis                                                                          | 123456123123456       | 120<br>ATGCGATTGCAGCGGA<br>G | 130<br>IGGACAAGT(<br> | 140<br>STCCGAGCCCCC        | 150<br>GTCAGACAGG | 160<br>GTCAGTCAAGT | 170<br>GACTTGCTC/ | 180<br>AGGCAAGACAG                      | 190<br>CTTACTTA | 200<br>ATGCCCGACC/                      | 210<br>MAAGATGGAAA        | 220<br>TGTA<br>               |
| T.gelada 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | T.gelada       3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | BaEV env<br>P.ursinus<br>P.cyno<br>P.anubis<br>P.anubis<br>P.hamadry                                                             | 1234561231234561      | 120<br>ATGCGATTGCAGCGGA<br>G | 130<br>IGGACAAGT(<br> | 140<br>STCCGAGCCCCC<br>    | 150<br>GTCAGACAGG | 160<br>GTCAGTCAAGT | 170<br>GACTTGCTC/ | 180<br>AGGCAAGACAG                      | 190<br>CTTACTTA | 200<br>ATGCCCGACC/                      | 210<br>MAAGATGGAAA        | 220<br>TGTA<br>               |
| 1. getada                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1. get ada       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | BaEV env<br>P.ursinus<br>P.cyno<br>P.anubis<br>P.anubis<br>P.hamadry                                                             | 12345612312345612     | 120<br>ATGCGATTGCAGCGGA<br>G | 130<br>IGGACAAGT(     | 140<br>STCCGAGCCCCC<br>A   | 150<br>GTCAGACAGG | 160<br>GTCAGTCAAGT | 170<br>GACTTGCTC/ | 180<br>AGGCAAGACAG                      | 190<br>CTTACTTA | 200<br>ATGCCCGACC/                      | 210<br>MAAGATGGAAA        | 220<br>TGTA<br>               |
| 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | BaEV env<br>P.ursinus<br>P.cyno<br>P.anubis<br>P.anubis<br>P.hamadry                                                             | 1234561231234561231   | 120<br>ATGCGATTGCAGCGGA<br>G | 130<br>IGGACAAGT(     | 140<br>STCCGAGCCCCC<br>A   | 150<br>GTCAGACAGG | 160<br>GTCAGTCAAGT | 170<br>GACTTGCTC/ | 180<br>AGGCAAGACAG                      |                 | 200<br>ATGCCCGACC/                      | 210<br>MAAGATGGAAA        | 220<br>ITGTA<br>              |
| 12.1. onv                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 12.1 env                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | BaEV env<br>P.ursinus<br>P.cyno<br>P.anubis<br>P.anubis<br>P.hamadry<br>T.gelada                                                 | 12345612312345612312  | 120<br>ATGCGATTGCAGCGGA<br>  | 130<br>IGGACAAGT(     | 140<br>STCCGAGCCCCC<br>A   | 150<br>GTCAGACAGG | 160<br>GTCAGTCAAGT | 170<br>GACTTGCTC/ | 180<br>AGGCAAGACAG                      |                 | 200<br>ATGCCCGACC/                      | 210<br>MAAGATGGAAA        | 220<br>ITGTA<br>              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 12.1 env                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | BaEV env<br>P.ursinus<br>P.cyno<br>P.anubis<br>P.anubis<br>P.hamadry<br>T.gelada                                                 | 123456123123456123123 | 120<br>ATGCGATTGCAGCGGA<br>G | 130<br>IGGACAAGT(     | 140<br>STCCGAGCCCCC<br>A   | 150<br>GTCAGACAGG | 160<br>GTCAGTCAAGT | 170<br>GACTTGCTC/ | 180<br>AGGCAAGACAG                      |                 | 200<br>ATGCCCGACC/                      | 210<br>MAAGATGGAAA        | 220<br>ITGTA<br>              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 31.1 env<br>25.1 env                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | BaEV env<br>P.ursinus<br>P.cyno<br>P.anubis<br>P.anubis<br>P.hamadry<br>T.gelada                                                 | 123456123123456123123 | 120<br>ATGCGATTGCAGCGGA<br>G | 130<br>IGGACAAGT(     | 140<br>STCCGAGCCCCC<br>A   | 150<br>GTCAGACAGG | 160<br>GTCAGTCAAGT | 170<br>GACTTGCTC/ | 180<br>AGGCAAGACAG                      |                 |                                         | 210<br>MAAGATGGAAA        | 220<br>ITGTA<br>              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 25.1 env                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | BaEV env<br>P.ursinus<br>P.cyno<br>P.anubis<br>P.anubis<br>P.hamadry<br>T.gelada                                                 | 123456123123456123123 | 120<br>ATGCGATTGCAGCGGA<br>  | 130<br>IGGACAAGT(     | 140<br>STCCGAGCCCCC<br>A   | 150<br>GTCAGACAGG | 160<br>GTCAGTCAAGT | 170<br>GACTTGCTC/ | 180<br>AGGCAAGACAG                      |                 |                                         | 210<br>MAAGATGGAAA        | 220<br>ITGTA<br>              |
| 25.1 env                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | BaEV env<br>P.ursinus<br>P.cyno<br>P.anubis<br>P.anubis<br>P.hamadry<br>T.gelada<br>12.1 env<br>12.2 env<br>31.1 env             | 123456123123456123123 | 120<br>ATGCGATTGCAGCGGA<br>  | 130<br>IGGACAAGT(     | 140<br>STCCGAGCCCCC<br>A   | 150<br>GTCAGACAGG | 160<br>GTCAGTCAAGT | 170<br>GACTTGCTC/ | 180<br>AGGCAAGACAG                      |                 | 200<br>ATGCCCGACC/                      | 210<br>MAAGATGGAAA        | 220<br>ITGTA<br>              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | BaEV env<br>P.ursinus<br>P.cyno<br>P.anubis<br>P.anubis<br>P.hamadry<br>T.gelada<br>12.1 env<br>12.2 env<br>31.1 env<br>25.1 env | 123456123123456123123 | 120<br>ATGCGATTGCAGCGGA      | 130<br>IGGACAAGT(<br> | 140<br>STCCGAGCCCCC<br>- A | 150<br>GTCAGACAGG | 160<br>GTCAGTCAAGT | 170<br>GACTTGCTC/ | 180<br>AGGCAAGACAG                      |                 |                                         | 210<br>MAAGATGGAAA        | 220<br>ITGTA<br>              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.) I EDV I I U A-A I A I A I AA CC G G G G A CCC G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | BaEV env<br>P.ursinus<br>P.cyno<br>P.anubis<br>P.anubis<br>P.hamadry<br>T.gelada<br>12.1 env<br>12.2 env<br>31.1 env<br>25.1 env | 123456123123456123123 | 120<br>ATGCGATTGCAGCGGA      |                       | 140<br>STCCGAGCCCCC<br>- A | 150<br>GTCAGACAGG | 160<br>GTCAGTCAAGT | 170<br>GACTTGCTC/ | 180<br>AGGCAAGACAG                      |                 | 200<br>ATGCCCGACC/                      | 210<br>MAAGATGGAAA        | 220<br>ITGTA<br>              |
| 23.1 env TTCA-ATATATAACCGGGGG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | BaEV env<br>P.ursinus<br>P.cyno<br>P.anubis<br>P.anubis<br>P.hamadry<br>T.gelada<br>12.1 env<br>12.2 env<br>31.1 env<br>25.1 env | 123456123123456123123 | 120<br>ATGCGATTGCAGCGGA      | 130<br>IGGACAAGTO     | 140<br>STCCGAGCCCCC<br>A   | 150<br>GTCAGACAGG | 160<br>GTCAGTCAAGT | 170<br>GACTTGCTC/ | 180<br>AGGCAAGACAG                      | 190<br>CTTACTTA | 200<br>ATGCCCGACC/                      | 210<br>MAAGATGGAAA        | 220<br>ITGTA<br>              |

FIG. 3. env sequences amplified from total DNA of four baboon species (*P. ursinus*, *P. cynocephalus* [P.cyno], *P. anubis*, and *P. hamadryas* [P.hamadry]) and the gelada baboon (*T. gelada*) and from six lambda clones, obtained after screening a baboon genomic library with a BaEV env probe, are shown. The BaEV sequence (nt 6235 to 6609) of Kato et al. (17) is shown in the upper line. *P. anubis* sequences were amplified from two animals. Identical nucleotides are indicated by dashes.

The sequence shown starts with the start codon (ATG) of the *env* gene. The first 60 nt encode a putative signal peptide, while the GP70 coding sequence presumably starts at nt 61. All sequences obtained (including those for the four BaEV genomic clones) were found to differ in three positions from the BaEV reference sequence. The open reading frame was never disturbed by the introduction of stop codons nor by insertions and/or deletions, although in the sequence T.gelada 1 the ATG start codon of *env* was mutated to CTG. Also, in the divergent clones 23.1 and 25.2 the open reading frame was not interrupted in the fragment sequenced. Remarkably few nu-

cleotide differences were present among all BaEV sequences. Sequences 12.1 env and 31.1 env were identical to each other and to sequences P.anubis 6 and P.hamadry 2. Sequences generated from total baboon DNA with heterogeneity only in a single position could have been amplified from the same allele by *Taq* polymerase. There was no clear association of sequence clusters with baboon species.

BaEV proviruses have been calculated to be present in approximately 50 to 100 copies in the haploid baboon genome. This estimation was based upon Southern blotting of baboon genomic DNA and detection of BaEV with an RT fragment as

|              | 230                                   | 240                       | 250                                   | 260        | 270                                         | 280                                                     | 290         | 300          | 310         | 320         | 330    |  |
|--------------|---------------------------------------|---------------------------|---------------------------------------|------------|---------------------------------------------|---------------------------------------------------------|-------------|--------------|-------------|-------------|--------|--|
| BaEV env     | AGTCAATTCCAAAAG                       | ACACCTCCCCA               | AGCGGGCCAC                            | TCCAAGAGTG | CCCCTGTAAT                                  | TCTTACCAGT                                              | CCTCAGTACA  | CAGTTCTTGT   | TATACCTCAT  | ACCAACAAT   | GCAGA  |  |
| P.ursinus 1  |                                       |                           |                                       |            | • • • • • • • • • • • • • • • • • • •       |                                                         |             |              |             |             |        |  |
| 3            | · · · · Ţ · · · · · · · · · ·         |                           | •                                     |            |                                             |                                                         |             |              |             |             |        |  |
| 4            | Ť                                     | · 1                       | •••••                                 |            |                                             |                                                         |             |              |             |             |        |  |
| 5            | T                                     | 1                         |                                       |            |                                             |                                                         |             |              |             |             |        |  |
| 6            | <u>T</u>                              | 1                         |                                       |            |                                             |                                                         |             |              |             |             |        |  |
| P.cyno 1     |                                       |                           | ·····                                 |            |                                             |                                                         |             |              |             | G           |        |  |
| 3            |                                       |                           | ·                                     |            | T                                           |                                                         |             |              |             |             |        |  |
| P.anubis 1   | Ť                                     | ·i                        |                                       |            | G-                                          |                                                         |             |              |             |             |        |  |
| 2            | T                                     | 1                         | •                                     |            | Ğ-                                          |                                                         |             |              |             |             |        |  |
| 3            | <u>T</u>                              | 1                         |                                       |            | G-                                          |                                                         |             |              |             |             |        |  |
| Panubis 4    | T                                     | 1                         | ·                                     |            | G-                                          |                                                         |             |              |             |             |        |  |
| 5            |                                       |                           | · · · · · · · · · · · · · · · · · · · |            |                                             |                                                         |             |              |             |             |        |  |
| P.hamadry 1  |                                       | 1                         |                                       |            | G-                                          |                                                         |             |              |             |             |        |  |
| 2            | T                                     | · T                       | •                                     |            |                                             |                                                         |             |              |             |             |        |  |
| 3            | CT                                    | 1                         |                                       |            | G-                                          |                                                         |             |              |             |             |        |  |
| T.gelada 1   | <u>T</u>                              | 1                         |                                       |            | G-                                          |                                                         |             |              | C           |             |        |  |
| 2            | T                                     | 1                         |                                       |            | G-                                          |                                                         |             |              | C           |             |        |  |
| 3            |                                       |                           |                                       |            | G-                                          |                                                         |             |              |             |             |        |  |
| 12.1 env     |                                       | T                         |                                       |            | 6-                                          |                                                         |             |              |             |             |        |  |
| 12.2 env     | T                                     | T                         |                                       |            | • • • • • • • • • • • • • • • • • • •       |                                                         |             |              |             |             |        |  |
| 31.1 env     | T                                     | T                         |                                       |            | G-                                          |                                                         |             |              |             |             |        |  |
| 25.1 env     | T                                     |                           |                                       |            |                                             |                                                         |             |              |             |             |        |  |
| 23.1 env     | T-CCG-                                |                           |                                       |            |                                             |                                                         |             |              |             |             |        |  |
| 25.2 env     | G-                                    |                           |                                       |            |                                             |                                                         |             |              |             |             |        |  |
|              |                                       |                           |                                       |            | full-le                                     | ength prov                                              | viruses an  | d two ot     | hers cont   | aining pro  | ovirus |  |
|              | 340                                   | 350                       | 360                                   | 370        | clone                                       | s terminat                                              | ing in the  | env gene     | as a cons   | equence of  | of the |  |
| BaEV env     | TCAGGCAATAAGAC                        | ATATTATACGG               | CTACTCTGCT                            | AAAAACACAA | const                                       | ruction me                                              | ethod of th | e library. 1 | In contrast | to endoge   | enous  |  |
| P.ursinus    | · · · · · · · · · · · · · · · · · · · |                           |                                       |            | type                                        | C viruses o                                             | of other m  | ammalian     | species, e  | .g., endoge | enous  |  |
| 4            |                                       |                           |                                       |            | MuL                                         | MuLV and endogenous FeLV and RD114 of cats there are t  |             |              |             |             |        |  |
| 2            |                                       | T                         |                                       |            | stron                                       | g indicatio                                             | ons for the | e existence  | e of defea  | tive BaE    | V ge-  |  |
| 5            |                                       |                           |                                       |            | nome                                        | s in the ba                                             | boon althe  | ough the h   | omologou    | RT-cont     | aining |  |
| e            | 5                                     |                           |                                       |            | elem                                        | ents could                                              | be define   | d as provi   | ruses with  | large ger   | nomic  |  |
| P.cyno 1     |                                       |                           |                                       |            | cicili                                      | ciements could be defined as provinuses with large gene |             |              |             |             |        |  |
| 2            |                                       | •••••••                   |                                       |            |                                             |                                                         |             |              |             |             |        |  |
| Popubic 1    |                                       |                           |                                       |            |                                             |                                                         |             |              |             |             |        |  |
|              |                                       |                           |                                       |            | 12.2 5                                      | integration site                                        | •           |              |             |             |        |  |
| 7            |                                       |                           |                                       |            |                                             | -                                                       | mamamaaamaa |              |             |             |        |  |
| P.anubis 4   |                                       |                           |                                       |            | 5.                                          | -120                                                    | -110        | -100         | -90 ·       | -80 -       | 70     |  |
| 5            |                                       | • • • • • • • • • • • • • | T                                     |            |                                             | GCCCTTATAATAAACCTCNAGGAATTTATTGTC                       |             | ATTGGCCATTA  | ATCTGTTTTA  | ATTT<br>10  |        |  |
| D homeday: 6 |                                       |                           |                                       |            | CCCTCTATGAAAAGTAAAACTTTTAGGCCCTCCCCGAAAT 3' |                                                         |             |              |             |             | 10     |  |
| r.namaory 1  |                                       |                           |                                       |            |                                             | +1                                                      | +10         | +20          | +30         |             |        |  |
| 3            |                                       |                           |                                       |            |                                             |                                                         |             |              |             |             |        |  |
| I.gelada 1   |                                       |                           |                                       |            | 31.1 5                                      | integration site                                        | 2           |              |             |             |        |  |

2

-----

probe (31). We have shown here that this method is unreliable because BaEV-like RT fragments are present as retroelements in multiple copies in the baboon genome. Part of this RT sequence was used as probe by Shih et al. (31). Besides, BaEV RT and BaEV *env* sequences (and probably other parts of the genome as well) hybridize efficiently to genomic DNA sequences more distantly related to the virus, making Southern blot quantification with other probes or quantitative PCR methods difficult. We estimate that the number of BaEV proviral genomes is ~10-fold lower than the number calculated by Shih et al. for baboons, which would be more in accordance with the 5 to 15 integrations per haploid baboon genome presented by Benveniste and Todaro (5).

In conclusion, screening a baboon (*P. cynocephalus*) genomic library with probes specific for BaEV led to the isolation of four BaEV clones, two lambda clones containing apparently

## 12.1 5' integration site

## 25.1 5' integration site

FIG. 4. Sequences of 5' integration sites of four obtained BaEV genomic clones. Part of the viral 5'LTR is underlined. A *PstI* site located next to the viral LTR is indicated in boldface for clone 12.1.

deletions. However, the methods used for identification of the BaEV sequences (Southern blotting and PCR amplification) cannot exclude the existence of small insertions, deletions, or stop codons in the clones obtained. The low amount of sequence variation present between the BaEV clones, as observed in PCR fragments from the RT and env genes, was illustrative of BaEV variation in baboons as demonstrated by random amplification of these fragments from total DNA of four different baboon species and the more distantly related gelada baboon. Because all BaEV lambda clones could be amplified with RT and env primer sets, we think it is unlikely that we missed BaEV provirus variation because of primer mismatch or the PCR protocol used. Besides, more divergent clones, detected by Southern blotting, were more distantly related to BaEV. This lack of variation is not expected for endogenous viruses, which are supposed to act as pseudogenes, the latter supposedly having a relatively high mutation frequency (5  $\times$  10<sup>-9</sup> substitution/site/year [22]), although a similar lack of variation has been observed for endogenous MuLV env genes (36). This lack of variation could be attributed to a relatively short history of BaEV in the baboon, which could also explain the existence of active proviruses in this species. The amount of substitutions observed in the RT fragments of clones 36.1 and 37.1 is more in accordance with the mutation rate calculated for pseudogenes than that observed with complete BaEV proviruses.

This study was funded in part by the Institute of Virus Evolution and the Environment.

## REFERENCES

- Benveniste, R. E., R. Heinemann, G. L. Wilson, R. Callahan, and G. J. Todaro. 1974. Detection of baboon type C viral sequences in various primate tissues by molecular hybridization. J. Virol. 14:56–67.
- Benveniste, R. E., M. M. Lieber, D. M. Livingston, C. J. Sherr, and G. J. Todaro. 1974. Infectious C-type virus isolated from a baboon placenta. Nature (London) 248:17–20.
- Benveniste, R. E., and G. J. Todaro. 1974. Evolution of C-type viral genes: inheritance of exogenously acquired viral genes. Nature (London) 252:456–459.
- Benveniste, R. E., and G. J. Todaro. 1974. Evolution of type C viral genes. I. Nucleic acid from baboon type C virus as a measure of divergence among primate species. Proc. Natl. Acad. Sci. USA 71:4513–4518.
- Benveniste, R. E., and G. J. Todaro. 1974. Multiple divergent copies of endogenous C-type virogenes in mammalian cells. Nature (London) 252:171–173.
- 6. Benveniste, R. E., and G. J. Todaro. 1976. Evolution of type C viral genes: evidence for an Asian origin of man. Nature (London) 261:101–108.
- Boller, K., H. König, M. Sauter, N. Mueller-Lantzsch, R. Löwer, J. Löwer, and R. Kurth. 1993. Evidence that HERV-K is the endogenous retrovirus sequence that codes for the human teratocarcinoma-derived retrovirus HTDV. Virology 196:349–353.
- Bonner, T. I., and G. J. Todaro. 1980. The evolution of baboon endogenous type C virus: related sequences in the DNA of distant species. Virology 103:217–227.
- Boom, R., C. J. A. Sol, M. M. M. Salimans, C. L. Jansen, P. M. E. Wertheimvan Dillen, and J. van der Noordaa. 1990. Rapid and simple method for purification of nucleic acids. J. Clin. Microbiol. 28:495–503.
- Cohen, J. C., and M. Murphey-Corb. 1983. Targeted integration of baboon endogenous virus in the BEVI locus on human chromosome 6. Nature (London) 301:129–132.
- Cohen, M., N. Davidson, R. V. Gilden, R. M. McAllister, M. O. Nicolson, and R. M. Stephens. 1980. The baboon endogenous virus genome. II. Provirus sequence variations in baboon cell DNA. Nucleic Acids Res. 8:4423–4440.
- Cohen, M., M. Powers, C. O'Connell, and N. Kato. 1985. The nucleotide sequence of the *env* gene from the human provirus ERV3 and isolation and characterization of an ERV3-specific cDNA. Virology 147:449–458.
- Cohen, M., A. Rein, R. M. Stephens, C. O'Connell, R. Gilden, M. Shure, M. O. Nicolson, R. M. McAllister, and N. Davidson. 1981. Baboon endogenous virus genome: molecular cloning and structural characterization of nondefective viral genomes from DNA of a baboon cell strain. Proc. Natl. Acad. Sci. USA 78:5207–5211.
- Hughes, S. H., A. Mutschler, J. M. Bishop, and H. E. Varmus. 1981. A Rous sarcoma virus provirus is flanked by short direct repeats of a cellular sequence present in only one copy prior to integration. Proc. Natl. Acad. Sci. USA 78:4299–4303.

- Hughes, S. H., P. R. Shank, D. H. Spector, H.-J. Kung, J. M. Bishop, H. E. Varmus, P. R. Vogt, and M. L. Breitman. 1978. Proviruses of avian sarcoma virus are terminally redundant, co-extensive with unintegrated linear DNA and integrated at many sites. Cell 15:1397–1410.
- Inaguma, Y., N. Miyashita, K. Moriwaki, W. C. Huai, J. Mei-Lei, H. Xinqiao, and H. Ikeda. 1991. Acquisition of two endogenous ecotropic murine leukemia viruses in distinct Asian wild mouse populations. J. Virol. 65:1796–1802.
   Kato, S., K. Matsuo, N. Nishimura, N. Takahashi, and T. Takano. 1987. The
- Kato, S., K. Matsuo, N. Nishimura, N. Takahashi, and T. Takano. 1987. The entire nucleotide sequence of baboon endogenous virus DNA: a chimeric genome structure of murine type C and simian type D retroviruses. Jpn. J. Genet. 62:127–137.
- Leib-Mösch, C., R. Brack-Werner, T. Werner, M. Bachmann, O. Faff, V. Erfle, and R. Hehlmann. 1990. Endogenous retroviral elements in human DNA. Cancer Res. 50(Suppl.):5636s–5642s.
- Leib-Mösch, C., M. Haltmeier, T. Werner, E.-M. Geigl, R. Brack-Werner, U. Francke, V. Erfle, and R. Hehlmann. 1993. Genomic distribution and transcription of solitary HERV-K LTRs. Genomics 18:261–269.
- Lemons, R. S., S. J. O'Brien, and C. J. Sherr. 1977. A new genetic locus, Bevi, on human chromosome 6 which controls the replication of baboon type C virus in human cells. Cell 12:251–262.
- Milot, E., A. Belmaaza, E. Rassart, and P. Chartrand. 1994. Association of a host DNA structure with retroviral integration sites in chromosomal DNA. Virology 201:408–412.
- Minghetti, P. P., and A. Dugaiczyk. 1993. The emergence of new DNA repeats and the divergence of primates. Proc. Natl. Acad. Sci. USA 90:1872–1876.
- Mooslehner, K., U. Karls, and K. Harbers. 1990. Retroviral integration sites in transgenic Mov mice frequently map in the vicinity of transcribed DNA regions. J. Virol. 64:3056–3058.
- Ono, M., M. Kawakami, and T. Takezawa. 1987. A novel human nonviral retroposon derived from an endogenous retrovirus. Nucleic Acids Res. 15: 8725–8737.
- Poch, O., I. Sauvaget, M. Delarue, and N. Tordo. 1989. Identification of four conserved motifs among the RNA-dependent polymerase encoding elements. EMBO J. 8:3867–3874.
- Pryciak, P. M., and H. E. Varmus. 1992. Nucleosomes, DNA-binding proteins, and DNA sequence modulate retroviral integration target site selection. Cell 69:769–780.
- Rabin, H., C. V. Benton, M. A. Tainsky, N. R. Rice, and R. V. Gilden. 1979. Isolation and characterization of an endogenous type C virus of rhesus monkeys. Science 204:841–842.
- Reeves, R. H., and S. J. O'Brien. 1984. Molecular genetic characterization of the RD-114 gene family of endogenous feline retroviral sequences. J. Virol. 52:164–171.
- Sherr, C. J., M. M. Lieber, R. E. Benveniste, and G. J. Todaro. 1974. Endogenous baboon type C virus (M7): biochemical and immunologic characterization. Virology 58:492–503.
- Sherwin, S. A., and G. J. Todaro. 1979. A new endogenous primate type C virus isolated from the Old World monkey *Colobus polykomos*. Proc. Natl. Acad. Sci. USA 76:5041–5045.
- Shih, A., E. E. Coutavas, and M. G. Rush. 1991. Evolutionary implications of primate endogenous retroviruses. Virology 182:495–502.
- Shih, C.-C., J. P. Stoye, and J. M. Coffin. 1988. Highly preferred targets for retrovirus integration. Cell 53:531–537.
- Singer, M. F., and J. Skowronski. 1985. Making sense out of LINES: long interspersed repeat sequences in mammalian genomes. Trends Biochem. Sci. 10:119–122.
- Soe, L. H., B. G. Devi, J. I. Mullins, and P. Roy-Burman. 1983. Molecular cloning and characterization of endogenous feline leukemia virus sequences from a cat genomic library. J. Virol. 46:829–840.
- Sommerfelt, M. A., and R. A. Weiss. 1990. Receptor interference groups of 20 retroviruses plating on human cells. Virology 176:58–69.
- Stoye, J. P., and J. M. Coffin. 1987. The four classes of endogenous murine leukemia virus: structural relationships and potential for recombination. J. Virol. 61:2659–2669.
- Stoye, J. P., and J. M. Coffin. 1988. Polymorphism of murine endogenous proviruses revealed by using virus class-specific oligonucleotide probes. J. Virol. 62:168–175.
- Todaro, G. J., R. E. Benveniste, S. A. Sherwin, and C. J. Sherr. 1978. MAC-1, a new genetically transmitted type C virus of primates: "low frequency" activation from stumptail monkey cell cultures. Cell 13:775–782.
- Todaro, G. J., C. J. Sherr, and R. E. Benveniste. 1976. Baboons and their close relatives are unusual among primates in their ability to release nondefective endogenous type C viruses. Virology 72:278–282.
- Todaro, G. J., C. J. Sherr, R. E. Benveniste, M. M. Lieber, and J. L. Melnick. 1974. Type C viruses of baboons: isolation from normal cell cultures. Cell 2:55–61.
- van der Kuyl, A. C., C. L. Kuiken, J. T. Dekker, and J. Goudsmit. 1995. Phylogeny of African monkeys based upon the mitochondrial 12S rRNA gene. J. Mol. Evol. 40:173–180.
- Vijaya, S., D. L. Steffen, and H. L. Robinson. 1986. Acceptor sites for retroviral integrations map near DNase I-hypersensitive sites in chromatin. J. Virol. 60:683–692.