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Abstract: 
The microarray gene expression applications have greatly stimulated the statistical research on the massive multiple 
hypothesis tests problem. There is now a large body of literature in this area and basically five paradigms of massive 
multiple tests: control of the false discovery rate (FDR), estimation of FDR, significance threshold criteria, control of 
family-wise error rate (FWER) or generalized FWER (gFWER), and empirical Bayes approaches. This paper contains a 
technical survey of the developments of the FDR-related paradigms, emphasizing precise formulation of the problem, 
concepts of error measurements, and considerations in applications. The goal is not to do an exhaustive literature survey, but 
rather to review the current state of the field. 
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1 Background: 
An important component in the analysis of a microarray 
gene expression experiment is to identify a list of genes that 
are differentially expressed under a few different biological 
conditions (including time course) or across several cell 
types (normal vs. cancer, different subtypes of a cancer, 
etc.), or are associated with one or more particular 
phenotypes of interest. This is often referred as gene 
expression profiling. In many studies the goal consists of 
identification and validation to some extent of the gene 
expression profile to elucidate the biological process [1-3]; 
in others the genes in the expression profile are used as 
biomarkers to build classifiers for a phenotype (e.g., 
treatment outcome). [4] This paper focuses on a particular 
statistical aspect in identifying a microarray gene 
expression profile – the massive multiple tests issue. 
Henceforth the terms “probe”, “probeset” and “gene” will 
be used interchangeably. 
 
Gene expression profiling usually consists of four major 
steps: (1) generate and normalize expression signals; (2) 
test each probe for its differential expression or association 
with the phenotype; (3) apply proper statistical significance 
criteria to identify the gene expression profile, that is, a 
specific list of genes differentially expressed or associated 
with the phenotype; (4) investigate functions and pathways 
of the genes in the expression profile, and perform some 
sort of validation with wet-lab experiments, external data 
sets, permutation test, or cross validation. Although there 
are a number of statistical issues in each step, those in steps 
(2) and (3) are the topic of this paper. 
 
The test of a probe for differential expression or association 
in step (2) is carried out by testing a statistical hypothesis 
properly formulated for the study. For example, gene 
expression profiling for comparison of normal versus a type 
of cancer cells would test if the mean or median expression 

level of each probe is the same in the two cell types (the 
null hypothesis) vs. the opposite (the alternative 
hypothesis). Gene expression profiling for association with 
a quantitative trait would use regression modeling 
appropriate for the phenotype. Because a statistical 
hypothesis is tested for each probe, and there are typically 
tens of thousands of probes, such analysis creates a 
problem of massive multiple hypothesis tests. It is then 
imperative to either control or effectively assess the levels 
of false positive (type-I) and false negative (type-II) errors 
in step (3) when statistical significance criteria are 
considered. The microarray gene expression applications 
have greatly stimulated the statistical research on the 
massive multiple hypothesis tests problem. There is now a 
giant body of literature in this area and basically five 
paradigms of massive multiple tests: control of the false 
discovery rate (FDR), estimation of FDR, significance 
threshold criteria, control of family-wise error rate (FWER) 
or generalized FWER (gFWER), and empirical Bayes 
approaches. 
 
The traditional approaches to controlling the FWER have 
proven to be too conservative in applications of microarray 
data analyses. Recent attention has been focused on the 
control of FDR. A recent non-technical review of FDR 
methods is described elsewhere. [5] The goal of this paper 
is to provide an overview of a few advancements of the 
FDR-based inference and related methodology under a 
unified set of notation and assumptions pertinent to 
microarray gene expression applications, so as to reflect the 
essence of the current state of the field. With a 
representation of multiple hypotheses tests as an estimation 
problem, this paper provides a technical survey of the FDR 
paradigms commonly used in microarray gene expression 
data analyses. Section 2 contains a brief review of FDR and 
related error measurements for massive multiple tests; 
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Section 3 contains a review of FDR control procedures; 
Section 4 contains a review of the estimation of the 
proportion of true null hypotheses; Section 5 contains a 
review of FDR estimation methods; Section 6 contains a 
brief review of data-driven significance threshold criteria; 
Sections 7 contains a brief review of sample size 
determination for FDR control; and some concluding 
remarks are made in section 8. More application-oriented 
readers can read Section 8 first to get a non-technical 
summary of the issues and the state of the field, and then 
read Sections 2 through 7 to obtain more technical details. 
 
The following notation will be used throughout. R denotes 
the real line, m denotes the number of tests (probes), and := 
indicates equal by definition. I(·) denotes the indicator 
function; it takes value 1 if the statement enclosed in the 
parentheses is true, 0 otherwise. Convergence and 
convergence in probability are denoted by →  and p→  

respectively. A random variable is usually denoted by an 
upper-case letter such as P, R, V, etc. A cumulative 
distribution function (cdf) is denoted by F, G or H; an 

empirical distribution function (EDF) is indicated by a 

tilde, e.g., F~ . A population parameter is denoted by a 
lower-case Greek letter and a hat indicates an estimator of 

the parameter, e.g., θ̂ . Asymptotic equivalence is denoted 

by ≅ : nn ba ≅ as ∞→n means 1/lim =∞→ nnn ba . 
 
2 False discovery rate and related error measurements: 
Consider testing m hypothesis pairs ),,( 0 Aii HH  i = 1, . 
. . ,m. In most applications of microarray gene expression 
analyses, m is typically on the order of 105−106. Suppose m 
P values, P1, . . . ,Pm, one for each hypothesis pair, are 
calculated, and a decision on whether to reject iH 0  is to 

be made. Let 0m be the number of true null hypotheses, 

and let 01 : mmm −= be the number of true alternative 
hypotheses. The outcome of testing these m hypotheses can 
be tabulated as in Table 1. [6] 

________________________________________________________________________________________________ 
 

True Hypotheses Rejected Not Rejected Total 
H0 V m0-V m0 
HA S m1-S m1 

Total R m-R m 
Table 1: Outcome tabulation of multiple hypotheses testing 
 
Here V is the number of null hypotheses erroneously 
rejected, S is the number of alternative hypotheses correctly 
captured, and R is the total number of rejections. 
Conceptually these quantities are random variables. Clearly 
only m is known and only R is observable. An important 
parameter is m0, or equivalently, the null proportion π0 := 
m0/m. This parameter will appear frequently in the 
subsequent sections, and its estimation will be discussed in 
Section 4. 
 
Multiple hypotheses tests and related error measurements 
can be well understood as an estimation problem, which is 
described below in the frequentist framework. First for two 
probability distributions P1 and P2 on R with respective 
cumulative distribution function (cdf) F1(·) and F2(·), P1 is 
said stochastically less than P2, written as P1<st P2, if F1(t) 
≥ F2(t) for all t∈R. Next define the parameter Θ = [θ1,…, 
θm] as  θi = 1 if HAi is true, and  θi = 0 if H0i is true (i = 1, . . 
. ,m). The data consist of the P values {P1,….,Pm}, and 
under the assumption that each test is exact and unbiased, 
the population is described by the following probability 
model: 

Pi ~Pi, θi 
Pi,0 is U(0,1), and Pi,1<st U(0,1);                    (1) 

each distribution Pi,l has a continuously differentiable cdf 
Fi(⋅),  i = 1, . . .,m. The P values are dependent in general 
and have a joint distribution on [0, 1]m. The marginal cdf of 

Pi can be written as Gi(t) = (1 − θi)t + θi Fi(t). Note Fi(t) ≥ t 
and Gi(t) ≥ t for t ∈ [0, 1]. 
 
A test procedure is an estimator of Θ : Θ̂ = Θ̂ (P1, . . . ,Pm) 

= [ 1̂θ , . . . , mθ̂ ] ∈ {0, 1}m, where iθ̂ = 1 indicates 
rejecting H0i in favor of HAi, i = 1, . . .,m. With this 
notation, the random variables in Table 1 can be expressed 
as   

( ) ∑
=

Θ −=Θ=
m

i
iiVV

1

ˆ)1(ˆ θθ  

( ) ∑
=

Θ =Θ=
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A natural and perhaps the simplest procedure is the “hard-
thresholding” (HT) estimator Θ̂ = Θ̂ (α) defined as  

HT(α) : iθ̂  = 1 iff Pi ≤ α ,           (3)                                            
Where α ∈ (0, 1) is a significance threshold common to all 
tests. Clearly for this procedure the distributions of the 
random variables V, S, and R all depend on α. 
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2.1 False discovery rate 
At least one family-wise type-I error is committed if V >0, 
and procedures for multiple hypothesis testing have 
traditionally been produced for solely controlling the 
family-wise type-I error probability Pr(V > 0). It is well-
known that such procedures are often lack of statistical 
power. In an effort to develop more powerful procedures, 
[6] approached the multiple testing problem from a 
different perspective and introduced the concept of false 
discovery rate (FDR), which is, loosely speaking, the 
expected value of the ratio V/R. Rigorously, the FDR is 
defined as [ ] ).0Pr(0| >>= RRRVEFDR  Note 
that if no alternative hypothesis is true, i.e., m0 = m, then V 
= R and E[V/R|R>0] = 1 with probability one; therefore 
FDR = Pr(V >0), the family-wise type-I error probability. 
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Benjamini and Hochberg (1995) aim at determining an α 
based on the P values so that the FDR of the HT(α) 
procedure (3) is controlled below a pre-specified level. [7] 
 
2.2 Positive FDR and q-value 
For more discovery-oriented applications the FDR level is 
often not specified a priori, but rather determined after one 
sees the data (P values), and it is often determined in a way 
allowing for some “discovery” (rejecting one or more null 
hypotheses). Hence the positive false discovery rate 
(pFDR; [7, 8], defined as pFDR := E[V/R|R>0], is a more 
appropriate error measurement. Storey (2002) develops 
estimators of FDR and pFDR and introduces the concept of 
q-value in a Bayesian framework. [7] Assuming that each 
θi is a Bernoulli random variable with Pr(θi = 1) = Pr(H0i) = 
1 − π0  (prior probability), all test statistics have the same 
null distribution, all test statistics have the same alternative 
distribution, and all tests are performed with identical 
rejection regions [7], the pFDR of the HT(α) procedure is 
pFDR(α) =π0α/Pr(P≤ α), where P is the random P value 
resulted from any test. Storey (2002) uses the phrase 
“identical tests” to describe the set of assumptions. [7] 
 
To understand the q-value, first consider the P value. 
Suppose there are m two-sample Student-t tests with a 
common degrees of freedom d and observed statistics t1, . . 
., tm. For a single test, say the ith test, the P value is 

( ),Pr idHi tTP
oi

≥= where Td is a random variable 

following the t distribution with d degrees freedom. If a 
threshold t *> 0 is applied to make the decision whether to 
reject the null hypothesis, i.e., reject the ith null if and only 
if |ti | ≥ t* or equivalently, |ti| is in the rejection region 
[t*,∞), then the P value at |ti| is Pi = inft*≥|ti|{PrH0i (|Td| ≥ 
t*)}, that is, the minimum probability over all the rejection 
regions less stringent than |ti| under the ith null hypothesis. 
Note the P value is defined for a single test. The q-value is 
defined for all m tests as a whole, using pFDR in lieu of the 

probability distribution under the null hypothesis. Storey 
(2002) gives a general definition of the q-value [7]; for the 
HT(α) procedure (3) the q-value at α is defined as q(α) := 
infγ≥α{pFDR(γ)}, and q(α) = infγ≥α{π0γ/Pr(P≤γ)} under the 
Bayesian model. So the q-value at α is the minimum pFDR 
over all the rejection regions less stringent than α. Thus the 
q-value is an error measurement related to the positive 
FDR, but it is neither the pFDR nor the FDR. The q-value 
can only be meaningfully interpreted in the Bayesian 
framework. [7] Storey (2003) shows that in the Bayesian 
framework the q-value q(α) can be interpreted as the 
posterior probability of the null hypothesis given  P ≤ α. [9] 
Estimation of the pFDR and q-value will be reviewed in 
Section 5.1. 
 
2.3 Erroneous rejection ratio 
As discussed by Benjamini and Hochberg (1995, 2000), the 
FDR criterion has many desirable properties not possessed 
by other intuitive alternative criteria for multiple tests. [6, 
10] However, methodological and theoretical developments 
and extensions of the FDR approach require to assume 
certain weak dependence conditions [9, 11, 12] or positive 
dependence structure [13] among the test statistics. These 
conditions may be too strong for genome-wide tests of gene 
expression–phenotype associations, in which a substantial 
proportion of the tests can be strongly dependent. [14] In 
such applications it may not be even reasonable to assume 
that the tests of the true null hypotheses are independent, an 
assumption often used in FDR research. Without these 
assumptions however, the FDR becomes difficult to handle 
analytically. Cheng (2006) defines an analytically simple 
error measurement in the same spirit of FDR [15], called 
the erroneous rejection ratio (ERR): With notation given in 
Equation (2), 

).0)(Pr(
)]ˆ([
)]ˆ([

:)ˆ( >Θ
Θ

Θ
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ERR      (5)               

 
Just like FDR, when all null hypotheses are true 

)0)(Pr( >Θ= RERR , which is the family-wise 

type-I error probability because now )ˆ()ˆ( Θ=ΘΘ RV  
with probability one. An advantage of ERR is that it can be 
handled under arbitrary dependent relationships among the 
tests; this will be elaborated later. Denote by V (α) and R(α) 
respectively the V and R random variables in Table 1 and 
by ERR(α) the ERR of the HT(α) procedure. Then 

).0)(Pr(
)]([
)]([)( >= α

α
αα R
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Let FDR(α) :=E [V (α) / R(α)|R(α) >0] Pr(R(α) > 0). 
ERR(α) is essentially FDR(α). Under the hierarchical (or 
random effect) model employed in several papers [7, 8, 9, 
12, 16], FDR(α) = ERR(α) for all α ∈ (0, 1], following from 
Lemma 2.1 of Genovese and Wasserman (2004). [12] More 
generally ERR/FDR = {E[V ]/ E[R]}/E[V/R|R> 0] provided 



Bioinformation by Biomedical Informatics Publishing Group                    open access 
www.bioinformation.net                 Current Trends 
________________________________________________________________________ 

ISSN 0973-2063 
Bioinformation 1(10): 436-446 (2007) 

Bioinformation, an open access forum 
                                                                                                                                       © 2007 Biomedical Informatics Publishing Group 

439

Pr(R > 0) > 0. Asymptotically as m → ∞, if Pr(R > 0) →1 
then E [V/R|R> 0] ≅ E [V/R]; if furthermore  
E[V/R] ≅ E[V ]/E[R], then ERR / FDR → 1. The last 
condition is approximately satisfied for the HT(α) 
procedure if α is close to zero [8], which is often true in 
microarray applications. 
 
Similar to pFDR is the positive ERR, pERR := E[V ] / E[R]. 
It is well-defined provided Pr(R > 0) > 0. The relationship 
between pERR and pFDR is the same as that between ERR 
and FDR described above.  
 
It is instructive to examine each component of ERR(α). Let 
P1:m be the smallest P value. First, under model (1) 
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Note the functions Fm(·) and Hm (·) both are cdf’s with 
Fm(0) = Hm(0) = 0 and Fm (1) = Hm (1) = 1. Fm(·) is the 
average of all P value individual (marginal) cdf’s. It 
describes the ensemble behavior of all P values, hence will 
be called the ensemble P value cdf. Hm(·) is the average of 
the P value marginal cdf’s corresponding to the true 
alternative hypotheses, and describes the ensemble 
behavior of the P values corresponding to the true 
alternative hypotheses; hence will be called the ensemble P 
value alternative cdf. Next, these functions are linked to the 
actual data (i.e., observed P values) by the Empirical 
Distribution Function (EDF) of the P values defined 
as ∑ ∈≤= =

− ttPImtF i
m
im ),(:)(~

1
1 R. Simple calculations 

show that under model (1)  
 

].1,0[),()1()()](~[ 00 ∈−+== ttHttFtFE mmm ππ      (7) 
 

This link provides opportunities to develop estimators of 
the FDR and data-driven significance criteria which will be 
reviewed in Sections 4, 5, and 6. 
 
The false positive error behavior of a given multiple test 
procedure can be investigated in terms of either FDR 
(pFDR) or ERR (pERR). The ratio pERR(α) = E[V (α)] / 
E[R(α)] can be handled easily under arbitrary dependence 
among the tests because E[V ] and E[R] are simply means 
of sums of indicator random variables. Cheng (2006) [15] 
develops a data-driven significance threshold criterion to 
determine an α for the hard-thresholding HT(α) procedure 
(3) so that its ERR and pERR are guaranteed to diminish 
asymptotically as the number of tests m goes to infinity, for 
arbitrarily dependent tests; see Section 6. 
 
2.4 Other error measurements 
The expected number of type-II errors (false negatives) is 
E[m1 − S]. For the HT(α) procedure, under model (1) E[m1 

− S] = m1 −∑ =
m
i 1 I (θi = 1)Gi(α) = m1 − m1Hm(α). The 

false negative proportion is m−1E[m1 − S] = (1 − π0) (1 − 
Hm(α)). This quantity will be further considered in Section 
6.2. 
 
Symmetric to FDR, the false non-discovery rate (FNR) can 
be defined as FNR = E[(m1 − S) / (m − R) | R < m]. [11] 
 
Lehmann and Ramano (2005) introduced the generalized 
family-wise error rate (gFWER) which is Pr(V >k) for a 
specified k.  [17] The traditional FWER corresponds to k = 
0. In a series of papers van der Laan and colleagues 
develop resampling and augmentation procedures of 
controlling gFWER and the probability Pr(V/R > k) for a 
specified k. 
                                                                     
3 FDR control: 
3.1 The linear step-up procedure 
Let P1:m ≤ P2:m ≤ ··· ≤ Pm:m be the order statistics of the P 
values, and let π0 = m0/m. Assuming that the P values 
corresponding to the true null hypotheses are independent, 
Benjamini and Hochberg (1995) prove that for any 
specified q*∈ (0, 1), rejecting all the null hypotheses 
corresponding to P1:m, . . . ,Pk*:m with k* = max{k : Pk:m / 
(k/m) ≤ q*} controls the FDR at the level  π0q*, i.e., 

**
0:* ))(ˆ( qqPFDR mk ≤≤ΘΘ π in the notation given 

in Section 2. [6] Note this procedure is equivalent to 
applying the data-driven threshold α = Pk*:m to all P values 
in (3), i.e., HT(Pk*:m). 
 
3.2 Adaptive FDR control 
Recognizing the potential of constructing less conservative 
FDR control by the above procedure, Benjamini and 
Hochberg (2000) propose an estimator of m0, 0m̂ , (hence 

an estimator of π0, mm /ˆˆ 00 =π ), and replace k / m by k / 

0m̂  in determining k*. [10] They call this procedure 
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adaptive FDR control. The estimator 0π̂ = 0m̂  / m will be 
discussed in Section 4. A recent development of adaptive 
FDR control can be found in Benjamini et al. (2006).  [18] 
 
3.3 Another adaptive FDR control 
Storey (2002) [7] considers the FDR estimator  (α) := 

( )
( ) mR /}1,max{

ˆ0

α
αλπ

for a P value cut-off α, where 0π̂ (λ) is 

an estimator of π0 (See Section 4.1) and R(α) is the number 
of P values less than or equal to α. FDR control can be 
performed by “inverting” this estimator: for a given FDR 
level q*, find the largest possible α̂  such that  (α̂ ) ≤ 

q*, and reject all the null hypotheses with P ≤α̂ . This 
operation can be represented in a “q-value style”. Let qi := 
infj≥i{ (Pj:m)}, i = 1, . . .,m; then reject all the null 
hypotheses for which qi  ≤ q*. Storey et al. (2004) [8] show 
that using a slightly modified version of  (·) this 
procedure guarantees to control the FDR under q* if the P 
values corresponding to the true null hypotheses are 
independent. 
 
3.4 Dependent Tests 
Storey et al. (2004) [8] show that if the P values are weakly 
dependent in the sense of being dependent in general but 
satisfying certain ergodicity conditions as m →∞, then the 
procedure is conservative in the limit in the sense that  
limm →∞ α̂ < limm →∞ α*  where α* is the largest possible α 
such that the actual FDR(α) ≤ q*. 
 
Yekutieli and Benjamini (1999) [19] develop a resampling-
based approach to FDR control for correlated tests. Qiu et 
al. (2005) [20] also describe the use of resampling to assess 
the stability of gene selection in microarray analysis. 
Benjamini and Yekutieli (2001) [13] show that the 
Benjamini and Hochberg (1995) [6] procedure controls the 
FDR if the test statistics satisfy the “positive regression 
dependence” condition. They also introduce a very 
conservative, but universal procedure that guarantees the 
FDR control for arbitrary P values (dependent or 
independent, discrete or continuous): control the FDR at 
the level ( ) *

1

1
** )/1( qiq m

i

−

=∑=  with the Benjamini and 

Hochberg (1995) [6] procedure guarantees to control the 
FDR at level q* regardless dependence and/or discreteness 
of the P values. 
 
In a series of papers, van der Laan and colleagues [21, 22] 
and Dutdoit and colleagues [23] developed procedures to 
control the gFWER for arbitrarily dependent tests. 
 
4 Estimation of the null proportion: 
Recall from Equation (8) that the EDF of the P values 

mF~ (t) has expected value E[ mF~ (t)]=Fm(t) for every t; that 

is, mF~ (·) is an unbiased estimator of the P value ensemble 

cdf Fm(·). Cheng et al. (2004) [24] observe that if the tests 

iθ̂ (i = 1, . . .,m) are not too much correlated asymptotically 

in the sense ∑ =
=

ji ji moCov )()ˆ,ˆ( 2θθ  as m →∞, 

mF~ (·) is “asymptotically consistent” for Fm(·) in the sense 

0)()(~
pmm tFtF →− for every t ∈ IR. These results 

provide heuristics for the estimation of π0, the estimation of 
FDR, and data-adaptive determination of α for the HT(α) 
procedure. Estimation of π0 is reviewed in this section. 
 
As noted in the previous sections, the proportion of the true 
null hypotheses π0 is an important parameter in FDR-
related procedures. Consider first the P value ensemble cdf 
Fm(·). Because for any t ∈ (0, 1) π0 = [Hm(t) −Fm(t)] / 
[Hm(t)−t], a plausible estimator of π0 is 

0

0
0

)(~
ˆ

t
tFm

−Λ
−Λ

=π
for 

properly chosen Λ and t0. The inverse function of Fm(·), 
defined as },)(:inf{:)(:)( 1 utFtuFuQ mmm ≥== − is the P value 
ensemble quantile function. The sample version is the 
empirical quantile function (EQF) defined as 

})(~:inf{:)(~:)( 1 uxFxuFuQ mmm ≥== − . Then  

π0 = [Hm(Qm(u))−u] / [Hm(Qm(u))−Qm(u)], for u ∈ (0, 1), 
and with Λ1 and u0 properly chosen, 

)(
ˆ

01

01
0 uQ

u

m−Λ
−Λ

=π  is a plausible estimator. Many of 

the estimators take either of the above two basic 
representation with some modifications. 
 
Clearly it is necessary to have Λ1 ≥ u0 in order to have a 
meaningful estimator. Because Qm(u0) ≤ u0 by the 
stochastic order assumption [cf. (1)], choosing Λ1 too close 
to u0 will produce an estimator much biased downward. A 
heuristic is that if u0 is so chosen that all P values 
corresponding to the alternative hypotheses concentrate in 
the interval [0, Qm(u0)] then Hm(Qm(u0)) = 1; thus setting 
Λ1 = 1. A similar heuristic leads to setting Λ= 1. 
 
4.1 Slope estimator 
Taking a graphical approach Schweder and Spjøtvoll 

(1982) [25] consider the slope from the point (λ, mF~  (λ)) 

to the point (1,1), and an estimator of m0 as 0m̂  = m(1 − 

mF~  (λ)) / (1 −λ) for a properly chosen λ; hence a 

corresponding estimator of π0 is 0π̂ (λ) = 0m̂ / m = (1 − 

mF~  (λ)) / (1 − λ). Storey’s (2002) [7] estimator is exactly 

this one. Additionally, Storey (2002) [7] observes that λ is 
a tuning parameter that dictates the bias and variance of the 
estimator, and proposes computing 0π̂ on a grid of λ 
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values, smoothing them by a spline function, and taking the 
smoothed 0π̂  at a λ close to 1, (e.g. 0.95) as the final 
estimator. Storey et al. (2003) [8] propose a bootstrap 
procedure to estimate the mean-squared error (MSE) and 
pick the λ that gives the minimal estimated MSE; a 
simulation study in Cheng (2006) [15] and investigation in 
Langaas et al. (2005) [26] show that this estimator tends to 
be biased downward. 
 
4.2 Quantile slope estimator  
Approaching to the problem from the quantile perspective 
Benjamini and Hochberg (2000) [10] propose 

}),1/()1(11min{ˆ :0 mPjmmm mj−−+++=  

for a properly chosen j; hence 0π̂ = 0m̂ /m. The index j is 
determined by examining the slopes Si=(1-Pi:m)/(m+1-i),  i 
= 1, . . .,m, and is taken to be the smallest index such that  
Sj < Sj-1. Then 0m̂  = min {1+1 / Sj , m}. Cheng (2006) [15] 
shows that as m gets large the event {Sj < Sj-1} tends to 
occur early (i.e., at small j) with high probability; therefore 
the estimator tends to be increasingly conservative (i.e., 
biased upward) as the number of tests m increases. The 
conservativeness is also demonstrated by the simulation 
study in Cheng (2006). [15] 
 
4.3 Quantile slope estimator by quantile modeling 
Cheng (2006) [15] develops an improvement of Benjamini 
and Hochberg’s’ (2000) [10] estimator by considering a 
shape requirement on the P value ensemble quantile 
function Qm(·). Heuristically, the stochastic order 
requirement in model (1) implies that Fm(·) is 
approximately concave and hence Qm(·) is approximately 
convex. When there is a substantial proportion of true null 
and true alternative hypotheses, there is a “bend point” τm 
∈ (0, 1) such that Qm(·) assumes roughly a nonlinear shape 
on the interval [0, τm], primarily dictated by the 
distributions of the P values corresponding to the true 
alternative hypotheses, and Qm(·) is essentially linear on the 
interval [τm ,1], primarily dictated by the U(0, 1) 
distribution of the null P values. The estimation of π0 can 
benefit from properly capturing this shape characteristic 
using a model. Cheng (2006) [15] considers a two-piece 
function approximation (model) for Qm(·). In an interval [0, 
τm] Qm(u) is approximated by a polynomial of the form ηuγ 
+ δu with  γ ≥ 1, η ≥1, and 0 ≤ δ ≤ 1; on the interval [τm ,1] 
it is approximated by a linear function β0+ β1u with β0 ≤ 0 
and β1 ≥ 1. The two pieces are joint smoothly at τm by the 

constraints mmm τββδτητ γ
10 +=+  (continuity) and 

1
1 βδηγτ γ =+−

m  (differentiability). For identifiability 
it is further required that γ = η = 1 and δ = 0 if and only if 
τm = 0. These parameters are determined by minimizing the 
integrated absolute difference (L1 distance) between Qm(u) 
and 

),)(1())(0(:)( 10
* uuIuuuIuQ mmm ββτδητ γ +≤≤++≤≤=  

subject to the above constraints. Cheng (2006) develops a 
procedure to estimate these parameters from the P value 
EQF ( )⋅mQ~ . The estimator of π0 is the reciprocal of the 
estimator of β1: .ˆ/1:ˆ 10 βπ =  
 
A simulation study by Cheng (2006) [15] indicate that in a 
reasonably wide range of scenarios this estimator is slightly 
biased upward (i.e., conservative); the upward bias is 
usually less than the downward bias of the bootstrap 
estimator of Storey et al. (2003), [8] and is much less than 
the upward bias of Benjamini and Hochberg (2000) [10] 
estimator. In this regard this quantile slope estimator 
outperforms the other two estimators, as well as in terms of 
the mean square error. 
 
4.4 Monotone convex and smooth density estimators 
Note that under model (1) the probability density function 
(pdf) of Fm(·), the P value ensemble pdf, is 

],1,0[),()1()(:)( 00 ∈−+== tthtF
dt
dtf mmm ππ  

where ),(:)( tH
dt
dth mm = the P value ensemble 

alternative pdf. Note π0 ≈ fm (1) if hm (1) ≈ 0; this is 
achievable under the heuristic that essentially all the P 
values corresponding to the true alternative hypotheses 
concentrate in an interval away from 1. Langaas et al. 
(2005) [26] consider estimating π0 by requiring Fm(·) be 
strictly concave and thus fm(·) be monotone and convex. 
They propose to estimate fm(·) by the nonparametric 

maximum likelihood estimator *ˆ
mf (·) under the constraint 

of monotonicity and convexity, and to estimate π0 by 

)1(ˆ:ˆ *
0 mf=π . The simulation study therein indicates this 

estimator performs very well in a range of scenarios. 
 
Cheng et al. (2004) [24] consider a spline function 
estimator ( )⋅mF̂ of ( )⋅mF . ( )⋅mF̂  is a B-spline function 

constructed by smoothing the P value EDF ( )⋅mF~ . The 
spline knots are placed in a way that gives little smoothing 
in the vicinity of 0 but a large amount of smoothing in the 
right tail. An estimator of fm(·) is the derivative 
function ]1,0[),(ˆ:)1(ˆ ∈= ttF

dt
df mm

. Then an estimator of 

π0 is given by ( )1ˆ:ˆ0 mf=π . The simulation study in 
Cheng et al. (2004) [24] indicate that this estimator is 
slightly upward biased (conservative) in a range of 
scenarios as long as the true π0 is not too close to 1. 
 
4.5 Mixture model estimators 
Allison et al. (2002) [27] and Pounds and Morris (2003) 
[28] describe methods that estimate the FDR via P value 
modeling. These methods also estimate π0. Allison et al. 
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(2002) [27] describe a method that models the P values as 
arising from a mixture distribution with one U(0, 1) 
component and potentially several beta components. The 
model is fit by maximum likelihood estimation and the 
bootstrap is used to determine the number of beta 
components that are used in the model. Allison et al. (2002) 
[27] note that it is often unnecessary in practice to include 
more than one beta component in the model. Pounds and 
Morris (2003) [28] give a detailed description of the use of 
a specific model with one beta component. Assuming null 
p-values follow a U(0,1) distribution, Pounds and Morris 
(2003) [28] show that π0  must be less than or equal to the 
minimum of the ensemble P value pdf. Thus, they propose 
to estimate π0 by the minimum of the pdf of the mixture 
model fit to the p-values. Allison et al. (2002) [27] estimate 
π0 by the mixing weight for the uniform component of the 
fitted model. It is theoretically possible that the mixing 
weight of the uniform component could be substantially 
smaller than the minimum of the fitted pdf. In this case, the 
mixing weight estimator understates the proportion of the 
fitted density that could be attributed to a uniform (0,1) 
distribution. 
 
4.6 Moment estimator 
Pounds and Cheng (2006) [29] describe a simple moment-

based estimator of π0. Let ∑ =
−=

m

i iPmP
1

1 . Assuming 

that E[Pi] ≥ 1/2 if θi = 0 (i.e., H0i is true), it follows that  

E [ ]P ≥2π0. This observation motivates 0π̂ = min (1, 2 P ) 

as an estimator of π0. This estimator has several advantages 
over those described above. It is very simple to compute, 
and it does not rely on continuity or model assumptions for 
the P values. However, it is considerably more conservative 
than the other estimators when the assumptions of those 
estimators hold. 
 
5 FDR estimation: 
As mentioned in Section 2.2, for discovery-oriented 
applications the FDR level often is not specified a priori, 
but rather determined a posteriori, and it is often 
determined in a way allowing for some “discovery” 
(rejecting one or more null hypotheses). Hence an 
alternative to FDR control is estimation of FDR and pFDR. 
 
5.1 EDF-based estimators 
Recall for Section 3.3 that Storey (2002) [7] considers 
estimating the FDR for a fixed P value cut-off α by  

(α):=
( )
( ) mR /}1,max{

ˆ0

α
αλπ

, where 0π̂ (λ) is an estimator 

of  π0 (See Section 4.1) and R(α) is the number of P values 
less than or equal to α. In term of the P value EDF,  

 (α) := 
( )
( ) }/1,~max{

ˆ0

mFm α
αλπ

. Storey et al. (2003) [8] 

show that this estimator is biased upward and 
asymptotically conservative in the sense that with 

probability 1 limm→∞ inft≥α { (t) −FDR(t)} ≥ 0 for each α 
> 0. Storey (2002) considers an estimator of the pFDR 
given by  

p  (α) := 
( )

( ) ])1(1][/}1,max{

ˆ0
mmR αα

αλπ

−−
 . [7] In term 

of the P value EDF,  

p (α)=
( )

( ) ])1(1}[/1,~max{

ˆ0
m

m mF αα
αλπ

−−
.  

Hence limα→0 p  (α) = limα→1 p  (α) = 0π̂ (λ) for any 
fixed m > 1, and in general p (α) is not monotone in α. 
Storey (2002) [7] establishes mean-squared error properties 
of this estimator and its asymptotic conservativeness that 
with probability 1, limm→∞ p  (α) ≥ pFDR(α). It not 
difficult to see that with the multiplier 1− (1− α)m in its 
denominator this estimator may tend to have large variance 
(thus be unstable) for small α. 
 
The “empirical” q-values are defined as iq̂  := q̂ (Pi:m) := 
minj≥i{p  (Pj:m)}, i = 1, . . . ,m. [7] Clearly 

mqq ˆˆ1 ≤⋅⋅⋅≤ . Storey et al. (2003) [8] consider the more 

general q-value estimator q̂ (α) := infs≥α{p (s)} for q(α) 
defined in Section 2.2, and show its conservativeness that 

( ) ( ) 0}ˆ{inflim ≥−≥∞→ tqtqtm α
 with probability 1 for each 

α > 0 under a specific Bayesian model (see section 2.2) and 
certain ergodicity conditions. 
 
5.2 Smooth ensemble cdf and pdf estimator 
Cheng et al. (2004) [24] consider an estimator of the FDR 

of the HT(α) procedure (3) by 
)(ˆ

ˆ
)( 0

α
απ

α
mF

= , 

where 0π̂  and mF̂ (·) are respectively the estimators of π0  
and the P value ensemble cdf Fm(·), derived from a spline 

smoothing of the P value EDF mF~ (·); see Section 4.4. 
Cheng et al. (2004) [24] consider using this estimator to 
provide an FDR estimate at a P value cut-off threshold 
α̂ generated by a data-driven significance criterion (see 
Section 6). Simulation results therein indicate that the 
estimator is able to provide a reasonably conservative 
(upward biased) FDR estimate at the data-driven 
significance threshold in a wide range of scenarios. 
 
Pounds and Cheng (2004) [30] propose an estimator of the 
P value ensemble pdf fm(·) by properly transforming and 
smoothing a histogram constructed from the spacings 

defined by the ordered P values. An estimator mf̂ (·) is 
constructed by back-transforming and normalizing the 
smooth function, an estimator of  π0  by  
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0π̂  := min{ mf̂ (Pi), i =1, . . . ,m}, an estimator mF̂ (·) of 

Fm(·) by the trapezoid rule of integration applied to mf̂ (·), 
and an FDR estimator by plugging the estimators into the 
above formula. Simulation results therein indicate that this 
estimator performs well in estimating the cFDR (or pFDR). 
For estimating pFDR it is much more stable (i.e., having 
less variance) than Storey’s (2002) [7] estimator at the α 
values close to zero, which are often used in microarray 
applications. 
 
5.3 Mixture model estimator 
For the mixture models discussed in section 4.5, the FDR 
estimate is determined by substituting the fitted model’s  π0  
estimate and cdf into  π0α / Fm(α). For the specific model of 
Pounds and Morris (2003), [28] the FDR estimate 
monotonically increases as α increases. 
 
5.4 Robust estimator 
As previously described, most of the available FDR 
estimation methods assume that Gi(t) = t when θi = 0 (i.e., 
H0i is true). Pounds and Cheng (2006) [29] noted that this 
critical assumption is violated by discrete P values and P 
values from testing one-sided hypotheses. In particular, any 

test iθ̂  that is one-sided or based on a discrete test statistic 

may have Gi(t) < t for some t when θi = 0. This violation 
can have severe and undesirable consequences for methods 
that estimate π0 as part of their calculations. Pounds and 
Cheng (2005, 2006) [31, 29] describe these consequences 
in greater detail. Thus, Pounds and Cheng (2006) [29] 
develop a robust FDR estimator. The robust FDR estimator 
is conservative provided that ( ) 12/1Pr ≈≤P  and Gi(t) 
≤ t for θi = 0, even when applied to one-sided tests or 
discrete P values. The method borrows ideas from least 
trimmed squares [32] and rank regression [33] to smooth 
raw FDR estimates obtained from the P value EDF. For 
one-sided tests, a folding transformation is used to make p-
values essentially two-sided for purposes of estimating π0  
and then other calculations are performed on the original 
one-sided p-values. 
 
5.5 Estimation of local FDR or empirical Bayes 
posterior 

With estimators 0π̂ and mf̂ (·), an estimator of the 
empirical Bayes posterior probability (EBP or local FDR) 
[16, 34] of the null hypothesis H0i conditional on Pi = pi  is 

given by 0π̂ / mf̂  (pi). Efron (2004) [34] advocates to 
estimate the null ensemble density function of the test 
statistics from the empirical distribution and cautions 
against the use of random permutations. In the P value 
domain, this means to estimate the P value ensemble 

distribution under the “grand null” i
m
i HH 01

*
0 =∩= in 

lieu of assuming the U(0, 1) distribution as in model (1). In 

a similar spirit, Datta and Datta (2005) [35] proposed an 
empirical Bayes method that first transforms p-values using 
the quantile-function of the standard normal distribution 
and then apply kernel density estimation methods to the 
transformed P values to obtain an EBP. 
 
6 Data driven significance criteria: 
6.1 Profile information criteria 
Abramovich et al. (2000) [36] consider theoretically 
thresholding estimators of a sequence of Normal 
distribution means, where the threshold is determined by a 
lack of fit criterion (lp distance) penalized by FDR. They 
show that the estimators are asymptotically minimax. 
Regarding massive multiple tests as the estimation problem 
described in Section 2, Cheng et al. (2004) [24] develop 
criteria to determine the significance threshold α for the 
HT(α) procedure (3). The profile information (Ip) criterion 
consists of a lack-of-fit term of the P value ensemble 
quantile function from U(0, 1) penalized by the expected 
number of false discoveries under model (1). Empirically, 
the lack-of-fit term is defined 

by ],1,0(,)](~[)(~
2/1

0

2 ∈
⎭
⎬
⎫

⎩
⎨
⎧

−= ∫ + αα
α

dttQtmD m  

where )(~
⋅mQ is the P value EQF (cf. Section 4) and [x]+ 

denotes the positive part of x, i.e., [x]+ = max{x, 0}. So 

)(~ αD  measures how far are the P value sample quantiles 
below the diagonal line on the interval (0, α]. Empirically 
the profile information criterion Ip is given by 
 

)(~ αpI = 1)](~[ −αD + λ(m, 0π̂ )m 0π̂ α,      α ∈ (0, 1)                                

 
Here m 0π̂ α is an estimate of the expected number of false 

positives, λ(m, 0π̂ ) is a penalty factor, and 1)](~[ −αD  
measures the deviation of the P values from the U(0, 1) 
distribution. The more concentrated are the P values 

towardzero, the larger is )](~[ αD  and thus the smaller 

is 1)](~[ −αD ; therefore one minimizes )(~ αpI  with 

respect to α. So the data-driven “optimal” significance 

threshold is the *α̂ that minimizes )(~ αpI ; and the 

HT( *α̂ ) procedure rejects Hi0 if Pi ≤ *α̂ . Cheng (2006) 
[15] extends Ip by introducing the adaptive profile 
information (API) criterion based on the quantile model 

))(1())(0()( 10
*

umm uIunuuIuQ ββτδτ γ +≤≤++≤≤=
 (cf. Section 4.3). API is defined as 
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*

0

απδπλα
γ

γ
α

mmdttQtAPI m +⎥
⎦

⎤
⎢
⎣

⎡
−=

−

∫
                               α ∈ (0, 1) 
Here the major modification is on the lack-of-fit term: the 
L2 norm is replace by the Lγ norm. Recall that γ≥1 is a 
parameter reflecting how far the P value quantiles are 
below the U(0, 1) quantiles in the vicinity of zero. The 

γL norm emphasis this deviation and makes the criterion 
more adaptive to the P value behavior around zero. Cheng 
(2006) [15] considers an approximation of the lack-of-fit 
term that simplifies both theoretical development and 
computation in practice, and proposes a procedure to 
estimate the parameters in API. The data-driven optimal 
significance threshold *α̂ is the α that minimizes an 
approximate API with estimated parameters in ( )⋅*

mQ . 
 
A key issue is the choice of the penalty factor λ. Cheng et 
al. (2004) [24] and Cheng (2006) [15] consider a few 
conservative choices and show for π0 < 1 the pERR of the 

)ˆ( *αHT  procedure (3) diminishes to zero as m →∞ 
regardless the dependence among the P values; and for π0 ≤ 
1 the ERR diminishes to zero as m→∞ if the P values 
posses certain dependence structure. The simulation studies 
therein indicate that these choices perform well when there 
is substantial power to reject the false null hypothesis in a 
number of individual tests, and they tend to be conservative 
when the power is low. Moreover, in a range of scenarios 
API moderately outperforms Ip. 
 
6.2 Total error proportion 
Pounds and Morris (2003) [28] observe that given a 
threshold α, the area under the P value density function can 
be partitioned into four distinct regions corresponding to 
the four hypothesis testing outcomes resulted from the 
HT(α) procedure (3). More specifically, the area to the left 
of α corresponds to rejections and the area below π0 can be 
attributed to the U(0, 1) distribution. Thus, assuming that 
the null distribution of the P values is U(0, 1), the area left 
of α and below π0 corresponds to Type I errors, the area left 
of α and above π0 corresponds to correct rejections, the area 
above π0 and right of α corresponds to Type II errors, and 
the area below π0 and right of α corresponds to correct non-
rejections. In particular, under model (1) the expected 
proportion of tests resulting in a Type I error is given by 
FP(α) = π0α. Additionally, the expected proportion of tests 
resulting in a Type II error is given by FN(α) = (1 − π0) (1 
− Hm(α)). The total error proportion is the sum TE(α) = 
FP(α) +FN(α), which is the expected proportion of tests 
resulting in a Type I or Type II error. Cheng et al. (2004) 
[24] use the term “total error criterion” and Genovese and 
Wasserman (2002) [11] use the term “total 
misclassification risk” to describe the total error proportion. 
 
In practice, an estimate of the total error proportion can be 
used as a criterion to guide the selection of α. An estimate 

of TE(α) can be obtained by substituting estimates for the 
terms in FP and FN. Then, the value of α that minimizes 
this TE estimate can be easily determined. The TE 
estimators can be nonparametric [24] or parametric with the 
mixture models. [27, 28] Let TEα̂  be the α so obtained. 
 
Using TEα̂  to declare significance has some useful 
operating characteristics. First, if the estimate of 

Fm(·), ttFm =)(ˆ for all t (indicating an all null case), 

then TEα̂  = 0 (no rejections are made). Additionally, TEα̂  
corresponds to a 50% empirical Bayes probability that the 
null hypothesis is true. [28] 
 
7 Sample size determination for FDR control: 
Several methods have been proposed to perform power and 
sample size calculations for a microarray study that will use 
FDR-type measures of significance in the final analysis. 
[37, 38] However, most of hese methods are designed only 
for two-group designs, such as studies that compare tumor 
expression to normal expression. Pounds and Cheng (2005) 
[39] describe a general method to perform power and 
sample-size calculations for tudies that will use the FDR to 
determine significance in the final analysis. For i = 1, . . 
.,m, their method assumes hat cumulative distribution 
function of Pi, Gi(·; δi, n) can be computed given the 
sample size n and an effect size i. Their method uses the 
average power (AP) as a measure of statistical power. The 
average power is defined as the arithmetic average of the 
powers of the tests with a true alternative. Under model (1), 
the average power is simply AP(α) :=Hm(α; Δ, n). 
 
The sample size determination procedure uses the 
anticipated false discovery rate (aFDR), 

),;(/),;ˆ(ˆ:),,( 0 nFnEnaFDR m ΔΔ=Δ ααπα to 
perform its calculations. The ensemble P value cdf Fm(·; Δ,  
n) is either postulated or estimated from preliminary data. 
The method is designed to determine the sample size 
necessary to achieve an average power of γ while keeping 
the aFDR below τ. The values of γ and τ must be chosen by 
the user. The method proceeds iteratively. With an initial 
sample size n0 and a specified value or estimate for Δ, the 
procedure first finds α* such than AP(α*) = γ. Then, it 
computes aFDR(α*). If aFDR(α*) ≤ τ , then the procedure 
reports that n0 is an adequate sample size to achieve 
average power γ while keeping the aFDR below τ . 
Otherwise, it increments n and repeats the calculations. The 
process is iterated until a maximum sample size is reached 
or the conditions for the aFDR and AP are satisfied. Pounds 
and Cheng (2005) [39] also describe a method to estimate 
necessary parameters from pilot data. They observed that 
the parameter-estimation and sample-size calculation 
method performed well in traditional simulation studies and 
in resampling-based simulation studies performed using 
real data. 
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8 Conclusion: 
We have reviewed a few massive multiple hypothesis test 
paradigms related to FDR. This is by no means an 
exhaustive survey; other variations on the theme can be 
easily found in the literature, but the essence of the current 
state of the field has been well reflected. 
 
For applications, it is not advisable to totally ignore the 
mathematical development of a concept. For example, an 
empirical q-value is often misinterpreted as an (frequentist) 
estimate of the FDR at the corresponding P value; whereas 
in fact it is not. A q-value is meaningful only under a 
specific Bayesian framework regarding the hypotheses 
random, then it is the probability of the corresponding null 
hypothesis given the data (observed P values); and the 
empirical q-value is an estimate of this probability. In their 
theoretical development, Storey (2002) [7] and Storey et al. 
(2003) [8] did not demonstrate that the empirical q-values 
can be used as (frequentist) FDR control quantities, but did 
demonstrate that the empirical q-values are conservative 
estimators of the population q-values (cf. Sections 2.2 and 
5.1). Additionally, there has been empirical evidence that 
regarding the empirical q-values as FDR estimates gives 
downward-biased estimators; see the simulation study in 
Pounds and Cheng (2004). [30] 
 
There are numerous methods for FDR control and FDR 
estimation. Thus, selecting a reasonable procedure for a 
specific application can be challenging. Pounds (2006) [5] 
notes that the choice can be simplified by a few basic 
application-specific considerations: whether FDR 
estimation or control is preferred, whether the p-values are 
onesided or discrete, and the correlation among p-values. In 
studies designed with adequate power for a pre-specified 
FDR coltrol level (Section 7), FDR-control procedures 
(Section 3) should be used because in these settings they 
typically offer greater power than do FDR-estimation 
methods. For undesigned (retrospective or observational) 
studies however, it is not always clear what an appropriate 
FDR control level should be. FDR-estimation methods 
(Sections 5 and 4) are preferred because interpreting the 
results of FDR-control procedures as FDR estimates can 
under-represent the actual prevalence of false positives. 
The data-driven significance threshold criteria (Section 6) 
can provide a rough guideline for the P value cut-off or 
FDR level to consider, and obtaining estimates of the FDR 
and pFDR at the data-driven significance threshold should 
be a part of the analysis. The sidedness, discreteness, and 
correlation of P values are important considerations to 
guide the selection of a method. Several methods have been 
shown to maintain their desirable statistical properties 
under mild or limited dependence among tests. Other 
methods have been developed to address strong or 
extensive dependence between the tests. Some methods 
implicitly assume that P values are continuously distributed 
in estimating π0; these methods perform very poorly when 
applied to discrete P values. [29] Additionally, Pounds and 
Cheng (2006) observed that one-sided P values may be 
stochastically greater than uniform under the null 

hypothesis, thus violating the assumption that P values are 
uniformly distributed under the null. [29] This violation can 
cause such methods to perform in unpredictable and 
undesirable ways. Thus, Pounds and Cheng (2006) [29] 
developed an FDR-estimation method specifically for 
applications involving P values that are discrete or one-
sided. 
 
Certainly, there are still a number of open questions in the 
field. An important question is whether the correlation 
structure of microarray data satisfies the conditions 
required for the procedures to maintain their stated 
statistical properties. In our view, the answer to this 
question is likely to be specific to the particular application 
and methods under consideration. Yakovlev and colleagues 
[20, 40] have used resampling and permutation techniques 
to study the performance of several FDR procedures for the 
analysis of a data set of gene expression in pediatric acute 
lymphoblastic leukemia. [41] They found that gene-gene 
correlations may induce a high degree of variability in the 
number of rejections of many FDR procedures. However, 
by applying similar techniques to a data set of expression 
pediatric acute myeloid leukemia [42], we observed that 
our robust FDR estimation method performs quite well. 
[29] Subsequently, we believe it would be useful to develop 
tests that determine whether a data set provides significant 
evidence of departure from the assumptions of specific 
methods. Such tests could be helpful for determining when 
computationally-intensive resampling methods ([19, 20]) 
are required. 
 
Most research has focused on controlling or estimating the 
expected value of the ratio V/R or similar quantities. Future 
work should also attempt to estimate or control the variance 
of V/R; Owen (2005) [43] has done some initial work on 
this topic. As previously mentioned, some empirical studies 
of real microarray data sets have found that the variance in 
the number of rejections determined by multiple-testing 
procedures can be quite large. [20] This observation 
indicates that the interpretation of analysis results should be 
tempered by consideration of the variability of the FDR 
estimation or control procedures. Thus, it would be useful 
to develop procedures that also consider the variance of 
V/R. Additionally, incorporating variance considerations 
into the procedures may lead to interval estimates for the 
FDR. Storey (2002) [7] has mentioned that bootstrapping 
the P values is potentially one way to construct such an 
interval estimate. 
 
It is also important to compare procedures performances 
against one another. So far, little effort has been invested in 
learning which methods are best suited for settings. 
Considering the biological and technical complexity of 
microarray data, it is unlikely that the assumptions of any 
method will strictly hold for any application. Certainly, no 
method will be superior across all applications. Thus, it is 
important to identify which procedures are best suited for 
use in certain sets of conditions. This research would likely 
involve a lengthy series of traditional simulation studies 
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and simulation-like studies performed by resampling, 
perturbing, or permuting numerous real data sets. 
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