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ABSTRACT Theaxialdeformation of a pipette-pressurized fluidmembranebag produces minuscule yet well-defined, reproducible
forces. The stiffness of this ultrasensitive force transducer is tunable and largely independent of the constitutive membrane behavior.
Based on a rigorous variational treatment, we present both numerical as well as approximate analytical solutions for the force-
deflection relation of this unique biophysical force probe. Our numerical results predict a measurably nonlinear force-deflection
behavior at moderate-to-large deformations, which we confirm experimentally using red blood cells. Furthermore, considering nearly
spherical membrane shapes and enforcing proper boundary conditions, we derive an analytical solution valid at small deformations.
In this linear regime the pressurized membrane bag behaves like a Hookean spring, with a spring constant that is significantly larger
than previously published for the biomembrane force probe.

INTRODUCTION

Mechanical measurements based on ‘‘cellular forces’’—that

is, forces produced by axial deflection of a pipette-aspirated

red blood cell—have been proposed as early as 1980 (1).

This original idea led eventually to the development of the

biomembrane force probe ((BFP) (2,3)). Since then, the BFP

has been instrumental in the study of a variety of topical bio-

physical questions. Prominent examples include the single-

molecule characterization of the dynamic strength of the

biotin:streptavidin interaction (4), adhesion bonds formed

by L-selectin (5), the P-selectin:PSGL-1 catch bond (6), and

the homophilic binding strength of E-cadherin (7). Closely

focusing on the functional context of biomolecular interac-

tions, the BFP has been at the heart of our multiscale single-

molecule/single-cell study of the mechanoregulation of

PSGL-1-mediated neutrophil adhesion ((8–10); reviewed in

Heinrich et al. (11)). In addition to characterizing bond disso-

ciation under tensile forces, we also demonstrated the use of

the BFP as a capable nanometer and piconewton indenter

(12). Recently, the axial deformability of aspirated red blood

cells allowed Pierrat and co-workers to inspect the static and

dynamic interactions between cells and adhesive surfaces

directly, i.e., without the intervening microsphere that is the

probe tip of the BFP (13).

Despite the extensive use and remarkable success of the

BFP, only few studies of the force-deflection relation of pipette-

pressurized fluid membrane bags have been published. Most

noteworthy is the thorough analysis by Simson and co-

workers (3) that revealed a fairly small range of linear be-

havior of the BFP. That work was limited, however, to the

case of tensile force application with the BFP, and its deri-

vations were dauntingly complex. A rigorous and compre-

hensive analysis, especially one that is readily accessible to

researchers working at the interface of biology, physics, and

engineering, appears to be missing and is presented here.

Using standard variational methods, and paying close atten-

tion to proper boundary conditions, we derive an exact nu-

merical solution that can be implemented computationally

with comparative ease. This numerical treatment encompasses

the description of both ‘‘pulling’’ as well as ‘‘pushing’’ ex-

periments. Its solution should serve as the ‘‘gold standard’’

against which approximate solutions have to be tested.

Our numerical solution also provides a suitable basis for

the confident evaluation of the impact of nonlinearities in the

force-deflection relation. We demonstrate the importance of

such nonlinear effects by comparing our numerical calcula-

tions to preliminary experiments in which pipette-aspirated

red cells were pushed against elastic beams (atomic force

microscopy (AFM) cantilevers). When applied to the BFP at

small deformations, however, our numerical solution does

not reduce to the previously published BFP spring constant.

Consequently, we derive an analytical approximation valid

for nearly spherical cell shapes that agrees well with our

numerical results in the linear regime, giving a corrected

expression for the spring constant of the BFP.

The mechanical principle governing BFP operation applies

generally to any fluid membrane bag, which we will simply

call ‘‘cell’’ in what follows. We emphasize, however, that our

derivations are only valid for fluid membranes enclosing a

fluid cell interior. In other words, our results do not apply to

cells with a highly viscous, three-dimensional cytoskeleton.

We consider a cell that is partially aspirated with suction

pressure Dp in a glass micropipette (Fig. 1). (For a detailed

tutorial on modern pipette aspiration, see Heinrich and

Rawicz (14).) Opposite the pipette entrance, the cell is in cir-

cular contact with a surface that we assume to be flat here.

The distance D between this surface and the pipette entrance

represents the axial dimension of the free cell portion. In a

pulling experiment this surface—usually of a functionalized

glass bead—is retracted (f . 0). This experiment is meaningful
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only if the cell membrane is chemically ‘‘glued’’ to the

surface at the contact disk, which also means that the radius

Rc of the contact disk is fixed in this case. If on the other hand

f , 0 (i.e., when pushing against the red cell), two scenarios

are possible. In the first, Rc is still fixed at a constant value.

This case corresponds to a flat-tipped cylindrical rod being

pushed into the cell, creating a circular indentation. The sec-

ond and practically more relevant case considers a cell that is

pushed against an extended flat surface. In this case, the con-

tact area is not fixed but depends on the cell deformation.

(It should be mentioned that whenever Rc is larger than the

pipette radius Rp, the membrane will also be pushed against

the front face of the pipette. Our treatment can easily be ex-

tended to include this case; however, we will consider only

deformations that are smaller here.)

Any pipette-pressurized cell resists deformations that

displace D from its relaxed value. Establishing the relation-

ship between the restoring force and the deflection DD is the

main goal of this article. This task is simplified by our restric-

tion to fluid membranes, allowing us to neglect any mem-

brane resistance to shear. The very low bending resistance of

the thin cell membrane, and the smallness of curvature changes

accompanying the considered deformations, allow us to ne-

glect bending contributions as well. On the other hand, the

analysis is somewhat complicated by the geometric con-

straints of constant cell surface area and volume that need to

be satisfied throughout the deformation.

Exact treatment and numerical solution

To determine the equilibrium shape of the free membrane,

we minimize the total energy under the usual constraints of

constant cell surface area and volume. The contour of the

free membrane portion is described using the arc length s as

independent variable. The distance of the contour from the

z axis (axis of rotation) is r, and c denotes the angle between

the surface normal n and the positive z-direction. For the

definition of other geometric parameters, see Fig. 2. With

this notation, the surface area and volume are given by

A ¼ pR2

c 1 2p

Z L

Rc

rds 1 2pRpLp; (1)

V ¼ p

Z L

Rc

r
2
sincds 1 pR

2

pLp �
1

3
pR

3

p: (2)

The upper integration limit L is the total contour length

along the free surface (including Rc; cf. Fig.2). The cell portion

(‘‘projection’’) inside the pipette is taken to consist of a cylin-

der (of length Lp�Rp) and a hemispherical cap (of radius Rp).

The axial extension D of the free part of the cell is simply

D ¼
Z L

Rc

sincds; (3)

in this reference frame, and the principal curvatures of parallels

and the meridian, cp and cm, are given by

cp ¼ sinc=r and cm ¼ dc=ds: (4)

Neglecting membrane bending and shear, the only rele-

vant energy contributions during the considered deformation

yield the following total energy:

E ¼ �DpDVp|fflfflfflfflffl{zfflfflfflfflffl}
work due to

aspiration pressure

�f DD|fflffl{zfflffl}
work due to
axial force

: (5)

DVp ¼ pR2
pDLp is the portion of cell volume that is moved

by the (positive) aspiration pressure into the pipette. We elimi-

nate the projection length Lp using the volume constraint

V�V0 ¼ 0. Then, incorporating the surface-area constraint

A�A0 ¼ 0 via a Lagrange multiplier s (representing mem-

brane tension) into a generalized energy functional Ẽ, we

find (up to constant terms),

FIGURE 1 Sketch of a pipette-aspirated fluid membrane bag (‘‘cell’’) that

is in contact with a flat surface (vertical thick solid line). The distance D be-

tween this surface and the pipette tip is adjustable, extending or compressing

the cell along its symmetry axis.

FIGURE 2 Sketch defining the notation used in our numerical treatment.

The angle u is the azimuth of the axisymmetric arrangement; Rc is the radius

of the circular contact disk, Rp the pipette radius, and Lp the projection length.

For other symbols see the text.

Ẽ ¼ p Dp� 2s

Rp

� �Z L

Rc

r
2
sincds� f

Z L

Rc

sincds 1 2ps

Z L

Rc

rds 1 spR2

c ¼
Z L

Rc

Lðs; r; _rÞds 1 BðRcÞ: (6)
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L is the Lagrange function for this energy functional; its

dependence on _r ¼ dr=ds is implicit through the identity

_r ¼ cosc. The boundary term BðRcÞ ¼ spR2
c is included

here for completeness; it plays a role only if adhesive inter-

actions between the cell and the flat surface are taken into

consideration (see next section).

For the energy to be a minimum, necessary conditions are

that the Euler-Lagrange equation

@L

@r
� d

ds

@L

@ _r
¼ 0; (7)

and the boundary conditions

@L

@ _r

� �
p;c

drp;c 1 L� _r
@L

@ _r

� �
p;c

6
@B

@sp;c

 !
dsp;c ¼ 0; (8)

be fulfilled (15), along with the constraint for the cell-surface

area. The subscripts ‘‘p’’ and ‘‘c’’ in Eq. 8 denote the upper

(s ¼ sp ¼ L) and lower (s ¼ sc ¼ Rc) boundary of the free

part of the cell, respectively. The minus sign corresponds to

the partial derivative of B with respect to sc.

If the Lagrange function does not explicitly depend on s,

as is the case here, the Euler-Lagrange equation (Eq. 7) can

be integrated once to give L� _r@L=@ _r ¼ const. If at the

same time a boundary for the independent variable s is mov-

able (which is also the case here since the value of L is not

known a priori, i.e., dsp 6¼ 0 whereas drp ¼ dRp ¼ 0 and

@B=@sp ¼ 0), the respective natural boundary condition re-

quires that the integration constant be zero. Hence, an alter-

native shape equation is the first integral

L� _r
@L

@ _r
¼ 0: (9)

It is instructive to evaluate both shape equations Eqs. 7 and

9 by inserting the Lagrange function defined in Eq. 6, giving

0 ¼ sin
2
c

r
2 �

2

R

sinc

r
1

1

R
1

f

2psr
2

� �
dc

ds
; (10)

and

0 ¼ 1

R
1

f

2psr
2 �

sinc

r
; (11)

respectively, where we have abbreviated a constant term

1

R
[

1

Rp

� Dp

2s
; or s ¼ Dp

2

RRp

R� Rp

: (12)

The two shape equations Eqs. 10 and 11 can be combined

to give

1

2

dc

ds
1

sinc

r

� �
¼ 1

2
ðcm 1 cpÞ ¼

1

R
: (13)

Equation 13 confirms that the shape of the free membrane

portion is a shape of constant mean curvature (1), with the

mean curvature equal to the constant 1/R given by Eq. 12.

The latter equation represents a particular form of Laplace’s

law for the present geometry. It is also easily seen from Eqs.

11 and 13 that in the absence of an axial force, both princi-

pal curvatures equal 1=Rjf¼0, which means that in this case

the shape of the free cell portion is a sphere with radius

R0 ¼ Rjf¼0.

Equation 13 is actually more convenient than the lower-

order differential equation Eq. 11 for the numerical calcu-

lation of cell shapes. It has to be integrated along with the

equation that defines the relation between _r and c. Addi-

tional (though noncoupled) differential equations need to be

integrated to obtain the cell area, volume, and a version of

the actual shape that can easily be plotted (e.g., in the form

r(z)). We thus solve numerically the following system of

ordinary differential equations:

Differential equation Initial value
dr

ds
¼ cosc rc ¼ rjs¼Rc

¼ Rc

dc

ds
¼ �sinc

r
1

2

R
cc ¼ cjs¼Rc

¼ arcsin
rc

R
1

f ðR� RpÞ
DppRRprc

� �
dA1

ds
¼ 2pr A1js¼Rc

¼ 0

dV1

ds
¼ pr

2
sinc V1js¼Rc

¼ 0

dz

ds
¼ �sinc zjs¼Rc

¼ 0:

(Above, we have introduced A1 and V1 to denote the area

(excluding the contact area pR2
c) and the volume of the free

cell portion, respectively.) Because we do not fix the orien-

tation of the membrane at s¼ Rc, the initial natural boundary

condition for the angle c is provided by the variational

treatment itself. Here, it is conveniently given by Eq. 11.

This is also the only place where the force f has entered the

calculation so far.

The radius Rc of the circular contact disc is the initial value

for the distance r from the symmetry axis. In experiments

where Rc is fixed its value has to be measured directly. How-

ever, as mentioned in the Introduction, whenever the cell is

pushed against a flat surface, the contact area is not fixed but

depends on the cell deformation. Then drc ¼ dsc ¼ dRc 6¼ 0,

and the natural boundary condition Eq. 8 leads to

1

R
1

f

2psR
2

c

� �
ð1� cosccÞ ¼ 0: (14)

The first factor on the left-hand side of this boundary

condition is equal to sincc=Rc (cf. Eq. 11). Therefore, both

factors in the above product vanish simultaneously if cc¼ 0,

which is indeed the expected boundary angle whenever the

cell is pushed against a flat surface. The variable contact

radius in this case is given by

Rc ¼ r

����
s¼Rc

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�f ðR� RpÞ

DppRp

s
: (15)

(Because f , 0 here, the square root is real.)
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The above numerical integration is immersed in an iter-

ative point-and-shoot wrapper that enforces fulfillment of the

remaining boundary and auxiliary conditions. There are all

together two such conditions in this problem. One is the con-

straint on the cell surface area (with Lp eliminated using the

volume constraint); the other is the requirement that the free

membrane connects continuously to the aspirated cell por-

tion, i.e., rjs¼L ¼ Rp. To enforce these conditions, we iter-

atively correct the values of initial guesses for the only two

parameters not fixed a priori by the variational problem, i.e.,

the curvature radius R and the contour length L.

Upon successful convergence of this iterative procedure, a

final integration stores the shape of the free cell portion in the

parametric form (z(s),r(s)) for later plotting if desired. Other

quantities that are stored along with the given input values

for A0, V0, Rp, Rc, Dp, and f, are the extension of the free part

of the cell, D ¼ �zjs¼L, the projection length Lp (obtained

from V1js¼L using the volume constraint Eq. 2), and the

membrane tension s (obtained from R using Eq. 12).

Additional energy contributions: area stretch
and adhesion

The above framework can easily be extended to accommo-

date situations in which other energy contributions arise. We

briefly address two such contributions: the elastic energy of

membrane dilation, and the energy of adhesive interactions

between the cell and the flat surface.

Our earlier assumption of constant surface area is a suitable

approximation provided that changes in the aspiration pressure,

and thus in the membrane tension, remain small throughout

an experiment. However, if we vary the axial stiffness of the

free part of a given cell by adjusting the aspiration pressure,

the surface area will change to some extent. For a fluid mem-

brane this area change is governed by the elastic energy of

membrane dilation, sA. Formal replacement of the area con-

straint with this energy leads to the same equations as derived

in the previous section. Therefore, to incorporate area stretch

into our numerical procedure, we only need to modify the

appropriate auxiliary condition. Where before we had itera-

tively adjusted the Lagrange multiplier s to enforce the area

constraint, we now adjust the membrane tension (again s)

to enforce the proper constitutive equation. In this case the

constitutive equation is a two-dimensional, linear stress-strain

relationship,

s ¼ KAðA� A
ð0ÞÞ
	

A
ð0Þ
: (16)

KA denotes the area-expansivity modulus of the fluid mem-

brane. For red blood cells, for example, KA � 500 mN=m

(16). The reference area A(0) is the total area of the cell mem-

brane in a tension-free state. For consistency, this reference

area should be calculated from the constitutive equation using

measured values of A and s (given by Eq. 12) that were

obtained at some initial aspiration pressure Dp (and f ¼ 0).

Next, we consider adhesive interactions between the cell

membrane and the flat surface. Such interactions play a ma-

jor role, of course, in measurements that were specifically

designed to characterize the dynamic strength of molecular

adhesion (e.g., (13)). Other than that, a generic way to ac-

count for possible nonspecific surface interactions is gener-

ally useful in this experimental configuration.

We denote by g the adhesive interaction energy per unit

area and incorporate adhesion effects by adding the energy

term �gpR2
c to the right-hand side of Eq. 6. This addition

affects only the lower boundary condition (at s ¼ sc ¼ Rc),

because now BðRcÞ ¼ ðs � gÞpR2
c . All other equations re-

main the same, in particular, the shape equations Eqs. 10, 11,

and 13. Inserting the new boundary term B(Rc) into the bound-

ary condition Eq. 8 we find that Eq. 14 is now replaced by

1

R
1

f

2psR
2

c

� �
ð1� cosccÞ ¼

g

s

sincc

Rc

: (17)

Because the shape equation Eq. 11 still holds at the bound-

ary, this becomes

g ¼ sð1� cosccÞ: (18)

As expected, this is the Young-Dupre equation for the

contact angle cc.

In the numerical treatment of this case, it is most practical

to replace the previously used expression for the initial value

of the angle c with the Young-Dupre boundary condition,

cc ¼ arccosð1� g=sÞ. Then, the initial value rc ¼ Rc can

be obtained by solving Eq. 11 for r and inserting cc into the

result

Rc ¼
1

2
R sin cc 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

4
R

2
sin

2
cc �

f ðR� RpÞ
DppRp

s
: (19)

This equation allows us to draw several interesting con-

clusions. For a zero contact angle (cc ¼ 0) we recover

Eq. 15, consistent with a vanishing adhesion energy (g ¼ 0

as per Eq. 18). This case is meaningful only for pushing

experiments ( f , 0). More generally, when considering

pushing experiments in the case of finite adhesion, Eq. 19

simply predicts how much the contact area increases due to

the adhesion. In pulling experiments, however, there is a limited

range of (positive) forces for which Rc assumes meaningful

values, i.e.,

f # f
�
[ pRg 1� g

2s


 �
: (20)

The upper bound f* of this force range corresponds to the

smallest allowed contact radius of

R
�
c ¼

1

2
R sin cc ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f
�ðR� RpÞ
DppRp

s
¼ R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g

2s
1� g

2s


 �r
: (21)
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Thus the contact area will not gradually shrink to a point as

the pulling force increases. Instead, the cell will unbind from

the surface at some finite contact radius Rc $ R�c . The critical

unbinding radius, i.e., the radius where the (increasing) en-

ergy of the bound state (at increasing force) equals the energy

of the unbound state, is actually even larger than R�c . Be-

cause the system may be kinetically trapped in the metasta-

ble, higher-energy state for some time, we generally expect

to observe sudden unbinding at a value of Rc that lies be-

tween the critical radius and R�c .

Numerical results and comparison
with experiments

We choose an example cell with the following dimensions

(typical for a swollen red blood cell as used in the BFP) to

demonstrate our baseline numerical analysis: R0 ¼ 3mm,

Rp ¼ 1:25mm, Lp0 ¼ 4mm, Rc ¼ 0:75mm. The subscript

‘‘0’’ stands for f¼ 0, i.e., an aspirated cell whose free portion

is spherical. The total surface area of this cell is A0 �
140mm2 and its volume V0 � 130mm3. Both quantities are

assumed to remain constant during cell deformation. We

model two pulling experiments (f $ 0; fixed Rc) performed

at aspiration pressures Dp ¼ 2:5cm H2O (� 0:245 kPa) and

Dp ¼ 7:5cm H2O (� 0:735 kPa). Numerical results are pre-

sented in Fig. 3.

The strong dependence of the cell’s deformability on the

pipette-aspiration pressure evident in Fig. 3 is what makes

this system a force transducer with easily tunable stiffness.

Given that we are able to detect reliably cell deflections as

small as ;5 nm in an optical microscope, we can ‘‘dial’’ the

force resolution of this transducer down to a piconewton

if desired. The pressure dependence of force manifests itself

directly in the fact that for cells with the same initial (f ¼ 0)

geometry and the same deformation DD, the ratio Dp/f is a

constant (see, for example, the case DD ¼ 437nm in Fig. 3,

A and B). However, this is only approximately true when

pulling on the same cell at different aspiration pressures,

because the membrane area and thus the f ¼ 0 geometry

depend on pressure, as discussed in the previous section.

This trivial relationship between pressure and force at

given deformation does not, unfortunately, translate into a

similarly simple relation between force and deflection at

given aspiration pressure. Fig. 3 clearly illustrates the non-

linear behavior of geometric parameters during the modeled

pulling experiments. It underlines that whenever considering

moderate-to-large cell deflections, one should base the inter-

pretation of experimental results on a numerical analysis

such as presented here. Even when restricting experiments to

FIGURE 3 Results of numerically modeled pulling experiments on cells with the same initial (f ¼ 0) geometry but held at two different aspiration pressures

Dp. The initial values of all geometric parameters are given in the text. (A,B) Contours of the two cells at four different pulling forces. (C) Deflection as a function of

force for both cells (identified by their values of Dp). (D) Strongly nonlinear dependence of the projection length on force. (E) Radius of the constant mean

curvature of the deformed cells as function of the pulling force. Colored arrows in panels C–E mark the locations of the respective contours of panels A and B.
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small deformations, it is important to establish the range of

the validity of linearized force-deflection relations, as well as

the error associated with any such approximation.

To demonstrate the application of our numerical analysis

to nanomechanical experiments, we present preliminary re-

sults obtained with a novel force instrument that allowed us

to push pipette-pressurized red blood cells against AFM

cantilevers (Fig. 4 A). The cell-holding pipette was mounted

to a closed-loop piezo-actuator and could be displaced with

subnanometer resolution. Moving the pipette at constant

speed, the cell was brought into contact with the flat of the

cantilever at a well-defined distance from the cantilever tip.

The deflection of the cantilever following contact yielded an

accurate measurement of the axial deformation DD of the

cell. (Details of the experimental setup are beyond the scope

of this article and will be published elsewhere).

In the numerical analysis of this ‘‘pushing’’ experiment

(f , 0), the now-variable contact radius Rc was given by

the natural boundary condition Eq. 15, in contrast to the

‘‘pulling’’ experiments (f $ 0) modeled in Fig. 3. Further-

more, since we used the same cell with different aspiration

pressures in successive pushing experiments, we have re-

placed the surface-area constraint with the elastic energy of

area expansion (with modulus KA � 500 mN=m) in the anal-

ysis of the pushing experiment. Other than that, the numer-

ical procedure to predict the cell deformation as a function

of force is identical for pulling and pushing experiments.

Having measured all required geometric parameters from

videomicrographs such as shown in Fig. 4 A, we determine

the only adjustable quantity, i.e., the cantilever spring con-

stant k, by matching numerical predictions to experimental

results. Fig. 4 B reveals an excellent simultaneous agreement

(matched here by eye; giving k ¼ 7:1pN=nm) between nu-

merical results and nine nonlinear force-deflection curves

measured at three different aspiration pressures Dp. Three

nearly indistinguishable force-deflection curves were ob-

tained at each of the three pressure values, demonstrating

very good repeatability of this measurement. The value of k
obtained at the cantilever position of cell contact corresponds

to a spring constant of ktip ¼ 4:9pN=nm at the cantilever tip,

well within the range of nominal spring constants (2–16 pN/

nm) given by the manufacturer.

Nearly spherical shapes and the BFP
spring constant

At sufficiently small deformations we may approximate non-

linear force-deflection curves such as shown in Fig. 3 C by

straight lines that are the tangents to the original curves in the

limit f/0. In this linear regime, a pipette-aspirated cell acts

like a Hookean spring, which inspired the use of pressurized

red blood cells as ultrasensitive biomembrane force probes in

a number of nanomechanical experiments. Unfortunately, the

initial slope of our numerical force-deflection curves does

not reproduce the spring constant previously published for

the BFP. In this section we present a rigorous derivation of

the proper expression for this slope.

We restrict the analysis to the scenario with a fixed contact

radius Rc (as is the case for the BFP). Since the free cell por-

tion assumes a spherical shape at f ¼ 0, we are seeking a

linearized force-deflection relationship that is valid for cells

whose free part is nearly spherical. We switch to spherical co-

ordinates (Fig. 5) and expand the shape of the free cell por-

tion in terms of the deviation u from a reference sphere. We

are free to choose the radius of this sphere as long as we en-

sure that u is small in comparison. A suitable choice is the

curvature radius R defined in Eq. 12. It simplifies the fol-

lowing analysis considerably; however, one has to keep in

mind that due to its dependence on the tension s (which is a

function of the cell shape), R is itself an adjustable parameter.

The shape of the free cell portion is thus described by rðuÞ ¼
R1uðuÞ where u/R�1.

We summarize the main steps of the derivation here and

delegate details to the Appendix. The analysis broadly mirrors

our exact treatment. Reexpressing the cell surface area, volume,

axial extension, and total energy in terms of r(u), we apply a

second-order expansion in the perturbation u to the integrals

giving the area and volume of the nearly spherical free cell

portion (17). As before, we use the volume constraint to elim-

inate the projection length Lp and incorporate the remaining area

constraint via the Lagrange multiplier s into the generalized

energy functional Ẽ, finding up to constant terms,

Ẽ

2ps
ffi
Z up

uc

Lðu; u; _uÞdu 1 Bðuc; upÞ: (22)

FIGURE 4 (A) Videomicrograph of a pipette-aspirated

red blood cell held close to the flat side of an AFM

springboard cantilever. The side view of the ;20-mm-

wide cantilever creates a blurry diffraction pattern; only the

cantilever tip (dark triangular shape) appears in focus. (B)

Comparison of experimentally measured force-deflection

curves to numerical predictions. At each of the three indi-

cated pressures Dp, the nearly indistinguishable results of

three successive compression experiments were plotted on

top of each other (noisy curves). The overlaid smooth solid

lines are numerical results obtained by setting the only

adjustable quantity, i.e., the cantilever stiffness at the point

of contact with the cell, to k ¼ 7.1 pN/nm.
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The Lagrange function L is defined in Eq. A6 in the Ap-

pendix, whereas Eq. A7 gives the energy contribution B that

depends only on the angles uc and up, i.e., the u-boundaries of

the free cell part. Inserting the Lagrange function into the

Euler-Lagrange equation, we recognize the resulting shape

equation as the Legendre differential equation (with n¼ 1). Its

general solution involves two integration constants, one of

which we eliminate by placing the origin of the spherical coor-

dinate system at the z-position where the contour’s distance

from the symmetry axis has an extremum (‘‘equator’’). The

shape equation for the perturbation u then becomes

uðuÞ ¼ C½�1 1 cosuln cotðu=2Þ�; (23)

where the scaling factor C is the remaining integration con-

stant. (C measures the deviation of the shape from the ref-

erence sphere at the equator.) Remarkably, in rðuÞ ¼ R1uðuÞ
we have thus found a quite simple, general analytical ex-

pression for a nearly spherical, axisymmetric shape of con-

stant mean curvature 1/R.

As before, the force f enters the calculations through the

boundary condition. For the energy functional of Eq. 22, the

boundary condition takes the form

@L

@ _u

� �
p;c

dup;c 1 L� _u
@L

@ _u

� �
p;c

6
@B

@up;c

 !
dup;c ¼ 0; (24)

where up ¼ uðupÞ, uc ¼ uðucÞ, and the minus sign corre-

sponds to the partial derivative of B with respect to uc.

Neither the boundary angles up,c nor the perturbations up,c at

the boundaries are fixed in the current variational problem;

however, with constant Rc and Rp, they are interconnected

through

Rc

sinuc

¼ R 1 uc and
Rp

sinðp � upÞ
¼ Rp

sinup

¼ R 1 up:

(25)

Therefore, dup;c ¼ �ðRp;ccosup;c=sin2up;cÞdup;c, and since

dup;c 6¼ 0, the natural boundary condition requires that

�Rp;ccosup;c

sin
2
up;c

@L

@ _u

� �
p;c

1 L� _u
@L

@ _u

� �
p;c

6
@B

@up;c

¼ 0: (26)

Equation 26 is the fourth equation needed to evaluate the

four unknowns R, C, up, and uc at equilibrium. The other

three equations are the two boundary relations in Eq. 25 and

the surface-area constraint. Because we are only interested in

the slope of the force-deflection relation at f ¼ 0, we may

replace these four equations with their first-order approxi-

mations, dropping higher-order terms of those quantities that

vanish when f ¼ 0. We thus omit all higher-order terms of u
(including derivatives), C, and f, as well as of the deviations

DR, Dup, and Duc of the respective quantities from their

f ¼ 0 values R0, up0
, and uc0

. (Note that higher-order terms in

Eq. 26 may only be omitted after evaluating all derivatives.)

Within this approximation, Eq. 26 simplifies to (using

Eq. 12)

C ffi f

2ps
ffi f

Dpp

1

Rp

� 1

R0

� �
: (27)

Linearizing Eq. 25 gives Dup and Duc as functions of DR
and C. Inserting these expressions into the area constraint

leads to

DR ffi C

1� cosuc0
cosup0

: (28)

Using Eq. 12 to abbreviate s0 ¼ ðDp=2Þð1=Rp � 1=R0Þ�1
,

we are eventually able to evaluate

df

dD

����
0

¼ 2ps0

cosup0
� cosuc0

1� cosuc0
cosup0

1 ln tan
up0

2
cot

uc0

2

� �� ��1

:

(29)

This is an exact expression for the slope of the force-

deflection curve f ¼ f(DD) at f ¼ 0, which is also the spring

constant of the BFP. Using Eq. 29 with uc0
¼ arcsinðRc=R0Þ

and up0
¼ p � arcsinðRp=R0Þ, the BFP spring constant is thus

easily calculated from measurable parameters. (Recall that

R0 is the radius of the outer cell portion in the force-free state.)

For the sake of comparison with other, approximate

results, we may further simplify the above expression pro-

vided that the angles uc0
and p � up0

are not too big, which

is usually the case. Then, a second-order approximation of

Eq. 29 in terms of Rp/R0� 1 and Rc/R0� 1 gives the BFP

spring constant as

kBFP ¼
df

dD

����
0

ffi 2ps0

ln
4R

2

0

RpRc

� 1�
R

2

p 1 R
2

c

4R
2

0

: (30)

This approximation deviates ,0.1% from the exact

expression Eq. 29 for typical cell geometries. The ‘‘�1’’

in the denominator is the only surviving contribution in the

second-order expansion of the first term inside the square

brackets of Eq. 29, whereas the (smaller) quadratic term

�ðR2
p1R2

cÞ=ð4R2
0Þ results from the expansion of the log-

arithm. We now see that it is these two terms that are missing

FIGURE 5 Sketch with notation for our analytical treatment of nearly

spherical shapes of the free part of the cell. The polar angle u is the inde-

pendent variable. The shape is described by the distance r from the origin. The

position of the origin is set by Eq. A11 of the Appendix.
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in the originally published expression for the spring constant

of the BFP (2). Depending on the particular cell geometry,

this means that BFP measurements using that spring constant

have underestimated the force by 20–40% in the linear force-

deflection range. On the other hand, the less used spring

constant proposed by Simson et al. (3) does contain the

‘‘�1’’ contribution. However, those authors included high-

er-order terms in Rp,c/R0 that differ from ours, introducing an

error of ;5–10% in their value of kBFP for typical cell

geometries. Fig. 6 combines a numerically modeled force-

deflection curve (same as the Dp ¼ 2:5 cm H2O example of

Fig. 3 C) with the straight-line approximation defined by

Eq. 30 as well as the previously published approximations.

CONCLUSIONS

This study puts forward a comprehensive and rigorous

analysis of axial forces produced by pipette-pressurized cells.

Its main accomplishments are: i), a flexible numerical treat-

ment to model both pulling and pushing experiments, illumi-

nating nonlinearities in a cell’s force-deflection behavior; ii), a

prototype of a novel force experiment that relies on this anal-

ysis; and iii), a rigorous analytical solution valid at small

deformations. In fact, it was the development of a new exper-

imental technique (demonstrated in Fig. 4) that motivated

our in-depth theoretical work. The variable contact region

between cell and beam surface in such pushing experiments

necessitated an analysis that went beyond linear approxima-

tions. The excellent agreement of our numerical results with

nonlinear experimental data (Fig. 4 B) indeed validated the

use of a numerical analysis for this type of experiment. The

description of the numerical procedure presented in the first

part of this article provides sufficient detail to allow other

investigators to reproduce the computational solution with

little effort using available numerical libraries (e.g., (18)).

An alternative approach to calculate the force-deflection

relation of red blood cells has been described in a thorough

and rather complicated work by Simson and co-workers (3).

However, their treatment is restricted to BFP-type pulling

experiments and cannot be used to analyze the measurements

presented in Fig. 4. Their solution proceeds from the as-

sumption that the ‘‘shape of the free membrane part is close

to a sphere’’ (an assumption that we only make in the last,

analytical part of our treatment when considering nearly

spherical shapes), and it involves an intricate series expan-

sion to solve the needed integrals. The resulting nonlinear

equation must still be solved numerically to find the sought

shape. Remarkably, no discrepancies between the linearized

results of this procedure and the originally published BFP

spring constant (2,4) were reported.

Our numerical analysis solves the problem at hand exactly

and in a much more straightforward and simple manner.

Furthermore, it covers any experimental situation that uses

pipette-aspirated fluid membranes to exert piconewton forces.

The required numerical computations are relatively fast and

can thus easily be adopted for the routine interpretation of

experimental data. Yet we believe that they are unlikely to

completely replace analytical approximations in the near

future. Not only have all previous BFP experiments been

based on a linearized force-deflection approximation, an ana-

lytical solution will also continue to be useful in time-critical

applications such as computer-controlled real-time force

feedback. In addition, a simplified expression describing as-

ymptotic behavior frequently offers insight into fundamental

mechanisms that is not available from numerical analyses.

Having found poor agreement between our exact nu-

merical solution and the previously published BFP spring

constant, we proceeded to derive a rigorous analytical ap-

proximation for small deflections corresponding to nearly

spherical shapes of the free part of the cell. This yielded a

simple analytical description of nearly spherical, axisym-

metric surfaces of constant mean curvature. Proper treatment

of the somewhat cumbersome boundary and auxiliary con-

ditions led eventually to an expression for the slope of the

force-deflection curve at vanishing force that is in agreement

with our numerical results and replaces the previously pub-

lished spring constant of the BFP. We emphasize that like

our numerical treatment, these analytical derivations are rig-

orous in the sense that they are exact within their respective

orders of approximation. At the same time, their straightfor-

wardness is based on our choice of spherical coordinates—the

natural choice when considering perturbations from a sphere.

This analytical approach yielded, among others, the highly

interesting, practically useful, and easily manageable expres-

sions of Eqs. 23 and 29.

Together, our numerical and analytical analyses furnish

the theoretical means to interpret a broad range of biophys-

ical measurements in which piconewton forces are applied

FIGURE 6 Comparison of a numerically computed force-deflection curve

(same example as shown in Fig. 3 C, Dp ¼ 2.5 cm H2O, but with reversed

axes) with our linear approximation Eq. 30. Also shown are the results pub-

lished previously in Evans et al. (2) and Simson et al. (3).
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using pipette-pressurized membranes as tunable force trans-

ducers.

APPENDIX: DETAILED ANALYSIS FOR NEARLY
SPHERICAL FREE SHAPES

In spherical coordinates (cf. Fig. 5), the cell surface area and volume are

A ¼ A1 1 pR
2

c 1 2pRpLp; (A1)

V ¼ V1 1
p

3
R3

ccotuc � R3

pcotup


 �
1 pR2

pLp �
p

3
R3

p; (A2)

where uc and up are the u-boundaries of the free cell part, and A1, V1 denote

the area and volume of the free cell portion, respectively. A1 and V1 are

calculated as

A1 ¼ 2p

Z up

uc

r
ffiffiffiffiffiffiffiffiffiffiffiffi
r2

1 _r
p

sinudu

ffi 2p

Z up

uc

R
2
1 2Ru 1 u

2
1

1

2
_u

2

� �
sinudu; (A3)

V1 ¼
2p

3

Z up

uc

r
3
sinudu ffi 2p

3

Z up

uc

ðR3
1 3R

2
u 1 3Ru

2Þsinudu:

(A4)

The far right-hand sides of Eqs. A3 and A4 are second-order expansions

in the perturbation u (including derivatives). The axial extension of the free

cell part is

D ¼ Rccotuc � Rpcotup: (A5)

We again use the volume constraint V � V0 ¼ 0 to eliminate the projection

length Lp from both the area constraint and the energy. The energy is given

by Eq. 5 (main text). Incorporating the surface-area constraint via the

Lagrange multiplier s, and making use of Eq. 12, we arrive at Eq. 22 for the

generalized energy functional Ẽ, where

Lðu; u; _uÞ ¼ �u
2
1

1

2
_u

2

� �
sinu; (A6)

and

Bðuc; upÞ ¼
R

2

3
ðcosuc � cosupÞ �

f

2ps
1

R
2

c

3R

� �
Rccotuc

1
f

2ps
1

R
2

p

3R

 !
Rpcotup: (A7)

Inserting the Lagrange function Eq. A6 into the Euler-Lagrange equation

@L

@u
� d

du

@L

@ _u
¼ 0; (A8)

gives

ü sinu 1 _u cosu 1 2u sinu ¼ 0: (A9)

Substituting t [ cosu, this is recognized as the Legendre differential

equation with n ¼ 1. It has the general solution

uðuÞ ¼ C1cosu 1 C½�1 1 cosuln cotðu=2Þ�: (A10)

We fix the position of the origin of our reference frame by requiring that

(cf. main text)

d

du
½ðR 1 uÞsinu�

����
u¼p=2

¼ 0: (A11)

This yields C1 ¼ 0 and thus simplifies Eq. A10 to Eq. 23.

Evaluating the boundary condition Eq. 26 using Eqs. A6 and A7 leads to

�Rp;ccosup;c

sinup;c

_up;c � u
2

p;c 1
_u

2

p;c

2

 !
sinup;c 1

R
2
sinup;c

3

� f

2ps
1

R2

p;c

3R

 !
Rp;c

sin
2
up;c

¼ 0: (A12)

As explained in the main text, from now on we drop all higher-than-first-

order terms of quantities that vanish at f ¼ 0. Thus, the second term in

Eq. A12 vanishes. We next replace Rp,c everywhere using Eq. 25. Since f
itself is a small quantity, we also drop terms containing fu. Eq. A12 becomes

f

2ps

1

sinup;c

1 cosup;c _up;c 1 sinup;cup;c ffi 0: (A13)

The derivative of Eq. 23 with respect to u may be expressed as

_uðuÞ ¼ �sinu

cosu
uðuÞ � C

sinucosu
: (A14)

Replacing _up;c, Eq. A13 simplifies to (cf. Eq. 27)

C ffi f

2ps
: (A15)

From Eq. 12, and using R ¼ R01DR,

1

2ps
¼ 1

pDp

1

Rp

� 1

R

� �
ffi 1

pDp

1

Rp

� 1

R0

1
DR

R
2

0

� �
: (A16)

After multiplying the above equation by f, the term containing fDR is

dropped, and we may rewrite Eq. A15 as

C ffi f

2ps0

: (A17)

Next, we use the two conditions of Eq. 25 and the area constraint to express

DR, Dup, and Duc in terms of C (and thus of f; cf. Eq. A17). From Eqs. 25 and 23,

Dup;c ¼ �
tanup0 ;c0

R0

DR 1
up;c

C

� �
0

C

� �
: (A18)

For the area constraint we may write

0 ¼ DA ¼ D A1 �
2V1

Rp

� 2p

3Rp

R
3

ccotuc � R
3

pcotup


 �� �
:

(A19)
We omit second-order terms in u from the expressions for A1 and V1. From

Eq. 23, Z
u sinudu ¼ C 1 usin

2
u

2cosu
: (A20)

After some algebra, Eq. A19 becomes

0 ffi 2ðcosuc0
� cosup0

ÞDR 1 R0sinup0
Dup � R0sinuc0

Duc 1

1
1 1

up

C

� 
0
sin

2
up0

cosup0

�
1 1 uc

C

� 
0
sin

2
uc0

cosuc0

 !
C: (A21)
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Inserting Eqs. A18,

0 ffi cosuc0
� cosup0

1
1

cosuc0

� 1

cosup0

� �
DR

1
1

cosup0

� 1

cosuc0

� �
C; (A22)

which is easily rearranged to give Eq. 28.

The first-order expansion of Eq. A5 reads

DD ffi � R0

sinuc0

Duc 1
R0

sinup0

Dup: (A23)

We introduce Eqs. A18, 28, and A17 to obtain

DD ffi f

2ps0

cosup0
� cosuc0

1� cosuc0
cosup0

1 ln tan
up0

2
cot

uc0

2

� �� �
;

(A24)

which finally gives the sought slope, Eq. 29.
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