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Phase Behavior of an Intact Monoclonal Antibody
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ABSTRACT Understanding protein phase behavior is important for purification, storage, and stable formulation of protein drugs in
the biopharmaceutical industry. Glycoproteins, such as monoclonal antibodies (MAbs) are the most abundant biopharmaceut-
icals and probably the most difficult to crystallize among water-soluble proteins. This study explores the possibility of correlating
osmotic second virial coefficient (Bo) with the phase behavior of an intact MAb, which has so far proved impossible to crys-
tallize. The phase diagram of the MADb is presented as a function of the concentration of different classes of precipitants, i.e., NaCl,
(NH4)2SO,4, and polyethylene glycol. All these precipitants show a similar behavior of decreasing solubility with increasing
precipitant concentration. B,, values were also measured as a function of the concentration of the different precipitants by self-
interaction chromatography and correlated with the phase diagrams. Correlating phase diagrams with By, data provides useful
information not only for a fundamental understanding of the phase behavior of MAbs, but also for understanding the reason why
certain proteins are extremely difficult to crystallize. The scaling of the phase diagram in By, units also supports the existence of

a universal phase diagram of a complex glycoprotein when it is recast in a protein interaction parameter.

INTRODUCTION

A protein solution remains homogenous only up to a certain
protein concentration. Once this solubility limit is exceeded,
a new state or phase appears as a result of different mech-
anisms such as crystallization, precipitation, gelation, ag-
gregation, or liquid-liquid phase separation. These phase
transformations in a protein solution are generally defined as
‘‘phase behavior’’. Understanding protein phase behavior is
important for a variety of reasons. From a medical point of
view, protein phase transition is the cause of many diseases,
such as cataracts (1), Sickle-cell diseases (2), and neurode-
generative or amyloidogenic diseases (3,4). The controlled
release of certain protein drugs, such as insulin, depends on
their particular state (5). From a biological perspective, the
microcompartmentation of the cell cytoplasm is thought to
be driven partially by protein phase separation (6).

Protein crystallization, on the other hand, is an important
tool of structural biology. Most high-resolution protein struc-
tural information is obtained by x-ray diffraction, neutron
crystallography, or surface plasmon resonance of protein crys-
tals. Protein crystallization is also instrumental in elucidating
protein function, mode of action, reaction mechanism, and so
on. In addition, precipitation and crystallization are impor-
tant unit operations in the purification of industrial proteins
and are receiving increasing attention in the industrial sep-
aration of therapeutic proteins. Salt-induced precipitation is
often the first step in protein purification from a fermentation
broth, or from plant and animal extracts, whereas crystalli-
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zation may be the last. Solid (crystal or precipitate) forms of
a protein are also convenient for storage and transportation.
Furthermore, the stability of a biologically active protein is
well maintained in the crystal form.

The quality of crystals may not be an important issue when
crystallization is applied for purification and/or storage of
protein. It is, rather, important to obtain crystals in bulk
quantity without losing protein functionality. However, struc-
tural elucidation by x-ray crystallography requires diffraction-
quality crystals. Growing such crystals has always been the
major barrier to the crystallographic determination of protein
structure, in particular in the case of integral membrane pro-
teins (7) and glycoproteins (8). Membrane proteins are gen-
erally considered to be the most difficult to crystallize, mainly
due to their amphiphilic character, which implies the use of
detergent for their solubilization and crystallization (9). Among
water-soluble proteins, glycoproteins are considered the most
difficult to crystallize (10).

Monoclonal antibodies (MAbs) are flexible macromole-
cules that can assume a wide range of conformations as a
consequence of their intrinsic domain mobility and segmen-
tal flexibility. MAbs have recently been recognized as enor-
mously efficacious therapeutics, which can be applied to treat
numerous life-threatening diseases, including cancer and im-
mune diseases. MAbs are also well established as specific
serologic reagents for a number of immunoassays and diag-
nostics for the detection of a wide variety of antigens thanks
to their unlimited availability (11). Unfortunately, MAbs are
extremely difficult to crystallize as intact molecules, prob-
ably because of their structural complexity and variability.
Most of the published MAD crystallization experiments have
been restricted to either Fab-antigen complexes or MAb
fragments or MAbs without a hinge region. Nevertheless,
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successful crystallization of intact MAbs has been reported
on several occasions (10,12—-16). However, successful crystal-
lization of one MAb obviously does not imply that other
MAbs will equally readily crystallize under the same solution
conditions.

Crystallization or, more generally, transformation into dif-
ferent phases of a protein, occurs due to changes in solution
conditions. There are numerous solution variables that can
influence protein phase behavior (17), and a variety of phases
may form that are difficult to distinguish. The changes of state
of a protein as a function of these solution variables are gen-
erally known as a ‘‘protein phase diagram’’. The fundamen-
tal relationship between a particular solution condition and
a particular state of protein is poorly understood. However,
evidence has been accumulating that protein interactions play
a governing role in determining the structure of the phase
diagram. The most tangible result so far is that the phase
behavior of a protein solution is correlated with a protein-
interaction parameter named ‘‘osmotic second virial coeffi-
cient’” (B,). By, by definition, is a thermodynamic parameter
that reflects the magnitude and direction of deviations of a
protein solution from ideality. At the molecular level, By,
characterizes pairwise protein self-interactions including con-
tributions from excluded volume, electrostatic interactions,
and short-range interactions (18). According to statistical ther-
modynamics, B», is correlated to the potential of mean force,
which describes all known interactions between two protein
molecules in a dilute solution (19). A negative value of B,
indicates protein-protein attraction, whereas a positive B,,
value indicates mutual repulsion.

Solution conditions under which a protein is likely to crys-
tallize correspond to a certain range of slightly negative By,
values, known as the ‘‘crystallization slot’’ (20,21). If a By,
value is more negative than the crystallization slot, dis-
ordered precipitation is the phase most likely to develop.
However, conducting crystallization experiments under con-
ditions that correspond to the crystallization slot does not
guarantee a successful crystallization. The predictive value
of the crystallization slot can be improved by studying spe-
cific ion effects and the phase diagram. On the other hand,
conducting experiments under conditions corresponding to
positive B, values is sure to prevent phase separation from
occurring. This correlation is also exploited in pharmaceu-
tical industries for screening stable conditions, at which B,
values are largely positive, e.g., for liquid formulations of
protein drugs. A detailed review of B,, values of different
proteins and their corresponding phases was published earlier
(22,23). The thermodynamic insight regarding the macromo-
lecular interactions involved in B,, (18,24) and why these
interactions are related to protein phase behavior were ex-
plained elsewhere (25-28).

Besides being related to the crystallization slot, it has been
established that B, is a critical parameter in controlling or ac-
celerating protein aggregation, folding, and stability (29-31).
Recent studies show that B5; is an important thermodynamic
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parameter not only in predicting protein phase behavior, but
also in understanding and designing a molecular approach to
different bioseparation processes (32—36). The reason By,
was not applied to bioseparations earlier is because of the
difficulty of experimentally determining B,,. The recent de-
velopment of self-interaction chromatography (SIC) allows
more accurate and rapid measurement of B, using a minimal
amount of protein (22,23,37-45).

This study explores the correlation between B,, and the
phase behavior of an intact monoclonal antibody, designated
in this article as IDEC-152, which has a molecular mass of
~144 kDa. The IDEC-152 MAb has not been possible to
crystallize as yet, even when commercial crystallization kits
particularly designed for intact MAbs were employed. The
unsuccessful crystallization efforts on IDEC-152 prompted a
study of its phase behavior with respect to B,, values. In this
article, we present phase diagrams of IDEC-152 as a function
of different classes of precipitants. B,, values were also mea-
sured for the same conditions by SIC and correlated with the
phase diagrams. As a result, a single MADb phase diagram dis-
plays solubility, B, and the optimal crystallization region.
This phase diagram is useful not only in developing a fun-
damental understanding of the phase behavior of MAbs, but
also in understanding the reason why certain proteins are ex-
tremely difficult to crystallize. To the best of our knowledge,
this is the first work to present experimental data on phase
behavior of an intact MAD. In addition, the scaling of the
phase diagram in B,, units provides useful information on a
structurally complex glycoprotein, demonstrating the uni-
versality of the phase diagram of many proteins when recast
in a protein interaction parameter.

PROTEIN PHASE DIAGRAM

A phase diagram shows the state of a material as a function
of all of the relevant variables of the system. The simplest
form of a protein phase diagram usually displays the state of
a protein as a function of protein concentration and another
parameter, i.e., the precipitant concentration, with all other
variables held constant. This simple phase diagram of dif-
ferent proteins under different solution conditions is quan-
titatively quite different, although their basic shape is similar.
Many broad classes of proteins display a single universal
phase diagram, if the phase diagram is recast on a protein
interaction parameter (25-27,33,46,47), instead of correlat-
ing a single parameter with a solution condition. This is not
surprising, because a protein interaction parameter, such as
B»,, reflects all the solution parameters in a single dimension.
Once B,, values of a protein are known, the approximate
shape and position of the phase diagram would be known.
Rosenbaum and co-workers (25-27) pioneered the devel-
opment of a generalized protein phase diagram based on
its similarity to those of colloids immersed in polymer
solutions. They showed that proteins and other globular
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macromolecules with a size >1 nm do not display gas-liquid
phase transitions (25), but rather display a broad region of
metastable liquid-liquid coexistence along with the region of
the liquid-crystal solubility line. In other words, the protein
phase diagram exhibits only a liquid-solid equilibrium in
three distinct phases: a dilute liquid phase (analogous to the
vapor phase), a dense liquid phase (analogous to the liquid
phase), and a crystal phase (analogous to the solid phase). The
liquid-liquid coexistence region in a protein phase diagram is
further separated into two parts (Fig. 1), a metastable liquid-
liquid region referred to as the ‘‘binodal’’ and an unstable
liquid-liquid region referred to as the ‘‘spinodal’’ (51-53). If
a protein solution is quenched into the spinodal of this liquid-
liquid phase transition, the solution will spontaneously sepa-
rate into two metastable phases corresponding to the binodal,
i.e., one light phase depleted in protein and the other dense
phase concentrated in protein. In the regions between the
binodal and the spinodal curves, the solution is metastable
with respect to liquid-liquid phase separation, i.e., liquid-
liquid phase separation occurs rather slowly in these regions.
At the critical point, the two phases become identical, and
liquid-liquid phase separation is not possible beyond this
point.

The location of George and Wilson’s crystallization slot
(20,21) in the universal protein phase diagram is around the
metastable liquid-liquid immiscibility region (33,47,51,52).
The precise location of the crystallization is below the liquid-
liquid critical point (27,47) as well as around the critical point
(54-57), where nucleation occurs by two different mechanisms.
Because of the presence of a nearby metastable liquid-liquid
two-phase region, critical density fluctuations are strongly
enhanced around the liquid-liquid critical point, which lowers
the free energy barrier to the formation of critically sized
nuclei (55-57). Therefore, nucleation occurs around the crit-
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ical point spontaneously. Below the critical point, small
liquid-like droplets with a density corresponding to the dense
branch of the liquid-liquid binodal may lead to the en-
hancement of nucleation just outside the low-density branch
of the liquid-liquid binodal (51,58). As a consequence of the
high concentration in the droplets, a large fraction of the pro-
tein molecules forms aggregates. Crystalline nuclei are then
formed from the aggregates inside the droplets. Once the
aggregate grows beyond a critical size (about a few hundred
molecules), it can convert into a stable crystalline nucleus
(59). Each nucleus is covered with a thin liquid film with a
high protein concentration. This thin film lowers the surface
energy of the crystal. Protein molecules, diffusing from the
dilute solution to the crystal are first incorporated into the
surface film. The molecules in this liquid surface film are
quite mobile and have ample time to find the proper ori-
entation for incorporation into the crystal (53). If protein so-
Iution conditions fall within the spinodal, the formation of
large droplets of high density is favored over the formation
of crystalline nuclei. The rapid phase separation in this re-
gion leaves little time for establishing the proper order and
steric orientations of the protein molecules required for crys-
tallization. The desolubilization and self-association rate are
faster in this region than the rate at which molecules achieve
the proper orientations that would favor crystallization. Be-
low George and Wilson’s crystallization slot, the binodal and
spinodal are so wide that the light branches of both binodal
and spinodal correspond to an impractically low concen-
tration of protein to induce crystallization. Therefore, this
region favors amorphous precipitation rather than crystalli-
zation.

George and Wilson’s narrow range of B, values provides
necessary but insufficient information for successfully pre-
dicting crystallization of different proteins. The universal
protein phase diagram in the dimension of B,, gives further
insight into the possibility of crystallizing a protein that is
difficult to crystallize, such as IDEC-152. For instance, nu-
cleation can occur more easily when there is a larger distance
between the liquid-liquid critical point and the liquid-solid
solubility line (26). However, the phase behavior of certain
proteins may not be precisely mapped using the universal
phase diagram because of the presence of long-range inter-
actions and/or the highly anisotropic nature of protein inter-
actions occurring due to nonsphericity and surface patchiness.
For example, a protein solution well between the critical
point and the solubility line might also prove to be difficult
to crystallize because of its noncomplementary shape (24).
Certain proteins may have a strong mutual attraction in a few
specific orientations, which lead to overall slightly negative
B, values but are not compatible with any solid lattice for-
mation. If all the bonds necessary for crystallization cannot
form in the crystalline phase, but only in the liquid phase,
then the protein will not crystallize. Rather, it will exist as
a condensed liquid state, analogous to the precipitate phase
(54,60). The presence of moderately long-range interactions,
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which are generally neglected, would shift the liquid-liquid
critical point to the gelation regime (61-63).

MATERIALS AND METHODS
Materials

IDEC-152 MADb was provided by Biogen-Idec (San Diego, CA). N-hydroxy-
succinimide (NHS)-activated Sepharose 4 Fast Flow (code 17-0906-01), a
Tricorn 5/50 column (code 18-1163-09), and a Tricorn 5 adaptor unit (code
18-1153-00) were purchased from GE Healthcare Europe, Diegem, Belgium.

Acetic acid (Baker analyzed, product 6052), sodium chloride (Baker ana-
lyzed, product 0278), hydrochloric acid (36-38%, Baker analyzed, product
6081), acetone (Bakers HPLC analyzed, product 8142), and sodium hydrox-
ide (Baker analyzed, pellets, product 0402) were bought from Mallinckrodt
Baker (Deventer, The Netherlands). Sodium hydrogen phosphate dihydrate
(product 1.06573), sodium dihydrogen phosphate dodecahydrate (product
1.06345), ammonium sulfate (extra pure, product 1.01216), and sodium ac-
etate trihydrate (extra pure, product 1.06265) were bought from Merck
(Darmstadt, Germany). Ethanolamine (redistilled, product 41100), blue dex-
tran (product D5717), and polyethylene glycol (PEG) 400 (product 81170)
were bought from Sigma-Aldrich Chemie (Zwijndrecht, The Netherlands).
Bicinchoninic acid protein assay reagents (products 23221 and 23224) were
bought from Perbio Science Nederland (Etten-Leur, The Netherlands).

Dialysis equipment was a Spectra/Por Float-A-Lyzer with biotech cellu-
lose ester membranes, 100 kDa nominal molecular weight cutoff NMWCO),
10 ml; (product 235071, Spectrum Europe, Breda, The Netherlands). A
Centriprep centrifugal filter unit (15 ml, 3 kDa NMWCO, catalog 4303) was
from Millipore (Amsterdam, The Netherlands). Chromatography experiments
were done in a Pharmacia (Uppsala, Sweden) fast protein liquid chroma-
tography system controlled by Unicorn version 2.0 software. All spectro-
photometric analysis was done in a UV-Visible Pharma System (8453,
Agilent, Santa Clara, CA).

MAb sample preparation

The IDEC-152 MAb was prepared for SIC and precipitation experiments
by dialysis using a 100-kDa NMWCO membrane at 4°C for at least 24 h.
Dialysis results in an approximately twofold dilution of the MAb solution.
The dialyzed MADb solution was further diluted or concentrated according to
the requirement.

Self-interaction chromatography

Two different columns, one with immobilized MAb Sepharose particles and
the other MAb-free Sepharose particles, were packed for SIC. The MAb-free
column was prepared simply by blocking the NHS-activated groups of the
Sepharose particles with ethanolamine. The immobilized MAb column was
prepared by immobilizing MAb on NHS-activated sepharose particles. The
details of the column preparation processes were described earlier (22,23).
The concentration of immobilized MAb per volume of gel particles was
determined by the bicinchoninic acid technique (64) applied to the solid
phase (22,23,65). The integrity of the packed column was characterized by
analyzing its height equivalent to a theoretical plate, peak shape, and sym-
metry of a small molecule, such as acetone and NaCl. When not in use, the
columns were stored in 10 mM sodium phosphate (pH 7.0) at 4°C. Each
column was used for a period of maximally 4 weeks.

The chromatography procedure was accomplished as described previ-
ously (37) in an automated Pharmacia fast protein liquid chromatography
system controlled by Unicorn version 2.0 software. Before every injection,
the column was equilibrated until the UV, pH, and conductivity base lines
became stable. The retention data were used for calculating the B, values
according to Ahamed et al. (22,23).
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Determination of phase diagram

The phase diagram of the IDEC-152 MAb was determined as a function of
different precipitant concentrations at a constant temperature of 30°C. The
precipitants used in this study were NaCl, (NH,4),SO,4, and PEG-400. Since
the MADb was only available in liquid form and no crystallization of this
MADb was possible, its solubility or phase diagram was measured from
precipitation experiments. The dialyzed MAD solution was concentrated to
150 mg/ml at pH 7.6 (10 mM Na-phosphate). Then a 3.0 M (NH,4),SO,
solution (pH 7.6, 10 mM Na-phosphate) was added drop-by-drop on an
analytical balance to 1 ml of a 150 mg/ml MAb solution until phase
separation was visually observed. The minimum (NH,4),SO,4 concentration
at which the MAb solubility was ~100 mg/ml was considered the starting
point. On the other hand, the minimum (NH4),SO,4 concentration at which
the addition of a single drop of a 1 mg/ml MAb solution into 1 ml of an
(NH4),SO4 solution caused phase separation was regarded as the end point.
Several points were chosen between the start and the end point. At every
point, the MADb solutions were diluted to a number of different concentra-
tions and incubated for 48 h to reach a stable supernatant concentration. The
solutions were then investigated at 600 nm in a spectrophotometer to con-
firm the existence of phase separation. Finally the MAb concentration in the
supernatant was measured. The concentration of MAD in the supernatant
phase was treated as its apparent solubility. On the other hand, the maximum
MAD concentration at which no phase separation was observed was iden-
tified as a point on the precipitation line. To determine the precipitate concen-
tration, the solutions were allowed to settle under gravity and supernatants
were removed gently.

Modeling of protein phase diagram

The phase diagram of the MAb was generated in B,, scale according to Haas
and Drenth (51-53). According to their model, the Gibbs free energy per unit
volume of a protein solution can be expressed as (51)

i (o)t )
ey

In Eq. 1, ¢ is the volume fraction of protein, () is the volume of a protein
molecule, ¢, is the protein volume fraction in the crystal, and m = Q/w,
where o is the molar volume of water divided by Avogadro’s number. The
parameter for a protein-protein interaction in solution, g, , was calculated as
gr = kT (B2aMp — 4), where M is the molecular mass of protein and p is
the protein density. In the calculations, the volume of an intact MAb
molecule, (), was assumed as 166.5 nm3, considering the fact that the unit
cell volume (2 molecules/unit cell) of the MAD crystals was 900 nm’ (14),in
which the MAb volume fraction, ¢, was 0.37 (66). This resulted in the
value p = 1.44 g/em’, considering the molecular mass of the IDEC-152
MADb, M, of 144 kDa.

The compositions of the two coexisting liquid phases in the binodal (¢,
and ¢z) were calculated from the following equations:

0G, 0G,
Gi(dg) — Gr(9,) = by (w) -, (w) @)
bp Do

(aG/\/ad))qu = (8GA/8¢)¢Q' 3)

Similarly, the compositions of the phases in the spinodal (¢, and ¢3) were
calculated from the conditions (62Gy/0¢?) 5= 0 and (0°G,/9¢?) 5= 0.
For the calculation of solubility, the Gibbs free energy per unit volume of
protein crystal was expressed as G, = ¢ g./{), where g. = g, /f. Then, the
solubility line of the crystal was calculated from the condition

G.—G,= (¢c - ¢)8GA/5¢~ (€]
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RESULTS AND DISCUSSION
Self-interaction chromatography
Optimization of the SIC methodology

To comply with the theory and assumptions of SIC, 15-20%
surface coverage of the gel particles was found to be the op-
timum for avoiding both multi-body interactions and injection
concentration-dependent retention behavior (22,23,37,42).
An immobilization protein concentration of 9.4 mg of IDEC-
152 per milliliter of packed column corresponds to 15% sur-
face coverage for NHS-activated Sepharose. The incubation
time, temperature, pH, and protein concentration of the im-
mobilization reaction mixture are the parameters by which
the immobilization reaction can be controlled. In this work,
it was found that 12 h of incubation at pH 6.0 and 4°C was
sufficient to obtain optimum coupling.

Obtaining injected protein concentration independent reten-
tion behavior is another important requirement in SIC. Our
set-up of a 1.2- to 1.4-ml column, an injection volume of 50
ml, and a MADb concentration of 1-5 mg/ml produced sharp
and detectable peaks. The shape of the peaks showed tailing
due to the mass transfer limitation of large MAb molecules
through the gel pores. The shape of all peaks was the same,
regardless of column type, injection protein concentration or
solution condition. Peak retention was found not to vary with
injection concentration within a range of 1-2.5 mg/ml (Fig. 2).
Therefore, the concentration of MAD in the injection sample
was always kept between 1 and 2 mg/ml and the retention
volume was determined from the peak maximum.

B2 profile of the monoclonal antibody

By values of IDEC-152 MAb were mapped as a function of
NaCl concentration at different pH values. Most of the By,
values were found to be in the positive regime up to a NaCl
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FIGURE 2 Effect of the injected protein concentration on the retention of
the MAb. The experiment was conducted at pH 4.2 (100 mM Na-acetate) in
the MAb-immobilized column.
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concentration of 1.0 M at pH 4.5-9.5 (Fig. 3). Very few
points were found to be on the negative side, out of which
none was negative enough to be in the George and Wilson’s
crystallization slot. Since all of the SIC experiments were
performed in a single column, the margin and direction of
inherent error (22,23) in the B,, data must be the same. This
run-to-run error free data suggested a downward peak in B,
at pH 6.5 and 7.6, in which B,, values were minimal at 0.17
M NaCl. The B,, values were slightly negative in these
conditions. Overall By, mapping in NaCl showed that By,
does not depend much on pH at higher ionic strength. This
simple B,, mapping in NaCl shows why it was impossible to
crystallize IDEC-152 by empirical screening.

In contrast to NaCl, (NH4),SO, and PEG are two well-
known precipitants of proteins. Instead of a crystalline solid
phase, amorphous precipitates are often observed in the pres-
ence of (NH4),SO, or PEG. B», values of MAD as a function
of the concentration of these precipitants would also help us
achieve a better understanding of protein phase behavior in
the presence of these precipitants. Both (NH,4),SO,4 and PEG-
400 showed similar trends, i.e., an unchanged B,, value up
t0 0.6 M (NH,4),SO,4 and 15% (v/v) PEG-400 (Fig. 4). Above
these points, the B,, value decreased dramatically to reach
the negative regime of the B,, scale. However, it was im-
possible to run SIC experiments at higher PEG-400 concen-
trations. At PEG-400 concentration of >20% (v/v), the solution
is too viscous to pump through the chromatography column.
On the other hand, the solubility of the MAb was too low to
obtain a well distinguishable peak at an (NH,4),SO,4 concen-
tration of >1.0 M.

Phase behavior of the monoclonal antibody

Precipitates of the monoclonal antibody

The solubility of a protein is usually measured by dissolving
crystals in a protein-free solution until the concentration of
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FIGURE 3 B,, profile of IDEC-152 in NaCl at different pHs.
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FIGURE 4 B,, profile of IDEC-152 in (NH4),SO, and PEG-400 at
pH 7.6.

the protein in the liquid phase reaches a constant equilibrium
value. Alternatively it is also possible to start with a super-
saturated solution, in which the solution reaches equilib-
rium through the growth of crystals. It typically takes days
to months to reach equilibrium (67). Both methods were
impossible to implement for IDEC-152, since it has not been
possible to crystallize the MAb yet. Although precipitates are
generally considered as nonequilibrium phases, the residual
protein concentration in the supernatant is widely referred to
as the solubility. In this work, solubility was measured by al-
lowing the MAD solutions to precipitate.

When the solution conditions and the initial MAb con-
centrations were met for the phase separation, precipitates
formed immediately. In some experimental conditions, the
immediately appearing precipitates dissolved during 48 h of
incubation with shaking. The conditions at which the pre-
cipitates did not dissolve showed two distinct phases, a clear
solution phase on the top and a white precipitate phase on the
bottom. Under light microscope, the precipitates were char-
acterized as fibril-like opaque. The obtained precipitates were
reversible, and they could be driven to redissolve by addition
of solvent. The MADb concentration in the supernatant was
found to be independent of the initial protein concentration
within the limits of the experimental error of 10%, consistent
with observations with lysozyme solutions (68,69). In con-
trast, the apparent solubility of a-chymotrypsin, bovine serum
albumin, and bovine liver catalase in precipitation experi-
ments have been reported to be functions of the initial protein
concentration (68,70). The MAb concentration in the super-
natant also showed a smooth decrease with increasing precip-
itant concentrations. However, if the initial MADb concentrations
were too high with respect to the solubility, a sticky gel type
of solid phase was formed. No clear solution could be re-
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covered from the top in such circumstances. The character-
istics of IDEC-152 precipitates obtained in NaCl, (NH,4),SO4
or PEG-400 were the same. All of these observations during
the precipitation of IDEC-152 MAb suggest that there is
indeed an equilibrium phase separation, despite the fact that
the precipitates are kinetically trapped nonequilibrium phases.
However, the solubility obtained from the supernatant con-
centration may not be equal to the real equilibrium solubility,
and therefore it is referred to as ‘‘apparent solubility’’ in this
article. Indeed, one would expect a lower supernatant concen-
tration to exist in equilibrium with a crystalline solid phase,
as observed for lysozyme (69,71,72).

Phase diagrams of monoclonal antibody

The apparent solubility and precipitation behavior of IDEC-
152 was studied as a function of the concentration of three
precipitants, NaCl, (NH,4),SO,, and PEG-400, at a constant
temperature of 30°C. The apparent solubility was found to
decrease smoothly with increasing precipitant concentration
for all three precipitants, in accordance with Cohn (73). A
series of dilutions was made with varying MAb concentra-
tions around the apparent solubility line. Interestingly, no
phase separation was observed up to a certain concentration
above the apparent solubility line (Fig. 5). The minimum
MAD concentration at which precipitation was observed was
designated as the precipitation line in the phase diagram. The
MAD solution was completely transparent between the sol-
ubility and precipitation lines. It was, however, not possible
to differentiate nucleation and growth region in the super-
saturated area (74) because of unsuccessful crystal growth.
Fig. 5 shows a phase diagram of the IDEC-152 MAbD as a
function of NaCl concentration. The solubility of the MAb
was extremely high up to 2.4 M NaCl. A solid phase was
observed at a minimum NaCl concentration of 2.5 M. At
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FIGURE 5 Phase behavior of IDEC-152 MADb in NaCl at 30°C and

pH 7.6.
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4.5 M NaCl, the solubility of the MAb was extremely low
(<1 mg/ml). Phase diagrams were obtained in similar
fashion for (NH,4),SO, (Fig. 6) and PEG-400 (Fig. 7).

MAD in the framework of universal phase diagram

In this work, phase diagrams of IDEC-152 MADb were ob-
tained as a function of precipitant concentration at a constant
temperature of 30°C. One would expect protein phase be-
havior as a function of a precipitant concentration to be simi-
lar to that of the inverse of temperature. However, measurement
of the liquid-liquid coexistence curve as a function of pre-
cipitant concentration is extremely difficult by the cloud-
point method (75,76), because of the difficulty of slowly
increasing or decreasing the precipitant concentration while
keeping all other parameters constant. In addition, the source
of the turbidity in IDEC-152 solutions was mostly due to the
formation of precipitates, unlike the liquid droplets observed
in a previous study (76). However, Lenhoff and co-workers
(69) showed that the supernatant curve of lysozyme obtained
from precipitation and cloud-point measurements is consis-
tent with the low-density branch of the metastable liquid-
liquid coexistence curve. On the other hand, the formation of
the dense branch of the liquid-liquid binodal is perturbed by
the appearance of flocks or aggregates. Therefore, gels or
precipitates represent a different, but kinetically trapped, struc-
ture for the dense liquid phase. The physical appearance of
the lysozyme precipitate described in Cheng et al. (69) was
similar to that observed in this study. In both cases, the pre-
cipitates were opaque and settled at the bottom of the tube. If
shaken, it caused the solution to be turbid. The liquid phase
concentration was independent of initial protein load, con-
forming to the pseudoequilibrium. Furthermore, the initial
higher load of protein caused the formation of gel in both
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FIGURE 6 Phase behavior of IDEC-152 MAb in (NH,),SO, at 30°C and
pH 7.6
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FIGURE 7 Phase behavior of IDEC-152 MAD in PEG-400 at 30°C and
pH 7.6.

cases. Therefore, precipitates of MADb can be interpreted as
the dense branch of the liquid-liquid binodal. In that case, the
dense phase in the liquid-liquid phase separation must be
similar to the dense liquid phase described by Prausnitz and
co-workers (68,77,78), where precipitates were named as
dense liquid phases and protein was treated as the partition-
ing solute between the liquid and precipitate phases.

A generic format of phase diagrams was made with the
above assumptions. The concentration of MAb in both the
supernatant phase (apparent solubility) and the precipitate
(dense) phase was plotted against the reverse scale of the
(NH4),SO,4 concentration (Fig. 8). The supernatant and pre-
cipitate MAb concentrations show an apparent equilibrium
curve, which represents the liquid-liquid coexistence curve.

s
C
K<)
IS
<
8 1.0 —O— Liquid-liquid co-existence
S R Equilibrium points
O 1.14
<
(]
w 1.2
A
T
z 1.3 1
1.4 1
1.5- T T T T
0 100 200 300 400
MADb concentration (mg.ml‘1)
FIGURE 8 Phase diagram of IDEC-152 MADb showing liquid-liquid

coexistence.
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Since the crystal-liquid equilibrium solubility curve could
not be determined experimentally, the position of the liquid-
liquid co-existence curve with respect to the solubility curve
cannot be shown directly. However, the position of the
liquid-liquid co-existence curve can be visualized by plotting
it against By,. Such a phase diagram was generated in By,
scale according to the model described by Haas and Drenth
(51-53). The calculated phase diagram (Fig. 9) shows that
the critical point is located at a B,, value of —0.32 X 104
mol ml/g?, which corresponds to slightly negative B,, values
of George and Wilson’s crystallization slot (20,21). There-
fore, the calculated phase diagram of MAD is consistent with
the fact that the precise location of the nucleation is around
the critical point. The crystal-liquid solubility line (Fig. 9,
dashed line) is equal to the light branch of the bimodal, for an
fvalue of >0.3217. The phase diagram of MAD is therefore
more likely to exhibit a triple point than an isolated crystal-
liquid solubility line.

The experimentally determined liquid-liquid coexistence
curve in (NH4),SO, concentration scale was transformed
into the B,, scale by interpolation, since the B,, values were
known as a function of (NH4),SO, concentration. The ex-
perimental data points of liquid-liquid coexistence are shown
in Fig. 9. Although the light branch of the data points matched
well with the spinodal, the dense branch showed much lower
concentration than theoretical expectation. This is because
precipitates are considered the dense phase and the precise
determination of the precipitate volume and concentration is
difficult. However, the above observations suggest that the
MADb, a complex glycoprotein, certainly supports the so-called
universal format of phase diagram.

0
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= i o
. [ Crystal phase .
o~ u .
o) 5] pooeee Spinodal .
B ———— Binodal .
[ Crystallization region *
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[ ] Experimental data &
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0.0 0.2 0.4 0.6 0.8
MAb volume fraction (-)

FIGURE 9 Phase diagram of IDEC-152 MAD in the format of a generic
protein phase diagram. Calculations were made according to Haas and Drenth
(51). Assumptions: Q = 1.665 X 107" ecm®; ¢, = 0.37; M = 144000 g/mol;
p = 14362 g/cm3; f=0.3217. Existence of binodal and spinodal within the
crystal phase is not realistic. However, it is shown to visualize their approxi-
mate location.
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The question arises: why is crystallization of IDEC-152
MAD impossible when the phase diagram supports a generic
format? It is obvious from the phase diagram (Fig. 9) that
spontaneous classical homogeneous nucleation just above
the critical point is not possible for two reasons. First, the
critical point corresponds to a protein volume fraction of
0.131 or a concentration of 188 mg/ml. Conducting crystal-
lization experiments above such a high protein concentration
is impractical and inapplicable. Second, there is insufficient
or no space between the liquid-liquid critical point and the
solubility line. The only possible mechanism remaining for
nucleation of the MAD is the liquid-liquid phase separation.
Therefore, crystallization of MAD is only expected between
the light branch of the binodal and spinodal, which might
be a very narrow range. A possible reason for unsuccess-
ful crystallization is that even if an experiment is designed
between the light branch of the binodal and spinodal, the
crystallization process itself might be too slow for crystals to
form within a practical time frame. A third reason for unsuc-
cessful crystallization could be the shape of the MAb mole-
cule. A slightly negative B,, value around 0.8 M (NH,4),SO4
could be due to strong attractions in a few specific orien-
tations that are not favorable to solid lattice formation.

CONCLUSION

The work presented here shows a phase behavior study of a
complex glycoprotein. Like most well studied proteins, phase
behavior of IDEC-152 MADb shows a behavior of decreasing
solubility with increasing precipitant concentration, accord-
ing to Cohn (76). Rescaling of the phase diagram in B,, units
shows that spontaneous classical homogeneous nucleation
of MAD crystals is not possible just above the liquid-liquid
critical point, because of insufficient or no space between the
critical point and the solubility line. Nucleation of IDEC-152
MAD could only be possible by liquid-liquid phase separa-
tion in a narrow window. However, the idea of a universal
protein phase diagram was supported for this large complex
glycoprotein. Further study is required on uncommon and
structurally complex proteins to understand protein phase
behavior in a generalized way. This study further concludes
that the crystallization of proteins in (NH4),SO, is rather
difficult, because both solubility and B,, decrease drastically
above a certain (NH,4),SO, concentration, leaving an ex-
tremely narrow window of crystallization.

REFERENCES

1. Pande, A., J. Pande, N. Asherie, A. Lomakin, O. Ogun, J. King, and
G. B. Benedek. 2001. Crystal cataracts: human genetic cataract caused
by protein crystallization. Proc. Natl. Acad. Sci. USA. 98:6116-6120.

2. Eaton, W. A., and J. Hofrichter. 1990. Sickle cell hemoglobin poly-
merization. Adv. Prot. Chem. 40:63-279.

3. Selkoe, D. J. 1994. Alzheimer’s disease: a central role for amyloid.
J. Neuropathol. Exp. Neurol. 53:438-447.

Biophysical Journal 93(2) 610-619



618

4.

12.

13.

14.

16.

18.

19.

20.

21.

22.

23.

24.

25.

Koo, E. H., P. T. Lansbury, and J. W. Kelly. 1999. Amyloid diseases:
abnormal protein aggregation and neurodegeneration. Proc. Natl. Acad.
Sci. USA. 96:9989-9990.

. Brader, M. L., M. Sukumar, A. H. Pekar, D. S. McClellan, R. E.

Chance, D. B. Flora, A. L. Cox, L. Irwin, and S. R. Myers. 2002.
Hybrid insulin cocrystals for controlled release delivery. Nat. Biotechnol.
20:800-804.

. Walter, H., and D. E. Brooks. 1995. Phase separation in cytoplasm, due

to macromolecular crowding, is the basis for microcompartmentation.
FEBS Lett. 361:135-139.

. Ostermeier, C., and H. Michel. 1997. Crystallization of membrane

proteins. Curr. Opin. Struct. Biol. 7:697-701.

. Stura, E. A., G. R. Nemerow, and 1. A. Wilson. 1992. Strategies in the

crystallization of glycoproteins and protein complexes. J. Cryst.
Growth. 122:273-285.

. Rigaud, J.-L., M. Chami, O. Lambert, D. Levy, and J.-L. Ranck. 2000.

Use of detergents in two-dimensional crystallization of membrane
proteins. Biochim. Biophys. Acta. 1508:112—-128.

. Harris, L. J., E. Skaletsky, and A. McPherson. 1998. Crystallographic

structure of an intact IgG1 monoclonal antibody. J. Mol. Biol. 275:
861-872.

. Payne, W. J., D. L. Marshall, R. K. Shockley, and W. J. Martin. 1988.

Clinical laboratory applications of monoclonal antibodies. Clin.
Microbiol. Rev. 1:313-329.

Larson, S., J. Day, A. Greenwood, E. Skaletsky, and A. McPherson.
1992. Characterization of crystals of an intact monoclonal antibody
from canine lymphoma. J. Mol. Biol. 222:17-19.

Stura, E. A., A. C. Satterthwait, J. C. Calvo, and R. S. Stefanko.
1994. Crystallization of an intact monoclonal antibody (4B7) against
Plasmodium falciparum malaria with peptides from the Pfs25 protein
antigen. Acta Crystallogr. D50:556-562.

Harris, L. J., E. Skaletsky, and A. McPherson. 1995. Crystallization of
intact monoclonal antibodies. Proteins. 23:285-289.

. Kuznetsov, W. G., A. J. Malkin, and A. McPherson. 2001. The liquid

protein phase in crystallization: a case study-intact immunoglobulins.
J. Cryst. Growth. 232:30-39.

Saphire, E. O., P. W. H. L. Parren, C. F. Barbas, D. R. Burton, and I. A.
Wilson. 2001. Crystallization and primary structure determination of an

intact human immunoglobulin, b12: an antibody that broadly neutralizes
primary isolates of HIV-1. Acta Crystallogr. D57:168-171.

. McPherson, A. 1985. Crystallization of macromolecules: general

principles. Methods Enzymol. 114:112-120.

Neal, B. L., D. Asthagiri, O. D. Velev, A. M. Lenhoff, and E. W. Kaler.
1999. Why is the osmotic second virial coefficient related to protein
crystallization? J. Cryst. Growth. 196:377-387.

McMillan, W. G., and J. E. Mayer. 1945. The statistical thermody-
namics of multicomponent systems. J. Chem. Phys. 13:276-305.

George, A., and W. W. Wilson. 1994. Predicting protein crystallization
from a dilute solution property. Acta Crystallogr. D50:361-365.

George, A., Y. Chiang, B. Guo, A. Arabshahi, Z. Chi, and W. W.
Wilson. 1997. Second virial coefficient as predictor in protein crystal
growth. Methods Enzymol. 276:100-110.

Ahamed, T., M. Ottens, G. W. K. van Dedem, and L. A. M. van der
Wielen. 2005. Design of self-interaction chromatography as an ana-
lytical tool for predicting protein phase behavior. J. Chromatogr. A.
1089:111-124..

Ahamed, T., M. Ottens, G. W. K. van Dedem, and L. A. M. van der
Wielen. 2006. Erratum to ‘‘design of self-interaction chromatogra-
phy as an analytical tool for predicting protein phase behavior’.
J. Chromatogr. A. 1115:272.

Neal, B. L., D. Asthagiri, and A. M. Lenhoff. 1998. Molecular origins
of osmotic second virial coefficients of proteins. Biophys. J. 75:2469—
2477.

Rosenbaum, D., P. C. Zamora, and C. F. Zukoski. 1996. Phase
behavior of small attractive colloidal particles. Phys. Rev. Lett. 76:
150-153.

Biophysical Journal 93(2) 610-619

26.

217.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

Ahamed et al.

Rosenbaum, D. F., A. Kulkarni, S. Ramakrishnan, and C. F. Zukoski.
1999. Protein interactions and phase behavior: sensitivity to the form of
the pair potential. J. Chem. Phys. 111:9882-9890.

Rosenbaum, D. F., and C. F. Zukoski. 1996. Protein interactions and
crystallization. J. Cryst. Growth. 169:752-758.

Farnum, M., and C. Zukoski. 1999. Effect of glycerol on interactions
and solubility of bovine pancreatic trypsin inhibitor. Biophys. J. 76:
2716-2726.

Ho, J. G. S., A. P. J. Middleberg, P. Ramage, and H. P. Kocher. 2003.
The likelihood of aggregation during protein renaturation can be as-
sessed using the osmotic second virial coefficient. Protein Sci. 12:
708-716.

Chi, E. Y., S. Krishnan, T. W. Randolph, and J. F. Carpenter. 2003.
Physical stability of proteins in aqueous solutions: mechanism and
driving forces in nonnative protein aggregation. Protein Sci. 20:1325—
1336.

Valente, J. J., R. W. Payne, M. C. Manning, W. W. Wilson, and C. S.
Henry. 2005. Colloidal behavior of proteins: effect of the second virial
coefficient on solubility, crystallization and aggregation of proteins in
aqueous solution. Curr. Pharm. Biotechnol. 6:427-436.

Ahamed, T., M. Ottens, B. K. Nfor, G. W. K. van Dedem, and L. A. M.
van der Wielen. 2006. A generalized approach to thermodynamic prop-
erties of biomolecules for use in bioseparation process design. Fluid
Phase Equilib. 241:268-282.

Curtis, R. A., and L. Lue. 2006. A molecular approach to biosepara-
tions: protein-protein and protein-salt interactions. Chem. Eng. Sci.
61:907-923.

Blanch, H. W., J. M. Prausnitz, R. A. Curtis, and D. Bratko. 2002.
Molecular thermodynamics and bioprocessing: from intracellular event
to bioseparations. Fluid Phase Equilib. 194—-197:31-41.

van der Wielen, L. A. M., and E. S. J. Rudolph. 1999. On the
generalization of thermodynamic properties for selection of biosepara-
tion processes. J. Chem. Technol. Biotechnol. 74:275-283.

Przybycien, T. M. 1998. Protein-protein interactions as a means of
purification. Curr. Opin. Biotechnol. 9:164—170.

Tessier, P. M., A. M. Lenhoff, and S. I. Sandler. 2002. Rapid
measurement of protein osmotic second virial coefficients by self-
interaction chromatography. Biophys. J. 82:1620-1631.

Tessier, P. M., S. D. Vandrey, B. W. Berger, R. Pazhianur, S. L
Sandler, and A. M. Lenhoff. 2002. Self-interaction chromatography: a
novel screening method for rational protein crystallization. Acta
Crystallogr. D58:1531-1535.

Tessier, P. M., H. R. Johnson, R. Pazhianur, B. W. Berger, J. L.
Prentice, B. J. Bahnson, S. I. Sandler, and A. M. Lenhoff. 2003.
Predictive crystallization of ribonuclease A via rapid screening of
osmotic second virial coefficients. Proteins. 50:303-311.

Garcia, C. D., S. C. Holman, C. S. Henry, and W. W. Wilson. 2003.
Measuring protein interactions by microchip self-interaction chroma-
tography. Biotechnol. Prog. 19:575-579.

Garcia, C. D., D. J. Hadley, W. W. Wilson, and C. S. Henry. 2003.
Screening of protein-ligand interactions by affinity chromatography.
Biotechnol. Prog. 19:1006-1010.

Teske, C. A., H. W. Blanch, and J. M. Prausnitz. 2004. Measurement
of lysozyme-lysozyme interactions with quantitative affinity chroma-
tography. J. Phys. Chem. B. 108:7437-7444.

Berger, B. W., C. J. Blamey, U. P. Naik, B. J. Bahnson, and A. M.
Lenhoff. 2005. Roles of additives and precipitants in crystallization
of calcium- and integrin-binding protein. Cryst. Growth Des. 5:1499—
1507.

Berger, B. W., C. M. Gendron, M. Colleen, R. R. Clifford, E. W. Kaler,
and A. M. Lenhoff. 2005. The role of proteins and surfactant inter-
actions in membrane-protein crystallization. Acta Crystallogr. D61:
724-730.

Valente, J. J., K. S. Verma, M. C. Manning, W. W. Wilson, and C. S.
Henry. 2005. Second virial coefficient studies of cosolvent-induced
protein self-interaction. Biophys. J. 89:4211-4218.



Phase Behavior of Monoclonal Antibody

46.

47.

48.
49.
50.
51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

Curtis, R. A., R. S. Pophale, and M. W. Deem. 2006. Monte Carlo
simulations of the homopolypeptide pair potential of mean force. Fluid
Phase Equilib. 241:354-367.

Vliegenthart, G. A., and H. N. W. Lekkerkerker. 2000. Predicting
the gas-liquid critical point from the second virial coefficient. J. Chem.
Phys. 112:5364-5369.

Reference deleted in proof.

Reference deleted in proof.

Reference deleted in proof.

Haas, C., and J. Drenth. 1998. The protein-water phase diagram and the
growth of protein crystals from aqueous solution. J. Phys. Chem. B.
102:4226-4232.

Haas, C., and J. Drenth. 1999. Understanding protein crystallization on
the basis of the phase diagram. J. Cryst. Growth. 196:388-394.

Haas, C., and J. Drenth. 2000. The interface between a protein crystal
and an aqueous solution and its effect on nucleation and crystal growth.
J. Chem. Phys. B. 104:368-377.

Curtis, R. A., H. W. Blanch, and J. M. Prausnitz. 2001. Calculation of
phase diagrams for aqueous protein solutions. J. Phys. Chem. B.
105:2445-2452.

ten Wolde, P. R., and D. Frenkel. 1997. Enhancement of protein crystal
nucleation by critical density fluctuation. Science. 277:1975-1978.
ten Wolde, P. R., and D. Frenkel. 1999. Enhanced protein crystalli-

zation around the metastable critical point. Theor. Chem. Acc.
101:205-208.

Talanquer, V., and D. W. Oxtoby. 1998. Crystal nucleation in the
presence of a metastable critical point. J. Chem. Phys. 109:223-227.

Galkin, O., and P. G. Vekilov. 2000. Control of protein crystal nuclea-
tion around the metastable liquid-liquid phase boundary. Proc. Natl.
Acad. Sci. USA. 97:6277-6281.

Lomakin, A., N. Asherie, and G. B. Benedek. 2003. Liquid-solid
transitions in nuclei of protein crystals. Proc. Nat. Acad. Sce. USA.
100:10254-10257.

Sear, R. P. 1999. Phase behavior of a simple model of globular pro-
teins. J. Chem. Phys. 111:4800-4806.

Naro, M. G., N. Kern, and D. Frenkel. 1999. The role of long-range
forces in the phase behavior of colloids and proteins. Europhys. Lett.
48:332-338.

Muschol, M., and F. Rosenberger. 1997. Liquid-liquid phase separa-
tions in supersaturated lysozyme solutions and associated precipitate
formation/crystallization. J. Chem. Phys. 107:1953-1962.

Foffi, G., G. D. McCullagh, A. Lawlor, E. Zaccarelli, K. A. Dawson,
F. Sciortino, P. Tartaglia, D. Pini, and G. Steel. 2002. Phase equilibria

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

7.

78.

619

and glass transition in colloidal systems with short-ranged attractive
interactions: application to protein crystallization. Phys. Rev. E. 65:
031407.

Smith, P. K., R. I. Krohn, G. T. Hermason, A. K. Malia, F. H. Gartner,
M. D. Provenzano, E. K. Fujimoto, N. M. Goeke, B. J. Olson, and D.
C. Klenk. 1985. Measurement of protein using bicinchoninic acid.
Anal. Biochem. 150:76-85.

Plant, A. L., L. Locascio-Brown, W. Haller, and R. A. Durst. 1991.
Immobilization of binding proteins on nonporous supports: comparison
of protein loading, activity, and stability. Appl. Biochem. Biotechnol.
30:83-98.

Harris, L. J., S. B. Larson, K. W. Hasel, and A. McPherson. 1997.
Refined structure of an intact IgG2a monoclonal antibody. Biochem-
istry. 36:1581-1597.

Akata, M. 1993. Protein crystal growth: An approach based on phase
diagram determination. Phase Transit. 45:205-219.

Shih, Y.-C., J. M. Prausnitz, and H. W. Blanch. 1992. Some characteristics
of protein precipitation by salts. Biotechnol. Bioeng. 40:1155-1164.

Cheng, Y.-C., R. F. Lobo, S. I. Sandler, and A. M. Lenhoff. 2006.
Kinetics and equilibria of lysozyme precipitation and crystallization
in concentrated ammonium sulfate solutions. Biotechnol. Bioeng. 94:
177-188.

Iyer, H. V., and T. M. Przybicien. 1994. Protein precipitation: effect of
mixing on protein solubility. AICKE J. 40:349-360.

Howard, H. V., P. J. Twigg, J. K. Baird, and E. J. Meehan. 1988. The
solubility of hen- egg white lysozyme. J. Cryst. Growth. 90:94—104.

Moretti, J. J., S. I. Sandler, and A. M. Lenhoff. 2000. Phase equilibria
in the lysozyme-ammonium sulfate-water system. Biotechnol. Bioeng.
70:498-506.

Cohn, E. J. 1925. The physical chemistry of proteins. Physiol. Rev. 5:
349-438.

Chayen, N. E. 2005. Methods for separating nucleation and growth in
protein crystallization. Prog. Biophys. Mol. Biol. 88:329-337.

Liu, C., N. Asherie, A. Lomakin, J. Pande, O. Ogun, and G. B. Benedek.
1996. Phase separation in aqueous solutions of lens y-crystallins: special
role of y,. Proc. Natl. Acad. Sci. USA. 93:377-382.

Asherie, N. 2004. Protein crystallization and phase diagrams. Methods.
34:266-272.

Coen, C. J., H. W. Blanch, and J. M. Prausnitz. 1995. Salting-out
of aqueous proteins: phase equilibria and intermolecular potentials.
AIChE J. 41:996-1004.

Coen, C.J.,J. M. Prausnitz, and H. W. Blanch. 1997. Protein salting out:
phase equilibria in two protein systems. Biotechnol. Bioeng. 53:567-574.

Biophysical Journal 93(2) 610-619



