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Gamma Interferon Is Critical for Resistance to Theiler’s
Virus-Induced Demyelination
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Administration of neutralizing monoclonal antibody to gamma interferon increased Theiler’s virus-induced
demyelination and virus antigen persistence in the spinal cord in susceptible SJL/J mice and completely
abrogated resistance such that all C57BL/10SNJ mice developed demyelination. These experiments support the
hypothesis that gamma interferon is critically important for resistance to Theiler’s virus-induced disease but
is not required for myelin destruction.

Gamma interferon (IFN-g) plays a critical role in the pro-
tective immune response to viral and protozoan infections
(30), which is mediated primarily by CD81 T cells (29). In
contrast, IFN-g enhances immunopathology in autoimmune
diseases by upregulating major histocompatibility complex an-
tigens (34) and activating macrophages (31). One environmen-
tal trigger for autoimmune diseases is virus infection (20, 32).
Because IFN-g could be protective or a detriment, we inves-
tigated the function of IFN-g in an experimental murine model
of multiple sclerosis triggered by virus infection. Intracerebral
injection of Theiler’s murine encephalomyelitis virus (TMEV),
a picornavirus, into susceptible SJL/J mice results in virus per-
sistence and immune system-mediated primary demyelination
(26, 35, 37). In contrast, infection of resistant C57BL/10SnJ
mice results in acute encephalitis followed by virus clearance
without demyelination. Because IFN-g may paradoxically be
important in clearing virus but inducing immunopathology, we
treated susceptible and resistant strains of mice with a neutral-
izing monoclonal antibody (MAb) to IFN-g prior to TMEV
infection and during the initial stages of chronic demyelina-
tion.
SJL/J and C57BL/10SnJ female mice (4 to 8 weeks of age)

were injected intracerebrally with 2 3 105 PFU of the Daniel’s
(DA) strain of TMEV in a 10-ml volume. XMG1.2, a rat

immunoglobulin (IgG1) MAb specific for mouse IFN-g (2),
and GL113, a rat IgG1 MAb specific for anti-b-galactosidase
(used as an isotype control) were purified from tissue culture
supernatants by gel filtration and ion-exchange chromatogra-
phy. Both preparations were .98% pure and contained ,2
EU of endotoxin per mg of antibody. Antibodies were given
intraperitoneally at an initial dose of 2 mg 1 day prior to virus
infection (day 21) and then at 1 mg on days 7, 14, 21, and 28
following virus infection. Some animals received 2 mg on day
15 following infection and then 1 mg on days 21 and 28.
Thirty-five days following infection, mice were perfused by
intracardiac puncture with Trump’s fixative. Detailed morpho-
logical analysis, without knowledge of treatment group, was
performed by examining for the presence of gray matter in-
flammation, meningeal inflammation, and demyelination in
each quadrant from 12 to 18 spinal cord coronal sections em-
bedded in plastic (27). Brains were cut into three coronal
sections, embedded in paraffin, and stained with hematoxylin
and eosin. The cerebellum, brain stem, hippocampus, thala-
mus, cerebral cortex, meninges, and corpus callosum were
graded independently on a four-point scale for the presence of
inflammation and necrosis (25).
To detect virus antigen, spinal cord coronal sections from

perfused animals were stored in 0.1 M phosphate buffer, rinsed

TABLE 1. Enhancement of Theiler’s virus-induced demyelination by anti-IFN-g treatment of susceptible SJL/J and resistant B10 mice

Mice and treatmenta

(n)
No. of spinal cord
quadrants examined

% Quadrants [mean 6 SEM]

Inflammation Demyelination
(Pb)Gray matter Meninges

SJL/J
Anti-b-Gal (17) 1,135 0.1 6 0.1 22.4 6 3.5 21.5 6 3.7
Anti-IFN-g
Day 21 (13) 682 1.9 6 1.5 37.1 6 6.8 38.8 6 6.3 (0.028)
Day 115 (15) 815 2.4 6 1.5 36.6 6 6.6 37.9 6 6.3 (0.03)

B10
Anti-b-Gal (15) 832 0.1 6 0.1 0.8 6 0.7 0.7 6 0.6
Anti-IFN-g (8) 452 0.3 6 0.3 4.5 6 1.2 11.2 6 2.3 (0.0001)

a Unless indicated otherwise, treatment commenced 1 day before (day 21) virus infection. b-Gal, b-galactosidase.
b Versus the value for the anti-b-galactosidase antibody (Student’s t test).
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in 0.1 M Tris buffer with 25 mM hydroxylamine (pH 7.4),
treated with 10% dimethyl sulfoxide for 1 h, and quick-frozen
in isopentane chilled in liquid nitrogen. Avidin-biotin immu-
noperoxidase staining was performed on 10-mm cryostat sec-
tions by using polyclonal rabbit antiserum to DA virions (23).

The number of virus antigen-positive cells per square millime-
ter in five or six spinal cord coronal sections from each mouse
was determined with an image analysis system. Serum anti-
TMEV antibodies were measured by an enzyme-linked immu-
nosorbent assay (ELISA) that used purified TMEV antigen

FIG. 1. (A) Absence of demyelination and inflammation in the spinal cord of a B10 mouse treated with control anti-b-galactosidase antibody starting 1 day prior
to intracerebral infection with TMEV. (B) Multiple demyelinated axons and inflammatory cells in the spinal cord of a B10 mouse treated with anti-IFN-gMAb starting
1 day prior to infection with TMEV. Mice were sacrificed on day 35 following infection. Spinal cord sections were embedded in glycol methacrylate plastic and stained
with a modified erichrome cresyl violet stain. Magnification, 3630.
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(22). For isotype-specific ELISA, rabbit antibodies specific for
IgG1 and IgG2a were used as described elsewhere (4).
Treatment with anti-IFN-g enhanced the severity of demy-

elination in the spinal cord in SJL/J mice (Table 1). All TMEV-
infected SJL/J mice, whether treated with anti-IFN-g or con-
trol antibody, showed demyelination. However, there were
more spinal cord quadrants showing demyelination in anti-
IFN-g-treated mice than in control-treated mice (P 5 0.03). In
anti-IFN-g-treated mice, demyelinating lesions were large and
encompassed most of the spinal cord white matter. An increase
in meningeal inflammation but not neuronal disease was ob-
served in anti-IFN-g-treated mice (Table 1). To test the con-
tribution of IFN-g to immunopathology, we began treatment
on day 115, when there was inflammation but minimal demy-
elination. More demyelination was detected in mice treated
with anti-IFN-g beginning on day 115 than in control-treated
mice (P 5 0.03). We asked whether neutralization of IFN-g
would convert normally resistant C57BL/10SnJ mice to suscep-
tibility. Only 2 of 15 infected C57BL/10SnJ mice treated with
control MAb showed demyelination in the spinal cord, but
these demyelinated lesions were small. In marked contrast, all
eight C57BL/10SnJ mice treated with anti-IFN-g showed se-
vere demyelination (Fig. 1) (P 5 0.0001 compared with con-
trol-treated mice).
Total brain scores for control antibody-treated mice were

increased in infected SJL/J mice (3.6 6 0.9 [range, 0 to 10])
compared with infected B10 mice (0.9 6 0.3 [range, 0 to 2]).
No increase in total scores was observed in anti-IFN-g-treated
(SJL/J or B10) mice (day 21 or day 115). However, more
brain stem disease was observed for anti-IFN-g-treated SJL/J
mice (day 21 or day 115) than for control-treated SJL/J mice.
Severe (13) pathology (massive inflammation, necrosis, and
neuronal injury) was observed in the brain stem in 5 of 5 SJL/J
mice treated with anti-IFN-g (day21), 5 of 7 SJL mice treated
with anti-IFN-g (day 115), but only 2 of 10 SJL/J mice treated
with control antibody (P 5 0.01 [chi-square test using Yate’s
correction]).
Fewer virus antigen-positive cells were observed in the spi-

nal cord in infected B10 mice than for infected SJL/J mice
(Table 2). More virus antigen-positive cells per spinal cord
area were observed in anti-IFN-g-treated mice than for con-
trol-treated SJL/J (P, 0.008) or B10 (P, 0.03) mice. All virus
antigen-positive cells were in the white matter. An excellent
correlation (r 5 0.64; P 5 0.00003) was obtained between the
number of virus antigen-positive cells per square millimeter of
spinal cord with the demyelination score (Fig. 2). Increased

levels of virus-specific total antibody were observed in infected
SJL/J mice compared with infected B10 mice (Fig. 3A and B).
However, no difference in the levels of virus-specific total Ig’s
(IgG and IgM) between anti-IFN-g-treated and control-
treated SJL/J or B10 mice was observed (Fig. 3A and B).
Treatment with anti-IFN-g increased the ratio of virus-specific
IgG1 to IgG2a, on the basis of a fivefold increase in IgG1
without a change in IgG2a (Fig. 3C and 3D).
Our studies and those of others (10, 19) demonstrate con-

vincingly the critical role for IFN-g in resistance to Theiler’s
virus demyelinating disease. One of the genes controlling viral
persistence maps close to the IFN-g locus on chromosome 10
(1). In addition, infection of inbred 129SV mice lacking an
IFN-g receptor results in extensive primary demyelination (7).
Treatment with MAbs to IFN-g resulted in widespread demy-
elination and virus antigen-positive cells in spinal cord white
matter but did not produce the overwhelming neuronal central
nervous system TMEV infection observed in immunosup-
pressed (12, 25), T-cell-deficient athymic nude (28) or neonatal
(24) mice. No deaths were observed following treatment with
anti-IFN-g, nor was there clinical or pathological evidence of
encephalitis. Therefore IFN-g contributes primarily to resis-
tance to chronic demyelination and virus persistence in the
spinal cord.
Most studies suggest that the antiviral activity dependent on

IFN-g is mediated by CD81 T cells (29, 36). However, neu-
tralization of endogenous IFN-g abrogates the activity of
CD41 (TH1) cells following cytomegalovirus (13) and Schis-
tosoma mansoni (33) infection. IFN-g may function via natural
killer (NK) cells, since a MAb to IFN-g prevents recovery from
a vaccinia virus infection in nude mice (9). T cells but not NK

FIG. 2. Correlation between the number of virus antigen-positive cells per
square millimeter of spinal cord (immunoperoxidase staining on frozen sections)
and demyelination scores (erichrome cresyl violet stain of plastic-embedded
sections) for SJL/J and B10 mice on day 35 post-TMEV infection. Note the
difference in the y-axis scales. F, anti-IFN-g on day 21; å, anti-IFN-g on day
115; E, anti-b-galactosidase on day 21.

TABLE 2. Virus antigen expression in the spinal cord in TMEV-
infected micea

Mice and
treatmentb

No. of Ag-
positive cells

Spinal cord area
(mm2)

No. of cells/mm2

(Pc)

SJL
Anti-b-Gal 17.6 6 4.2 4.2 6 1.1 4.7 6 0.8
Anti-IFN-g
Day 21 37.0 6 4.7 5.9 6 0.9 6.6 6 0.7 (0.05)
Day 115 37.4 6 5.2 5.4 6 0.6 7.2 6 0.4 (0.008)

B10
Anti-b-Gal 7.2 6 1.7 6.6 6 1.5 1.1 6 0.2
Anti-IFN-g 13.0 6 1.4 6.6 6 0.7 2.0 6 0.3 (0.03)

a The data are means 6 standard errors of the means.
b Unless indicated otherwise, treatment commenced 1 day before (day 21)

virus infection. n 5 5 except for the B10 anti-b-galactosidase (anti-b-Gal) group
(n 5 4).
c Versus the value for the anti-b-galactosidase antibody (Student’s t test).
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cells play the major role in resistance to TMEV-induced de-
myelination. Resistant mice generate virus-specific H-2-re-
stricted CD81 cytotoxic lymphocytes in the central nervous
system (11). Resistant mice depleted of CD41 or CD81 T cells
(25) and mice deficient in b2-microglobulin develop demyeli-
nation (6, 18, 21). In contrast, depletion of NK cells enhances
encephalitis but not demyelination (16). Therefore, antibody
to IFN-g probably inhibited the effector function of protective
CD81 or CD41 T cells, resulting in more demyelination in
SJL/J mice and the abrogation of resistance in B10 mice.
The pathogenesis of chronic TMEV-induced demyelination

has been proposed to be mediated by TH1 cells, which secrete
IFN-g, interleukin 2, tumor necrosis factor, and lymphotoxin
and participate in delayed-type hypersensitivity responses (3, 8,
14, 17). IFN-g promotes the differentiation of TH1 cells but
inhibits TH2 cells (15). In Leishmania infection, in which the
TH1 response is protective but the TH2 response is fatal (5),
IFN-g stimulates clearance of the protozoa and is required for
the development of a TH1 response in healer strains of mice.
Treatment with MAbs to IFN-g should have diminished de-
myelination if disease was mediated primarily by TH1 cells. In
contrast, TMEV-infected mice treated with anti-IFN-g showed
more demyelination and less virus clearance, similar to the
results in Leishmania infection.
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