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Rationale: Obstructive lung disease, the major cause of mortality in
cystic fibrosis (CF), is poorly correlated with mutations in the disease-
causing gene, indicating that other factors determine severity of
lung disease.
Objectives: To quantify the contribution of modifier genes to varia-
tion in CF lung disease severity.
Methods: Pulmonary function data from patients with CF living with
their affected twin or sibling were converted into reference values
based on both healthy and CF populations. The best measure of
FEV1 within the last year was used for cross-sectional analysis. FEV1

measures collected over at least 4 years were used for longitudinal
analysis. Genetic contribution to disease variation (i.e., heritability)
was estimated in two ways: by comparing similarity of lung function
in monozygous (MZ) twins (� 100% gene sharing) with that of
dizygous (DZ) twins/siblings (� 50% gene sharing), and by compar-
ing similarity of lung function measures for related siblings to simi-
larity for all study subjects.
Measurements and Main Results: Forty-seven MZ twin pairs, 10 DZ
twin pairs, and 231 sibling pairs (of a total of 526 patients) with
CF were studied. Correlations for all measures of lung function for
MZ twins (0.82–0.91, p � 0.0001) were higher than for DZ twins
and siblings (0.50–0.64, p � 0.001). Heritability estimates from both
methods were consistent for each measure of lung function and
ranged from 0.54 to 1.0. Heritability estimates generally increased
after adjustment for differences in nutritional status (measured as
body mass index z-score).
Conclusions: Our heritability estimates indicate substantial genetic
control of variation in CF lung disease severity, independent of CFTR
genotype.
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Cystic fibrosis (CF) is a lethal autosomal recessive disorder char-
acterized by chronic obstructive pulmonary disease and caused
by mutations in the CF transmembrane conductance regulator
(CFTR) gene (1). However, lung function is poorly correlated
with CFTR mutation (2, 3), indicating that environmental, ge-
netic, and/or stochastic factors are the major determinants of
lung disease severity (2, 4). Numerous studies have linked envi-
ronmental factors, including tobacco smoke exposure (5), bacte-
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AT A GLANCE COMMENTARY

Scientific Knowledge on the Subject

Severity of cystic fibrosis (CF) lung disease is poorly corre-
lated with CFTR mutation. Although numerous candidates
have been investigated, the role for modifier genes in CF
lung disease severity has not been verified or quantified.

What This Study Adds to the Field

A significant portion of variability in CF lung disease is due
to modifier genes.

rial infection (6, 7), and socioeconomic status (8, 9), with reduced
pulmonary function. Conversely, aggressive nutritional interven-
tion has been associated with improved outcomes (10). Although
numerous candidate genes have been investigated as CF modifi-
ers (11, 12), a role for genes other than CFTR in CF lung disease
severity has not been verified or quantified. Family-based studies
involving identical (monozygous [MZ]) twins, nonidentical (di-
zygous [DZ]) twins, and siblings provide an opportunity to assess
contribution of genetic and nongenetic factors to disease varia-
tion. To this end, we have obtained detailed medical and environ-
mental information from CF twins and CF siblings throughout
the United States.

One of the major challenges in any study of the factors under-
lying disease variation is to accurately define the phenotype.
Traditionally, pulmonary function testing (PFT) has been used
to determine severity of and monitor progression in CF lung
disease (13, 14). The FEV1 is the PFT measurement that is
most predictive of survival in CF (15, 16). Expressing FEV1 as a
percent-predicted value based on a normal reference population
illustrates the reduction in pulmonary function of patients with
CF relative to healthy individuals (17). However, patients with
CF have variable growth abnormalities, including reduced height
and delayed puberty (18, 19), that distort the values predicted
from healthy populations and complicate comparisons of lung
function from one patient with CF to another (20, 21). Disease-
specific reference equations for FEV1 have been developed to
compare patients of different age and sex with CF (22, 23). In
the current study, the contribution of modifier genes to variation
in CF lung disease severity (i.e., heritability) was estimated from
cross-sectional and longitudinal measures of lung function
derived from both percent-predicted FEV1 values and from
disease-specific measures of FEV1 in affected twins and siblings.
Some of the results of this study have been previously reported
in the form of abstracts (24, 25).
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METHODS

All subjects were recruited on the basis of having an affected sibling.
Except for two sets of MZ twins, all patients attended U.S. CF care
centers. All patients met CF diagnostic criteria (26). Zygosity for all
twin pairs was determined by the AmpFlSTR Profiler kit (Applied
Biosystems, Foster City, CA). CFTR genotype was obtained from medi-
cal records, by typing for 31 common CF alleles or by sequencing of
the coding and flanking regions (27, 28). Ethnicity was determined by
chart review. Written, informed consent or assent was obtained from
all subjects.

Pairs of twins or siblings were included in the analysis if both mem-
bers of the pair had a minimum of four quarterly PFT measurements.
A quarter was defined as a 3-month block beginning with the subject’s
month of birth. PFT data obtained in patients younger than 6 years,
after lung transplantation, or when living apart from their affected twin
or sibling(s) were excluded. FEV1 values in liters were converted into
percent-predicted values (FEV1%pred) (29) and into CF-specific per-
centiles for FEV1 (FEV1CF%) (23). For cross-sectional analysis, the
best FEV1 measure within the last year of available data was termed
MaxFEV1CF%. Siblings of different ages were compared using the best
FEV1 for the older sibling from the year when the age of the older
sibling matched the current age of the younger sibling. Longitudinal
measures were derived from all years of available PFT data for each
study subject, using the best FEV1 measurement per quarter. Rates of
change for FEV1CF% were calculated by linear regression of FEV1CF%
on test age in years using FEV1 data obtained after 1993. The best
quarterly FEV1CF percentages for subjects with a minimum of 4 years
of PFT data were used to calculate average FEV1CF% (AvgFEV1CF%).
The estimated FEV1%pred at 20 years of age (EstFEV1%@20yrs) was
calculated from a minimum of 5 years of FEV1 data using mixed model-
ing and Bayes estimation as described by Schluchter and colleagues
(22). The AvgFEV1CF% and EstFEV1%@20yrs for each individual
were used as a single numbers representing lung disease severity over
time (longitudinal measures). To assess agreement between the two
methods of defining longitudinal lung disease severity, AvgFEV1CF%
and EstFEV1%@20yrs were converted into z-scores based on our pa-
tient population. The z-transformed values were compared using Bland-
Altman analysis. The average of all body mass index (BMI) z-scores
(AvgBMIZ) for each subject was derived from height and weight mea-
surements between 2 and 20 years of age and was used as a longitudinal
measure of nutritional status.

Intrapair similarity was determined for MZ twins, DZ twins, and
siblings using Pearson pairwise correlation coefficients (r). Assignment
of twins or siblings as “A” or “B” was permuted 106 times. The mean
and standard deviation of correlation coefficients obtained from the
permutations are reported. Statistical significance of the correlation

TABLE 1. CHARACTERISTICS OF STUDY SUBJECTS

Combined DZ
MZ Twins DZ Twins Siblings Twins/Siblings*

Individuals 94 (47 pairs) 20 (10 pairs) 412 (231 pairs)† 149 (79 pairs)‡

Average age � SD at most 20.2 � 8.2 yrs 17.6 � 7.1 yrs 16.8 � 6.7 yrs 16.9 � 6.3
recent PFT (range) (7.8–46.7 yr) (10.8–34.5 yrs) (6.8–46.0 yrs) (7.8–39.0 yrs)

Sex
Female 44 7 190 59
Male 50 13 222 90

Pancreatic status§

Insufficient 93 19 368 139
Sufficient 1 1 43 9
Unknown 0 0 1 1

CFTR genotype
�F508/�F508 56 (59.6%) 10 (50%) 203 (49.3%) 75 (50.3%)
Non-�F508 homozygotes 38 (40.4%) 10 (50%) 209 (50.7%) 74 (49.7%)

Definition of abbreviations: DZ � dizygous; MZ � monozygous; PFT � pulmonary function testing.
* Same-sex DZ twins and same-sex siblings with fewer than 3 years’ difference in age.
† Fourteen families with three affected children (counted as three pairs), one family with four affected children (counted as six

pairs).
‡ Three families with three affected children (counted as three pairs).
§ Physician-diagnosed pancreatic insufficiency or individual taking supplemental pancreatic enzymes.

coefficients was determined using the corresponding t value, calculated
using the equation t � r/(sqrt[(1 � r2)(n � 2)]). Multiple linear regres-
sion was used to determine the contributions of sex, genotype, age at
most recent PFT, pancreatic status, and nutritional status to variability
in longitudinal measures of lung function. Genotype was defined as 0,
1, or 2 based on the number of �F508 CFTR mutations carried by each
individual. Pancreatic status was insufficient if the subject had physician-
diagnosed pancreatic insufficiency or was taking supplemental pancre-
atic enzymes. Heritability was estimated by subtracting the correlation
coefficient for the combined DZ twin/sibling group from the correlation
coefficient for MZ twins and multiplying the difference by two (30).
Heritability was also estimated from the siblings alone by dividing
additive trait variance among related siblings by total trait variance for
all siblings using maximum likelihood estimates as implemented in
Sequential Oligogenic Linkage Analysis Routines (SOLAR; http://
www.sfbr.org/solar) (31). The significance of heritability estimates from
SOLAR was determined by likelihood ratio tests, in which the obtained
likelihood of the model with the stated additive genetic variance is
compared with the likelihood of the model with the additive genetic
variance constrained to zero. Statistical calculations and graphing were
performed using Intercooled Stata 8 (Stata Corp., College Station, TX).
p values less than 0.05 were deemed significant. Additional supporting
data, including intrapair correlations for �F508 homozygotes and for
age-dependent intrapair correlations are included in the online
supplement.

RESULTS

Demographics

Fifty-seven CF twin pairs and 231 CF sibling pairs (of a total
patient population of 526) from 61 fully accredited CF centers
and 10 affiliate CF centers throughout the United States and a
CF center in Australia were studied (Table 1). One hundred sixty-
one subjects were excluded because either the subject or the
affected twin or sibling had fewer than four quarterly PFT mea-
surements. The average number of PFT observations per individ-
ual was 23 � 14, with a range of 4 to 100. The average number
of years of PFT data was 8.8 � 5.3, with a range of 0.7 to 30.6
years. Four hundred twenty-six patients had at least 4 years of
PFT data, and 391 had 5 years of data or more. The average age
for the entire group was 17.4 � 7.1 years, with a range of 6.8 to
46.7 years. The MZ twins were slightly older than the DZ twins
and siblings, although age ranges for the different groups over-
lapped considerably (Table 1). Males represented 54.2% of the
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total study population. The majority (91.3%) of subjects had
pancreatic insufficiency. Individuals homozygous for the �F508
CFTR mutation represented 51.4% of the entire study popula-
tion. The distribution of �F508 homozygotes within each class
is within expected variance given the sample size. Most subjects
were white (89.9%), whereas a small minority were Hispanic/
Latino (2.7%), African American (1.1%), Asian (0.6%), Middle
Eastern (0.4%), or of mixed racial descent (3.0%). Ethnicity
was unknown for 2.3% of study subjects. The demographic fea-
tures of the study subjects mirror those of the population of
patients with CF in the United States in 2004, except for a
younger mean age (32).

Measures of the Severity of CF Lung Disease

The distribution of the cross-sectional measures of lung func-
tion in the study population is shown in Figure 1. The mean
MaxFEV1%pred for the study patients was 87.8% (� 25.7; range,
16–165). The mean MaxFEV1CF% for the study patients was
0.66 (� 0.29; range, 0–1). Because the CF-specific percentiles

Figure 1. Distribution of the cross-sectional measures of lung function
in the cystic fibrosis (CF) twins and siblings. (A ) The x axis represents
FEV1 expressed as percent-predicted based on the equations of Knudson
(MaxFEV1%pred), in increments of 10%. The y axis shows the percent-
age of study patients with a MaxFEV1%pred that falls within each 10%
increment. (B ) FEV1 expressed as CF-specific percentile based on the
equations of Kulich (FEV1CF%), in increments of 0.05. The y axis shows
the percentage of study patients with an FEV1CF% that falls within each
0.05 increment. FEV1CF% is expressed as a fraction, with 0 correspond-
ing to the most severe lung disease and 1 corresponding to the mildest
lung disease (i.e., the equivalent of the 100th percentile).

for FEV1 represent the entire CF population, an increment of
0.05 would be expected to represent 5% of patients if the disease
severity of the study population exactly mirrored that of the CF
population as a whole. The study subjects encompass the entire
spectrum of severity, although a substantial fraction have moder-
ate to mild lung disease, compared with the entire CF population.

To determine if FEV1CF% changes over time, we plotted
the best quarterly FEV1CF% for all study subjects versus age
at time of PFT measurement. The mean linear rate of change
for the entire group was 0.00 � 0.03. The rate of change in
FEV1CF% was between �0.03 and 0.03 for 68% of study sub-
jects, and 98% had a rate of change of less than 0.10 per year.
To evaluate the ability of AvgFEV1CF% to predict the actual
FEV1CF% at age 20, we compared AvgFEV1CF% to the known
MaxFEV1CF% at age 20 for the 120 subjects for whom these
data were available. The average absolute difference in actual
and AvgFEV1CF% was 0.096 � 0.087 (range, 0.002–0.578). The
majority (64.7%) of the subjects had a MaxFEV1CF% at age 20
that differed by less than 0.10 from the AvgFEV1CF%, and
89.9% differed by less than 0.20. Because FEV1CF% remains
relatively stable for a number of years for many patients with
CF and is predictive of lung function at age 20, we chose to use
AvgFEV1CF% as a longitudinal measurement of the severity of
lung disease. A Bayesian model that predicts FEV1 at 20 years
of age (EstFEV1%@20yrs) was used as a second longitudinal
measure of lung function (22). To evaluate the validity of this
model for our population, we compared the known value of
FEV1%pred for the 87 subjects who had a PFT measurement
at age 20 with the value predicted by the model. The mean
absolute difference between the EstFEV1%@20yrs and the Max-
FEV1%pred at age 20 was 10.2 � 15.2, with a range of 0.1 to
97.5. The majority (69%) of subjects had predicted values that
differed from actual values by 10% or less, and 87.4% differed
by less than 20%. These two longitudinal models of CF lung
disease were highly correlated (r � 0.80, p � 0.0001) for the
341 individuals for whom both measures were available (Figure
2A). When considering z-transformed longitudinal measures,
the mean difference between the two measurements is small.
However, there is wide variation in difference between the two
measures for any given mean, suggesting that the two longitudi-
nal measures represent slightly different aspects of lung disease
severity. There is no systematic bias between the two measures
(Figure 2B).

Covariate Analysis

Previous studies evaluating genetic contribution to variability in
longitudinal measures of pulmonary function have found pulmo-
nary function to be closely related to nutritional status (10, 33,
34). We used the AvgBMIZ as an estimate of nutritional status.
Regression analysis was performed to evaluate the contributions
of AvgBMIZ, pancreatic status, genotype, and age at most recent
PFT measurement (maximum test age) to variability in longitudi-
nal measures of severity of CF lung disease. When considered
independently, AvgBMIZ and pancreatic status were significant
covariates of EstFEV1%@20yrs (p � 0.001), whereas AvgBMIZ
was the only significant covariate for AvgFEV1CF% (p � 0.001).
When all covariates were included in a single model using multi-
ple linear regression, AvgBMIZ remained a highly significant
covariate for both measures, whereas pancreatic status was also
a significant covariate for EstFEV1%@20yrs (Table 2). The best-
fit model for EstFEV1%@20yrs was 88.4 � 13.8 (if pancreatic
sufficient) � (15.4 � AvgBMIZ). For AvgFEV1CF%, the best-
fit model was 0.626 � (0.124 � AvgBMIZ). AvgBMIZ accounts
for 20% of the total variation in AvgFEV1CF% and 28% of the
total variation in EstFEV1%@20yrs.
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Figure 2. Agreement between longitudinal measures of lung function.
(A ) Each point on the graph represents an individual subject with a
minimum of 5 years of pulmonary function testing data while living at
home with an affected sibling. The x axis represents the average
FEV1CF% (AvgFEV1CF%) and the y axis represents the estimated FEV1%
at 20 years (EstFEV1%@20yrs) for each individual. The best-fit line with
95% confidence intervals are shown. (B ) Each point on this Bland-
Altman plot represents a single subject. The x axis represents the mean
of the two longitudinal measures and the y axis represents the difference
between the two longitudinal measures for each subject. The horizontal
lines on the graph represent the mean difference between the two
measures for all subjects (center line) and �2 and �2 standard deviations
from that mean (upper and lower horizontal lines, respectively).

Estimation of Genetic Effect

The intrapair correlations of the longitudinal measure of CF-
specific lung function AvgFEV1CF% for MZ twins, DZ twins,
siblings, and the combined group are shown in Figure 3. Similar
trends were observed for the cross-sectional measure Max-
FEV1CF% and the other longitudinal measure of EstFEV1%@
20yrs (Table 3). The combined group of same-sex DZ twins and
same-sex siblings within 3 years of age had similar or higher
correlation than the entire group of siblings for each measure-
ment (Table 3). To assess the effect of age on intrapair similarity,
we calculated correlations for MZ twin and combined DZ twin/
sibling pairs who were both younger than 15 years and for pairs
who were both older than 15 years. Intrapair similarity for the
younger and the older pairs did not differ significantly (see Table
E1 in the online supplement). The high correlation among MZ
twin pairs (� 100% gene sharing) compared with DZ twin pairs

TABLE 2. THE MAGNITUDE AND SIGNIFICANCE
OF FACTORS INFLUENCING LONGITUDINAL MEASURES
OF LUNG FUNCTION

Coefficient* 95% CI† p Value‡

EstFEV1%@20yrs
AvgBMIZ 15.6 � 1.6 12.5 to 18.7 � 0.001
�F508 �3.4 � 2.2 �7.7 to 1.0 0.132
Pancreatic status 11.2 � 5.8 �0.2 to 22.7 0.053
Max. test age 0.2 � 0.3 �0.4 to 0.7 0.550
Constant 90.7 � 6.0 78.8 to 102.6 � 0.001

Best-fit model: EstFEV1% @20yrs � 88.4 � 13.8 (if pancreatic sufficient) �

[15.46 � AvgBMIZ]

AvgFEV1CF%
AvgBMIZ 0.126 � 0.013 0.100 to 0.152 � 0.001
�F508 0.001 � 0.019 �0.036 to 0.038 0.972
Pancreatic status 0.034 � 0.051 �0.067 to 0.134 0.508
Max. test age 0.004 � 0.002 �0.000 to 0.008 0.074
Constant 0.555 � 0.048 0.460 to 0.649 � 0.001

Best-fit model: AvgFEV1CF% � 0.626 � [0.124 � AvgBMIZ]

Definition of abbreviations: AvgBMIZ � average of all body mass index z-scores;
AvgFEV1CF% � average cystic fibrosis–specific percentile for FEV1; CI � confidence
interval; EstFEV1%@20yrs � estimated FEV1%pred at 20 years.

* Coefficient is the magnitude of the effect of each factor derived from multivari-
ate analysis. Standard deviation for each coefficient is shown.

† The 95% confidence interval for each coefficient.
‡ p value refers to significance of the coefficient.

and sibling pairs (� 50% gene sharing) indicates strong genetic
contribution to variation in each measure of lung function (Table
4). Estimates of heritability for longitudinal measures increased
after adjusting for their significant covariates. Using the same
techniques described above, correlations were calculated for
twins and siblings homozygous for the common CFTR mutation
�F508 (see Table E2). Twins and siblings homozygous for �F508
demonstrate strong genetic control of variation in lung disease
(Table 4). Heritability estimates from siblings using variance
components methods also demonstrate substantial genetic contri-
bution to variation in lung function (Table 4). Estimates obtained
from the sibling analysis were generally equal to or higher than
those obtained by comparing MZ twins to DZ twins and siblings.

DISCUSSION

Identifying the underlying causes of variation in lung disease
severity is a major goal of CF research. The discovery of the
CFTR gene and characterization of its mutant alleles revealed
that pancreatic status and, to some degree, sweat gland dysfunc-
tion are sensitive to variability in CFTR function (2, 35). How-
ever, CFTR genotype correlates poorly with pulmonary pheno-
type (36). Realization of the latter combined with the challenge
posed by CFTR replacement therapy has intensified study of the
mechanisms responsible for progression of obstructive airway
disease, the primary cause of morbidity and mortality in patients
with CF. Affected twins and siblings demonstrate that genetic
control of both cross-sectional and longitudinal measures of lung
function is substantial. The results of this study validate searches
for CF modifier genes and, more importantly, provide a basis to
quantify the contribution of identified modifiers to the heritable
fraction of variation in pulmonary function. This discovery
should lead to new insights into the pathophysiology of CF lung
disease, and ultimately to development of new CF therapies.

The related patients with CF in this study are representative
of the wide spectrum of disease severity observed in the entire
CF population. However, the CF twins and siblings have better
lung function than the measures reported to the CF Foundation
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Figure 3. Correlation of the longitudinal
measure of CF-specific lung function in twins
and siblings. For each plot, the x axis repre-
sents the AvgFEV1CF% for twin or sibling A
and the y axis represents the AvgFEV1CF%
for twin or sibling B. The points on each graph
represent one twin pair or one sibling pair.
The best-fit lines with 95% confidence inter-
vals are shown. DZ � dizygous.

patient registry by CF care centers in the United States (32). We
used the best quarterly FEV1 measures to minimize variability in
FEV1 measures due to intercurrent illnesses, insufficient patient
effort, or inherent test variability. Although CF centers typically

TABLE 3. INTRAPAIR CORRELATIONS FOR CROSS-SECTIONAL AND LONGITUDINAL MEASURES OF CF LUNG DISEASE SEVERITY
IN TWINS AND SIBLINGS LIVING TOGETHER

MaxFEV1CF% EstFEV1%@20yrs* Adjusted† EstFEV1%@20yrs AvgFEV1CF%‡ Adjusted§ AvgFEV1CF%
(n ) (n ) (n ) (n ) (n )

0.88 � 0.08|| 0.81 � 0.01|| 0.80 � 0.01|| 0.91 � 0.01|| 0.93 � 0.00||

MZ twins (38) (34) (34) (36) (32)
0.58 � 0.08 0.16 � 0.11 0.49 � 0.09 0.30 � 0.12 0.65 � 0.07

DZ twins (8) (7) (7) (7) (7)
0.36 � 0.00|| 0.41 � 0.01¶ 0.43 � 0.01|| 0.55 � 0.00|| 0.49 � 0.00||

Siblings (184) (90) (87) (124) (117)
Same-sex Siblings, � 3 yr difference in age 0.53 � 0.01|| 0.51 � 0.03** 0.36 � 0.03 0.65 � 0.01|| 0.54 � 0.02**

(61) (37) (37) (47) (45)
Same-sex DZ twins and siblings, � 3 yr 0.54 � 0.03|| 0.50 � 0.02¶ 0.40 � 0.03†† 0.64 � 0.07|| 0.58 � 0.06||

difference in age (67) (42) (42) (52) (50)

Definition of abbreviations: AvgBMIZ � average of all body mass index z-scores; AvgFEV1CF% � average cystic fibrosis–specific percentile for FEV1; CI � confidence
interval; DZ � dizygous; EstFEV1%@20yrs � estimated FEV1%pred at 20 years; MaxFEV1CF% � best cystic fibrosis–specific percentile for FEV1 within the last year of
available data; MZ � monozygous.

* Using minimum of 5 years of PFT data.
† EstFEV1%@20yrs adjusted for AvgBMIZ and for pancreatic status.
‡ Using minimum of 4 years of PFT data.
§ AvgFEV1CF% adjusted for AvgBMIZ.
|| p value � 0.0001.
¶ p value � 0.001.
** p value � 0.005.
†† p value � 0.01.

report the best FEV1, we cannot verify that the CF Foundation
patient registry represents only optimum PFT measures. The
bias toward milder lung disease could also be a consequence of
recruiting only patients with CF who have at least one surviving
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TABLE 4. HERITABILITY ESTIMATES FOR CROSS-SECTIONAL
AND LONGITUDINAL MEASURES OF LUNG FUNCTION

Twins and Siblings* All Siblings† (SE)

�F508 �F508
All Subjects Homozygotes All Subjects Homozygotes

MaxFEV1CF% 0.68 0.86 0.68 (0.14)‡ 0.54 (0.22)§

AvgFEV1CF% 0.54 0.80 1.00 (no SE)‡ 0.96 (0.19)‡

AdjAvgFEV1CF% 0.70 0.78 0.96 (0.14)‡ 0.89 (0.17)‡

EstFEV1%@20yrs 0.62 0.56 0.73 (0.19)§ 0.65 (0.28)
AdjEstFEV1%@20yrs 0.82 0.76 0.83 (0.20)§ 1.00 (no SE)‡

Definition of abbreviations: AdjAvgFEV1CF% � adjusted average cystic fibrosis–
specific percentile for FEV1; AdjEstFEV1%@20yrs � adjusted estimated FEV1%pred
at 20 years; AvgFEV1CF% � average cystic fibrosis–specific percentile for FEV1;
EstFEV1%@20yrs � estimated FEV1%pred at 20 years; MaxFEV1CF% � best cystic
fibrosis–specific percentile for FEV1 within the last year of available data.

* Heritability estimated by multiplying by 2 the correlation in MZ twins minus
the correlation in combined same-sex DZ twin and same-sex siblings with � 3
years’ difference in age (30)

† Heritability estimated by dividing additive trait variance among related siblings
by total trait variance for the entire group of siblings using maximum likelihood
estimates as implemented in Sequential Oligogenic Linkage Analysis Routines
(SOLAR) (31). Standard errors for each estimate are shown in parentheses.

‡ p value � 0.0001.
§ p value � 0.001.

sibling, thereby excluding siblings of deceased patients who po-
tentially have more severe disease and the severely affected
offspring whose parents elected to forego additional childbear-
ing. The genetic contribution to early and severe lung disease
is unknown. For many conditions, early-onset, severe disease
usually has a higher likelihood of significant genetic effect (37).
Absence of some sibling pairs with severe disease might have
reduced estimates of genetic effect. On the other hand, the
estimates of genetic effect presented here could be inflated. First,
this study had an insufficient number of DZ twins from which
to derive meaningful estimates of intrapair similarity. For this
reason, we combined the DZ twins with siblings to achieve robust
correlation coefficients. However, unlike DZ twins, siblings do
not share an in utero environment nor does their home environ-
ment exactly match that of their sibling during critical periods
of lung development. Using siblings as a proxy for DZ twins
may have substantially lowered correlations from “actual” levels
among those sharing 50% of their genes, thereby inflating herita-
bility estimates. Second, it is plausible that MZ twins have higher
levels of shared environment than DZ twins or siblings by virtue
of their “identical” status (38). Although experimental evidence
from behavioral studies counters this argument (39, 40), we did
not test for differences in shared environment among twin pairs.
Finally, error in estimating heritability from twins and siblings
can arise from differences in the distribution of phenotypes
among the groups of related patients (41). To minimize this
source of inaccuracy, heritability was estimated only for lung
function measures that did not differ significantly (p 	 0.2) in
means and variances between the MZ and combined DZ twin/
sibling groups.

Correlation of all measures of lung function for MZ twins
were high but were not 100%, suggesting a role for environmen-
tal and/or stochastic factors in CF lung disease variation. To
minimize difference in environmental factors among twins and
siblings, we analyzed lung function data collected while study
subjects were living at home with their affected twin or sibling.
Shared home environment is likely to control for significant
environmental covariates, such as socioeconomic status (8, 9),
ambient air pollution (42), and tobacco smoke (5). However,
the increase in correlation coefficients in siblings selected for

same sex and similarity in age suggests that there are additional
sources of variation, even in a shared home environment. Future
goals for this project will be to investigate the contribution of
unique environmental factors, such as infection history, compli-
ance with treatment regimens, and tobacco use to variation in
CF lung disease.

The two predictive models for lung disease progression used
in this study were derived from different CF populations, yet
had similar predictive power and were highly correlated. Bland-
Altman analysis of agreement between the two measures, how-
ever, indicates wide variation between the two methods of defin-
ing lung disease severity. This fact may be explained partially
by the populations from which the two models were derived.
EstFEV1%@20yrs was based on lung function data from 188
�F508 homozygotes born after 1965 and monitored at a single
center (22). In contrast, FEV1CF% values were based on more
than 25,000 patients with a variety of CFTR genotypes monitored
from 1994 to 2001 at centers throughout the United States (23).
Although EstFEV1%@20yrs was derived from �F508 patients
only, CFTR genotype was not a significant covariate for this
measure in our subjects. This finding is likely explained by the
significance of pancreatic status to the EstFEV1%@20yrs model
and the observation that CFTR genotype is highly correlated
with pancreatic function (2). The similarity of these longitudinal
prediction models may be explained by relative homogeneity in
patterns of disease progression in CF. Indeed, different samples
of the CF population have reported similar annual rates of de-
cline in FEV1%pred, with mean values ranging from �1.5 to
�3.6 (7, 14, 43–46). The results presented here indicate that
AvgFEV1CF% or EstFEV1%@20yrs corrected for pancreatic
status can be used to test genes that are candidate modifiers of
CF lung disease.

Nutritional status has been shown to be associated with sever-
ity of lung disease in CF, but the exact nature of the relationship
between nutritional status and lung function is unknown (10,
18, 33, 34). Evidence of genetic influence on both traits was
reported by the European CF Twin and Sibling Study when
the investigators noted that concordance for a composite cross-
sectional measure of lung function and nutritional status was
higher in 29 MZ twin pairs than in 12 DZ twin pairs (p �
0.04) (47). However, concordance rates did not differ when lung
function and nutritional status were considered independently
(47). Furthermore, genetic effect on longitudinal measures was
not evaluated (47). Recently, Drumm and colleagues associated
alleles of TGF-
1 with lung disease severity in patients with CF
(12). The dichotomization strategy used to group patients by
lung function measures also segregated patients by nutritional
status (12). The Drumm and colleagues’ study did not discern
whether TGF-
1 alleles were associated with severity in lung
disease, malnutrition, or both. Regression analysis was used here
to quantify the interrelatedness of lung function and nutritional
status. Longitudinal lung function measures adjusted for varia-
tion in nutritional status were less similar in pairs of DZ twins
and siblings than unadjusted measures. On the other hand, pairs
of MZ twins were very similar for unadjusted and adjusted mea-
sures. Thus, differences in nutritional status caused a fraction
of the pairs of DZ twins and siblings to appear to have similar
lung function, whereas nearly all of the MZ twins were similar
in both respects. The disparity between the MZ and DZ/sibling
groups indicates the presence of factors, possibly genetic, that
modulate nutritional status independent of the genetic modifiers
of lung function.

Studies of healthy individuals suggest that genes play a sig-
nificant role in determining FEV1, even among individuals
in different environments. Estimates of heritability obtained
for cross-sectional FEV1 in various healthy adult populations
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(0.5–0.77) are comparable to our estimates from individuals with
CF (0.68) (48–51). Whether the same or different genes contrib-
ute to cross-sectional measures of lung function in healthy indi-
viduals and those with a chronic and progressive obstructive
disorder such as CF remains to be determined. Likewise, genes
that influence lung function over time may differ from those that
determine cross-sectional measures. Only one study evaluating
genetic effect on longitudinal measures of lung function in
healthy individuals has been published (52). The aforementioned
study used FEV1 measured at two time points to derive linear
rates of change and demonstrated only small genetic effect. As
shown here, longitudinal measures derived from modeling dis-
closed strong genetic control of the progression of CF lung dis-
ease. If pulmonary response to chronic injury follows predictable
genetically determined paths, then similar processes may underlie
loss of lung function in the more common complex lung diseases.
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