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p150/95 (CD11c/CD18, CR4) is a member of the �2-
integrin family of adhesion molecules and is consid-
ered an important phagocytic receptor. The role of
p150/95 in the development of central nervous sys-
tem demyelinating diseases, including multiple scle-
rosis, remains unexplored. To determine p150/95-
mediated mechanisms in experimental autoimmune
encephalomyelitis (EAE), we performed EAE using
CD11c-deficient (CD11c�/�) mice. EAE in CD11c�/�

mice was significantly attenuated and characterized
by markedly reduced spinal cord T-cell infiltration
and interferon-� production by these cells. Adoptive
transfer of antigen-restimulated T cells from wild-
type to CD11c�/� mice produced significantly atten-
uated EAE, whereas transfer of CD11c�/� antigen-
restimulated T cells to control mice induced a very
mild, monophasic EAE. T cells from MOG35–55 pep-
tide-primed CD11c�/� mice displayed an unusual cy-
tokine phenotype with elevated levels of interleukin
(IL)-2, IL-4, and IL-12 but reduced levels of interfer-
on-� , tumor necrosis factor-� , IL-10, IL-17, and trans-
forming growth factor-� compared with control mice.
Overall , CD11c�/� T cells from primed mice prolifer-
ated comparably to that of control T cells on MOG35-55

restimulation. Our results indicate that expression of
p150/95 is critical on both T cells as well as other
leukocytes for the development of demyelinating dis-
ease and may represent a novel therapeutic target for
multiple sclerosis. (Am J Pathol 2007, 170:2001–2008;
DOI: 10.2353/ajpath.2007.061016)

Multiple sclerosis (MS) is considered a T-cell-mediated
autoimmune disease, with self-reactivity directed against

numerous myelin-derived antigens, including myelin ba-
sic protein and myelin oligodendrocyte glycoprotein
(MOG). A variety of other cell types, including macro-
phages, dendritic cells, glial cells, and �� T cells, as well
as various blood-borne and membrane-anchored effec-
tor molecules (eg, cytokines, antibody, and comple-
ment), also contribute to MS pathogenesis and inflamma-
tion.1–5 A classic feature of MS is the trafficking of
antigen-specific T cells and macrophages into the central
nervous system (CNS), where they initiate inflammation
and destruction of oligodendrocytes and eventually neu-
rons. The movement of these inflammatory cells into the
CNS is regulated by a number of molecules including
leukocyte/endothelial cell adhesion proteins and che-
moattractant/activating molecules. CNS inflammatory
model systems, including the MS model, experimental
autoimmune encephalomyelitis (EAE), strongly suggest
that the adhesion molecules VLA-4 and its ligand vascu-
lar cell adhesion molecule-1, as well as the �2-integrin
molecules LFA-1 and Mac-1 (CD11a and CD11b, re-
spectively), play an integral part in this process.6–8 The
role of other �2-integrin molecules, adhesion molecules,
in particular CD11c/CD18 (CR4, p150/95), remains
unexplored.

p150/95 is expressed by myeloid cells including mac-
rophages, neutrophils, dendritic cells, and lymphocytes,
and expression increases on treatment with a variety of
chemoattractants, cytokines, phorbol esters, or on anti-
gen-mediated activation.9–17 In the CNS, microglia and
infiltrating macrophages constitutively express this adhe-
sion molecule, and p150/95 expression increases on ac-
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tivation of these phagocytic cells.18–22 p150/95 binds to
cells via a limited number of known ligands including
iC3b, fibrinogen, intercellular adhesion molecule-1, and
lipopolysaccharide (LPS)10,15,23–26 and is important in
the phagocytic clearance of bacteria and apoptotic
cells.14,27–31 Studies have also suggested a role for
p150/95 in monocyte/endothelium interactions or conju-
gate formation between cytotoxic T cells and target cells
of various types,14,18,32–35 but the in vivo relevance of
these findings remains unclear. These studies combined
with our previous work demonstrating an important role
for the other iC3b receptor, Mac-1, in the development
and progression of EAE6 prompted us to examine the role
of p150/95 in this animal model of autoimmune demyeli-
nating disease.

We report here the results of EAE studies using
CD11c�/� mice. The absence of CD11c resulted in sig-
nificantly attenuated disease severity with reduced cellu-
lar infiltration and demyelination compared with wild-type
mice. In addition, adoptive transfer experiments demon-
strated that p150/95 expression is required on T cells for
the development of EAE; however, loss of p150/95 did
not affect T-cell proliferation in in vitro restimulation as-
says. In fact at higher antigen concentration, T-cell pro-
liferation was enhanced using CD11c-deficient T cells. De-
spite normal proliferation, CD11c�/� T cells isolated from
either spleens or spinal cords of mice with EAE produced a
profile of cytokines favoring an anti-inflammatory response.
Our results suggest that p150/95 is important at multiple
levels for the development of EAE, particularly at the level of
effector T-cell functions, and may also contribute to both
phagocytosis of myelin debris and leukocyte trafficking dur-
ing the pathogenesis of EAE.

Materials and Methods

Mice

Mice containing a null mutation for CD11c were gener-
ated by gene targeting using 129/Sv-embryonic stem
cells as previously described.36 The CD11c mutation was
then backcrossed onto the C57BL/6 strain for at least
seven generations (The Jackson Laboratory, Bar Harbor,
ME). Inbred C57BL/6 mice were used as controls for all
experiments. All studies were performed with approval
from the University of Alabama at Birmingham Institu-
tional Animal Care and Use Committee. CD11c�/� mice
have normal splenic and lymph node structure, architec-
ture, and cellularity compared with control mice. In our
hands, MOG-induced EAE in 129/Sv mice is essentially
identical to that seen in C57BL/6 mice.

Induction of Active and Transferred EAE

For active EAE, control and CD11c�/� mice were immu-
nized with MOG peptide35-55 as described,37 except that
the mice received only one MOG peptide injection. MOG
peptide was synthesized by standard 9-fluorenyl-me-
thoxycarbonyl chemistry and was �95% pure as deter-
mined by reversed phase-high performance liquid chro-

matography (Biosynthesis, Lewisville, TX). Onset and
progression of EAE symptoms were monitored daily us-
ing a standard clinical scale ranging from 0 to 6 as
follows: 0, asymptomatic; 1, loss of tail tone; 2, flaccid tail;
3, incomplete paralysis of one or two hind limbs; 4, com-
plete hind limb paralysis; 5, moribund; and 6, dead. Only
mice with a score of at least 2 (flaccid tail) for more than
2 consecutive days were judged to have onset of EAE.
For each animal a cumulative disease index was calcu-
lated from the sum of the daily clinical scores observed
between day 7 and day 30. For transferred EAE, spleens
of control or CD11c�/� donors were removed 2 to 3
weeks after induction of active EAE and prepared as
previously described.37 Passive EAE was induced by
injecting �5 � 106 purified T cells derived from wild-type
mice into CD11c�/� mice or by injecting the same num-
ber of purified T cells derived from CD11c�/� mice into
wild-type mice. In both cases, purified T cells derived
from wild-type mice were injected into wild-type mice as
a control to monitor disease development.

Histopathology

Mice with actively induced EAE were sacrificed at 32 days
after induction by CO2 inhalation, and spinal columns were
removed, fixed in 10% buffered formalin, and paraffin-em-
bedded. Sections (5 �m thick) from the cervical, thoracic,
and lumbar spinal cord were cut and either stained with
hematoxylin and eosin for overall lesion evaluation and
characterization of inflammatory responses or with Luxol
fast blue for evaluation of demyelination. The extent of in-
flammation and demyelination was scored based on lesion
size (0 to 4), and lesions were evaluated for lymphocyte
accumulation, neutrophil infiltration, demyelination, axonal
degeneration, and gliosis (0 to 4). Tissues were evaluated
without identification as to experimental group. Severity
scores were calculated as the mean overall segments of the
products of the intensity scores multiplied by the extent
scores for each lesion characteristic (inflammation, axonal
degeneration, gliosis, and demyelination). The means of the
individual lesion characteristic severity scores were
summed to give the overall severity score.

Isolation and Flow Cytometric Analysis of
Leukocytes from Spinal Cords

Spinal cords were removed from control and CD11c�/�

mice with active EAE (days 12 to 15) after perfusion with
phosphate-buffered saline (PBS), ground through a cell
strainer, washed in PBS, resuspended in 40% Percoll,
and layered on 70% Percoll. After centrifugation at 2000
rpm (room temperature, 25 minutes), cells at the interface
were removed and washed in PBS and stained as de-
scribed. Cells obtained from spinal cords were incubated
with anti-CD16/32 (24G2, FcR block) to prevent nonspe-
cific staining. Spinal cord leukocytes were stained with
anti-CD4-fluorescein isothiocyanate [GK1(CR1).5], anti-CD-
8-phycoerythrin (53-6.7), anti-CD45-fluorescein isothiocya-
nate (30F11), anti-tumor necrosis factor-�-phycoerythrin
(MP6-XT22), and anti-interferon (IFN)-�-fluorescein isothio-
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cyanate (XMG1.2), all from eBiosciences, San Diego, CA.
Stained cells and forward scatter were analyzed using a
FACSCalibur and the data analyzed using CellQuest soft-
ware (BD Biosciences, San Jose, CA).

T-Cell Proliferation and Cytokine and
Chemokine Production

Antigen-specific T-cell proliferation assays were per-
formed as previously described.37 Single cell suspen-
sions from spleens obtained 14 days after EAE induction
were cultured in 96-well plates at 5 � 105 cells/well with
increasing concentrations of MOG35-55 peptide in triplicate.
After 48 hours, cultures were pulsed with [3H]thymidine for
an additional 18 hours, and incorporation of thymidine was
measured. The in vitro cytokine assays were performed
essentially as described for the proliferation assay. Dupli-
cate cultures were either left untreated or stimulated with
MOG peptide alone (5 �g/ml). Culture supernatants were
collected at 48 hours for use in cytokine enzyme-linked
immunosorbent assays. Enzyme-linked immunosorbent as-
say kits for murine cytokines [IFN-�, tumor necrosis factor-�,
interleukin (IL)-2, IL-4, IL-10, IL-12, IL-17, and transforming
growth factor-�] were purchased from R&D Systems (Min-
neapolis, MN). Each assay was performed according to the
manufacturer’s instructions. Cytokine production by cul-
tures of wild-type and CD11c�/� cells is reported as the
mean � SEM of four mice per group. The data are pooled
from two separate experiments.

Statistics

Statistical significance between control and CD11c�/�

mice for active and transferred EAE experiments was
calculated using the Wilcoxon signed-rank test; for pro-
liferation assays the Student’s t-test was used. Results of
evaluations for inflammation and demyelination were an-
alyzed using analysis of variance for main effects and
Tukey’s test for pairwise mean comparisons.

Results

Deletion of p150/95 Significantly Attenuates
Active EAE

To determine the role of p150/95 in EAE, we immunized
wild-type and CD11c�/� mice using MOG35-55 peptide and
followed the course of disease for 30 days. CD11c�/� mice
developed EAE slightly later than wild-type mice (19 days
versus 16 days); however, the difference was not statisti-
cally significant (Figure 1, Table 1). Both groups of mice had
a similar disease course during the acute phase of disease,
but the chronic phase of disease was attenuated in
CD11c�/� mice compared with wild type. The cumulative
disease index for CD11c�/� mice was significantly lower
than that of controls (32.1 versus 58, respectively; P �
0.0001, Wilcoxon signed-rank test) (Table 1).

Cellular Infiltration and Demyelination in
CD11c�/� Mice with EAE

We next performed histopathological analysis on spinal
cords of wild-type and CD11c�/� mice with active EAE to
determine the extent and nature of the cellular infiltrate
and the amount of demyelination between the two groups
of mice. Representative spinal cord sections from wild-
type mice obtained 32 days after disease induction had
significant cellular infiltration in the meninges and white
matter (Figure 2A) with corresponding demyelination
(Figure 2B). Sections obtained from CD11c�/� mice had
little cellular infiltration, inflammation, axonal degenera-
tion, and demyelination throughout the spinal cord, com-
pared with wild-type mice (Figure 2, C and D). The overall
mean score for these parameters for all regions of the
spinal cord in CD11c�/� mice was 0.82, whereas wild-
type mice had a mean score of 3.1.

We also analyzed leukocyte infiltration early in EAE
development and observed that total CD45� leukocyte
infiltration in the spinal cords of CD11c�/� mice was not
different before disease onset (day 10, data not shown),
but was substantially reduced during the acute phase of
disease (day 15, Figure 3A). Of the leukocytes that did
infiltrate the spinal cords of CD11c�/� mice, there were
fewer CD4� and CD8� T cells compared with wild type

Figure 1. The clinical course of active EAE is attenuated in CD11c�/� mice.
Active EAE was induced with MOG35–55 peptide and symptoms scored for 30
days as described in Materials and Methods. Results shown are the daily
mean clinical score for wild-type (n � 11) and CD11c�/� mice (n � 17) from
three experiments.

Table 1. EAE Symptoms in Wild-Type Mice and CD11c�/�

Mice

Mice CDI*
Disease
onset†

Disease
incidence‡

Wild type, n � 11 58 16 days 100
CD11c�/�, n � 17 32.1 19 days 94

*Cumulative disease index is the mean of the sum of daily clinical
scores observed between days 7 and 30.

†Disease onset is defined as the 1st day of 2 consecutive days with
a clinical score of two or more.

‡Disease incidence is defined as the percent of mice that displayed
any clinical signs of disease
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(Figure 3B). CD4� and CD8� T-cell infiltration was reduced
39 and 53%, respectively, in CD11c�/� mice compared
with controls. However, when normalized for the differences
in overall CNS infiltration between the two groups, CD4�

and CD8� T-cell infiltration was reduced 94.5 and 95.8%,
respectively, in CD11c�/� compared with wild-type mice.
These data demonstrate that the absence of p150/95 sig-
nificantly reduces trafficking of leukocytes to the CNS. The

reduced trafficking of CD11c�/� leukocytes was not attrib-
utable to changes in expression of the other �2-integrins
(data not shown).

Transfer of Wild-Type MOG-Sensitized T Cells
to CD11c�/� Mice Modestly Attenuates
Transferred EAE, Whereas CD11c�/� MOG-
Sensitized T Cells Induce Mild, Monophasic EAE

We also induced EAE by adoptively transferring MOG-
sensitized T cells from wild-type mice to CD11c�/� mice.
Onset of EAE in CD11c�/� recipient mice was identical to
control transfers and similar to the course of EAE ob-
served during active EAE (Figure 4A, Table 2). The over-
all severity of disease as assessed by cumulative disease
index was significantly lower in CD11c�/� recipient mice
(48.1 versus 28.4; P � 0.0001, Wilcoxon signed-rank
test). To determine whether p150/95 deficiency on anti-

Figure 4. The clinical course of adoptively transferred EAE is attenuated in
CD11c�/� mice. A: Transferred EAE was induced in wild-type (n � 5) and
CD11c�/� mice (n � 5) mice by injecting encephalitogenic T cells (�5 �
106) derived from wild-type mice with active EAE. Results shown are the
daily mean clinical score from two separate experiments. B: Transferred EAE
was induced in wild-type (n � 5) mice by injecting encephalitogenic T cells
(�5 � 106) derived from CD11c�/� mice with active EAE. As a control,
transferred EAE was induced in wild-type mice (n � 2) by injecting enceph-
alitogenic T cells (�5 � 106) derived from wild-type mice with active EAE.
Results shown are the daily mean clinical score from three separate
experiments.

Figure 2. Leukocyte infiltration and demyelina-
tion are reduced in CD11c�/� mice in EAE. Spi-
nal cords from wild-type and CD11c�/� mice
(n � 3 for each group) were obtained at 32 days
after immunization, fixed in 10% buffered forma-
lin, and paraffin-embedded. Sections from the
cervical, thoracic, and lumbar regions (5 �m)
were stained with H&E or Luxol fast blue (LFB)
and scored as described in Materials and Meth-
ods. A: Representative section from a wild-type
mouse stained with H&E. Arrows indicate wide-
spread cellular infiltration and inflammation. B:
Section from the same specimen as in A stained
with LFB. Arrows indicates regions of signifi-
cant demyelination. C: Representative section
from an CD11c�/� mouse stained with H&E.
Note the lack of cellular infiltration and inflam-
mation. D: Section from the same specimen as in
C stained with LFB. Little to no demyelination
was observed throughout the white matter. Orig-
inal magnifications, �4.

Figure 3. Leukocyte subset infiltration in the spinal cord of CD11c�/� mice
with EAE is reduced compared with control mice. A: Leukocytes isolated
from spinal cords of control (n � 5) and CD11c�/� mice (n � 5) as
described in Materials and Methods were immunostained for CD45. The
infiltration of CD45� leukocytes at day 15 after immunization was markedly
reduced in CD11c�/� mice compared with controls. B: Leukocytes isolated
from spinal cords of control (n � 5) and CD11c�/� mice (n � 5) as
described in Materials and Methods were immunostained for CD4 and CD8.
The results shown are from cells pooled within each group of mice.
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gen-specific T cells would result in attenuated disease,
we performed transferred EAE using MOG-sensitized T
cells from CD11c�/� mice (Figure 4B, Table 2). Wild-type
mice receiving CD11c�/� T cells developed EAE at the
same time as control transfers; however, the disease
peaked 3 days after onset of symptoms and remitted to a
significantly milder form of disease (cumulative disease
index: 35.5 versus 12.5; P � 0.002, Wilcoxon signed-rank
test).

CD11c�/� T Cells Proliferate Comparably but
Have an Altered Cytokine Profile Compared with
Wild-Type T Cells

To test the possibility that attenuated active and trans-
ferred EAE in CD11c�/� mice could be attributable to
impaired T-cell proliferation, we performed in vitro prolif-
eration assays as previously described.37 Stimulation of
MOG-sensitized T cells from wild-type and CD11c�/�

mice with various concentrations of MOG revealed no
overall significant difference in proliferation (Figure 5; P �
0.64, unpaired t-test). Interestingly, at the highest MOG
peptide concentrations (2 and 4 �g/ml), T cells from

CD11�/� mice proliferated significantly more than those
from control mice (P � 0.009, unpaired t-test). The in-
creased T-cell proliferation seen in CD11c�/� mice, us-
ing the higher concentrations of MOG peptide, is consis-
tent with a nearly twofold increase in IL-2 production
observed on in vitro restimulation of splenic T cells from
CD11c�/� mice compared with control (Figure 6A). The
levels of several proinflammatory cytokines produced by
CD11c�/� T cells (including IFN-�, tumor necrosis fac-
tor-�, and IL-17) were markedly lower, although IL-12
levels were elevated more than 1.5-fold relative to control
mice (Figure 6A). The production of anti-inflammatory
cytokines such as IL-4, IL-10, and transforming growth
factor-� by CD11c�/� T cells was comparable or only
modestly reduced compared with control mice. We also
examined for the production of IFN-� by CD4� and CD8�

T cells in the spinal cord of wild-type and CD11c�/� mice
during the acute phase of EAE development (15 days
after infection) (Figure 6B). Surprisingly, we observed
essentially no IFN-�-producing CD4� and CD8� T cells
that infiltrated the spinal cords of CD11c�/� mice com-
pared with controls. In contrast, CD11c�/� splenic T cells
readily produced IFN-� at the same time period after
induction (Figure 6A).

Figure 5. CD11c�/� T cells proliferate comparably to wild-type T cells.
Encephalitogenic T cells enriched by nylon-wool adherence from the spleens
of wild-type (n � 4) or CD11c�/� mice (n � 4) undergoing active EAE, or
T cells from healthy controls (naı̈ve cells), were co-cultured with irradiated
splenic APCs plus MOG peptide (0.125 to 4 �g/ml). The cells were pulsed
with [3H]thymidine and harvested at 18 hours for determination of radioiso-
tope incorporation. The results shown are expressed as the mean � SEM of
fold induction of wild-type or CD11c�/� T-cell proliferation relative to
background proliferation.

Figure 6. Splenic CD11c�/� T cells produce a unique repertoire of cytokines
during EAE. A: Encephalitogenic T cells enriched by nylon-wool adherence
from the spleens of wild-type (n � 4) or CD11c�/� mice (n � 4) undergoing
active EAE (day 15) were co-cultured with irradiated splenic APCs from naı̈ve
donors and stimulated with MOG peptide (1 �g/well). Supernatants were
collected 48 hours after stimulation and assayed by enzyme-linked immu-
nosorbent assay to quantitate production of each cytokine. Cytokine produc-
tion by cultures of wild-type and CD11c�/� cells is reported as the mean �
SEM in picograms per milliliter. The mean value for each cytokine is shown
above the bar. B: Production of IFN-� in CD4� and CD8� T cells isolated
from the spinal cords of control and CD11c�/� mice with active EAE.
Leukocytes isolated from spinal cords of control (n � 5) and CD11c�/� mice
(n � 5) as described in Materials and Methods were immunostained for CD4,
CD8, and IFN-�. The data shown are derived from gating on IFN-�-producing
cells. The results shown are from cells pooled within each group of mice.

Table 2. Transferred EAE Symptoms in Wild-Type Mice and
CD11c�/� Mice

Mice CDI*
Disease
onset†

Disease
incidence‡

WT � WT, n � 4 41.8 9.3 days 100
WT � CD11c�/�, n � 5 28.1 9.4 days 100
WT � WT, n � 2 35.5 8.5 days 100
CD11c�/� � WT, n � 5 12.5 8 days 80

*Cumulative disease index is the mean of the sum of daily clinical
scores observed between days 0 and 20 (WT � CD11c�/�

experiments) or 0 and 17 (CD11c�/� � WT experiments).
†Disease onset is defined as the 1st day of 2 consecutive days with

a clinical score of two or more.
‡Disease incidence is defined as the percent of mice that displayed

any clinical signs of disease.
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Discussion

The results we report here demonstrate that p150/95
plays an important role in the progression of the inflam-
matory events leading to demyelination and paralysis
during EAE. The mechanisms underlying CD11c-medi-
ated protection in EAE are difficult to readily decipher
attributable, in part, to poor understanding of the major
role(s) of p150/95 in the host immune response. Func-
tionally, p150/95 is best known for its contribution to
phagocytosis of bacteria (particularly Mycobacterium)
and apoptotic cells.14,27–31 Resting and activated micro-
glia as well as infiltrating macrophages all express p150/
95, and expression increases on activation of these
phagocytic cells.18–22 This expression pattern of p150/95
on macrophages and microglia, combined with the re-
duced demyelination observed in the spinal cords of
CD11c�/� mice (Figure 2), supports a role for p150/95 in
promoting myelin damage and subsequent neuronal in-
jury during EAE. However, to date, no studies using an-
tibodies to block p150/95-mediated phagocytosis in the
CNS have been performed, unlike for Mac-1 in which
both in vitro and in vivo studies have clearly established a
role for this adhesion molecule in this process.38–42 Stud-
ies directly addressing the role of p150/95 in phagocyto-
sis in demyelinating disease and other CNS inflammatory
diseases are required to enhance our understanding of
this potentially important aspect of p150/95 biology.

The contribution of p150/95-mediated phagocytosis
to demyelination may be minor given that leukocyte
infiltration into the CNS of CD11c�/� mice is substan-
tially lower than that seen in control mice (Figure 3).
There is little experimental support for p150/95 as an
adhesion molecule important in leukocyte migration.
Numerous studies have documented a role for p150/95
in both monocyte/endothelium interactions using static
in vitro adhesion assays and in conjugate formation
between cytotoxic T cells and target cells of various
types.14,18,32–35 However, in vivo adhesion studies in-
vestigating the contribution of p150/95 in mediating
leukocyte/endothelial interactions under normal or in-
flammatory conditions are lacking. Thus the impor-
tance of p150/95 in leukocyte trafficking remains pri-
marily unexplored. Nevertheless, our results provide
strong indirect evidence suggesting that p150/95 may
be important for cellular trafficking into the CNS.

p150/95 expression increases on activated B and T
cells, particularly cytotoxic T cells, the latter of which
suggests a role in adhesive events leading to target cell
killing15–17,32,35 These studies also raise the possibility
that p150/95 contributes to the development and or sta-
bility of the immunological synapse along with LFA-1. The
absence of p150/95 on either T cells or antigen-present-
ing cells (APCs) could result in reduced T-cell activation
and an altered pattern of cytokine production, a finding
we obtained with CD11c�/� mice in EAE (Figure 6).
Despite the unusual pattern of cytokines produced by
CD11c�/� splenic T cells during EAE, there was no sig-
nificant reduction in the antigen-specific proliferative ca-
pacity of T cells derived from these mice as determined
by in vitro assays (Figure 5). Nevertheless, the markedly

attenuated EAE observed when CD11c�/� T cells were
transferred to control mice (Figure 4) indicates that loss of
this �2-integrin on T cells is more critical to disease
development than loss of expression on APCs and other
leukocyte subsets. This finding coupled with the devel-
opment of attenuated EAE when control T cells were
transferred to CD11c�/� mice, argues that the expres-
sion of p150/95 on dendritic cells is not critical for the
development of EAE. p150/95 is the common cell surface
marker for the identification of dendritic cells, although
not all dendritic cells appear to express p150/95.43 More
importantly, little information is available for a functional
role for p150/95 on dendritic cells. Nevertheless, the
absence of p150/95 on either APCs or T cells may alter
the extent and rate of activation events for both cell types
leading to the attenuated disease phenotype we report
here.

Our data combined with previous studies show that
three of the four �2-integrins play critical, nonredundant
roles in demyelinating disease. Numerous reports have
shown that treatment of mice with anti-CD11a (LFA-1)
and CD11b (Mac-1) antibodies attenuates or prevents
the development of EAE.44–47 In support of these anti-
body studies, we have observed markedly attenuated
MOG-induced EAE using CD11b�/� and CD11a�/�

mice6 (K. Dugger, J. Hu, D. Bullard, and S.R. Barnum,
unpublished observations). In contrast, the deletion of
CD11d (namely �-D) had no effect of the development or
progression of EAE,48 although antibodies to CD11d
were protective in animal models of spinal cord
injury.49–51 Taken together, it is clear that LFA-1, MAC-1,
and p150/95 contribute uniquely to demyelinating
disease, despite their overlapping ligand specificity
and expression on leukocytes.

Therapeutic approaches targeting integrin function
in neurodegenerative diseases, including demyelinat-
ing disease, have been investigated for more than a
decade. Antibody-mediated inhibition of several mem-
bers of both the �4 and �2 integrin families attenuates
or prevents EAE.6,38 – 40,44 – 46,52–54 Most importantly,
anti-�4 integrin antibody has become a major compo-
nent of the treatment arsenal for relapsing-remitting
MS, despite the potentially serious side effects for a
small subset of patients.55–58 The data we present here
for p150/95 suggest that members of the �2-integrin
family of adhesion molecules, particularly Mac-1 and
p150/95, represent a viable therapeutic option for MS.
Unlike LFA-1, which is important in trafficking of numer-
ous cell types as well as T-cell activation events, inhi-
bition of Mac-1 and p150/95 may affect a repertoire of
functions in demyelinating disease without leaving the
host significantly immunocompromised. Given the
overlapping functions of Mac-1 and p150/95, deletion
of both receptors may result in a complete inhibition of
disease similar to that seen when their common ligand
intercellular adhesion molecule-1 is deleted.59 Thus,
the �2-integrin family members, including p150/95,
may offer new therapeutic approaches for demyelinat-
ing disease.
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