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Abstract

Background: Reactive gliosis has the potential to alter biomechanical properties of the brain, impede
neuronal regeneration and affect plasticity. Determining the onset and progression of reactive astrogliosis
and microgliosis due to hydrocephalus is important for designing better clinical treatments.

Methods: Reactive astrogliosis and microgliosis were evaluated as the severity of hydrocephalus
increased with age in hydrocephalic H-Tx rats and control littermates. Previous studies have suggested
that gliosis may persist after short-term drainage (shunt treatment) of the cerebrospinal fluid. Therefore
shunts were placed in 15d hydrocephalic rats that were sacrificed after 6d (21d of age) or after 21d (36d
of age). Tissue was processed for Western blot procedures and immunohistochemistry, and probed for
the astrocytic protein, Glial Fibrillary Acidic Protein (GFAP) and for microglial protein, Isolectin B4 (ILB4).

Results: In the parietal cortex of untreated hydrocephalic animals, GFAP levels increased significantly at
5d and at 12d compared to age-matched control rats. There was a continued increase in GFAP levels over
control at 21d and at 36d. Shunting prevented some of the increase in GFAP levels in the parietal cortex.
In the occipital cortex of untreated hydrocephalic animals, there was a significant increase over control in
levels of GFAP at 5d. This trend continued in the 12d animals, although not significantly. Significant
increases in GFAP levels were present in 21d and in 36d animals. Shunting significantly reduced GFAP levels
in the 36d shunted group. Quantitative grading of immuno-stained sections showed similar changes in
GFAP stained astrocytes.

Immuno-stained microglia were altered in shape in hydrocephalic animals. At 5d and 12d, they appeared
to be developmentally delayed with a lack of processes. Older 21d and 36d hydrocephalic animals
exhibited the characteristics of activated microglia, with thicker processes and enlarged cell bodies.
Following shunting, fewer activated microglia were present.

Histologic examination of the periventricular area and the periaqueductal area showed similar findings with
the 21d and 36d animals having increased populations of both astrocytes and microglia which were
reduced following shunting with a more dramatic reduction in the long term shunted animals.

Conclusion: Overall, these results suggest that reactive astrocytosis and microgliosis are associated with
progressive untreated ventriculomegaly, but that shunt treatment can reduce the gliosis occurring with
hydrocephalus.
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Background

Reactive astrogliosis and microgliosis is a common occur-
rence in hydrocephalus [1-4], and reducing the presence
of excess reactive glial cells is important for the brain tis-
sue to function normally. There is no cure for hydroceph-
alus, and shunting is merely a palliative treatment.
Therefore, we believe it will be beneficial to determine the
time of onset of reactive astrogliosis and microgliosis due
to hydrocephalus. We also believe that determining the
reversibility of this type of gliosis is important for devising
the most appropriate treatment. The function of resting
astrocytes and microglia is to aid cellular growth and
development. Upon activation by injury, these glial cells
release cytokines and chemokines which aid in the recruit-
ment of other astrocytes and microglia to the site [5]. This
recruitment can lead to the formation of a glial "scar",
which has the potential to block the growth of new neu-
ronal processes, and also may impede neo-vasculariza-
tion, thus inhibiting recovery after injury [5-7]. Although
observations of reactive astrocytes and microglia have
been characterized in hydrocephalus by histological and
quantitative studies, the temporal progression, severity,
reversibility, and the specific cellular elements involved, is
not known [1-3,8-11]. Therefore, a clear understanding of
the mechanisms involved in the genesis and progression
of hydrocephalus is important for improving diagnostic
and therapeutic options.

Congenital hydrocephalus is a condition usually marked
by an excessive accumulation of cerebrospinal fluid (CSF)
within the cerebral ventricles resulting in ventricular
enlargement. This condition affects between 0.48 to 0.81
infants per 1000 live births [12,13], and up to 78% of
patients suffer persistent deficits after treatment, possibly
due to reactive astrogliosis and microgliosis [13-19]. Our
previous studies have shown that the RNA level of Glial
Fibrillary Acidic Protein (GFAP) specific for astrocytes,
increases with the progression of hydrocephalus in both a
congenital model of rodent hydrocephalus (H-Tx rat) and
a kaolin model of induced hydrocephalus in kittens [20].
Additionally, Mangano et al [21] illustrated that micro-
glial cell proliferation and activation increased in regions
of the sensorimotor cortex and auditory cortex during the
progression of hydrocephalus in moderately affected H-Tx
rats. Furthermore, Yoshida et al found that GFAP labeled
reactive astrocytes were present surrounding cystic lesions
in severely hydrocephalic H-Tx animals, but they were not
able to detect a significant increase in GFAP labeled astro-
cytes in the white matter surrounding the ventricles
[11,22]. Clinically, increased levels of GFAP have been
found in the CSF of patients with normal pressure hydro-
cephalus, and in patients who developed secondary
hydrocephalus due to subarachnoid hemorrhage [23-26],
and the possibility of using GFAP levels as a diagnostic
tool for hydrocephalus is currently being explored
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[27,28]. Although these studies contribute to the recogni-
tion that gliosis exists in hydrocephalus, they fail to deter-
mine the timing of the glial activation. Therefore, in the
present study utilizing H-Tx rats, the temporal progression
of reactive astroglia and microglia was examined in two
areas of the cerebral cortex severely affected by the devel-
opment of hydrocephalus, the parietal and occipital cor-
tex.

In addition, an important question with clinical impact
still remains: can excessive reactive astrogliosis and micro-
gliosis be reduced or prevented by CSF drainage? Previous
studies in a kaolin-induced kitten model of hydrocepha-
lus demonstrated that shunting reduced the amount of
GFAP present, but the results were quite variable, and
GFAP levels began to rise over time [20]. The unique value
of the present study is that it characterizes, in a clinically
relevant model of hydrocephalus, the effect of both long
term and short term shunting on reactive astrocytosis and
microgliosis. The present study aims not only to identify
the temporal progression and location of astrogliosis and
microgliosis, but also to determine if the gliotic response
is reversible or prevented by CSF drainage. Our hypothesis
is that reactive gliosis (specifically reactive astrogliosis and
microgliosis) closely coincides with the onset of neonatal
hydrocephalus and that this gliosis will be prevented or
reversed by CSF drainage through shunting.

Methods

Experimental design

All animal experiments were approved by the Wayne State
University Institutional Review Board and were con-
ducted following the National Institute of Health Guide
for the Care and Use of Laboratory Animals (NIH Publica-
tion No. 80-23, revised 1996). The H-Tx rats (H-Tx/hcj
strain) originated from Dr. Hazel Jones, University of
Florida. Animals were maintained on 12 h dark-light
cycles in a controlled environment with free to access food
and water at all times.

Brains from hydrocephalic H-Tx rats were examined uti-
lizing immunohistochemistry and immunoblotting at the
following postnatal ages: 5d, 12d, 21d and 36d, and com-
pared to non-hydrocephalic age-matched control H-Tx
rats (n = 5 for each group). The effect of CSF drainage was
examined by inserting a shunt into severely hydrocephalic
animals at 15d, and examining them after 6d (21d of age)
or after 21d (36d of age). These shunted animals were
compared to age-matched un-treated hydrocephalic H-Tx
rats and their respective control littermates (n = 5 for each

group).

Hydrocephalus model
In this study, the H-Tx rat model of congenital hydroceph-
alus was utilized. Although this is not an exact replica of
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the human condition, we believe this model appropri-
ately mimics congenital human hydrocephalus. H-Tx ani-
mals have a slowly progressive form of hydrocephalus
which is primarily caused by an alteration of the cerebral
aqueduct occurring between embryonic day 18 and post-
natal day 5 [29-36]. Because the cranial sutures of these
young animals are not yet fully fused, the skull is expand-
able and accommodates the rising ventricular volume,
thus allowing for overt visual identification of the hydro-
cephalic individuals.

CSF diversion (shunt treatment)

To examine the effects of shunting, Teflon-coated cathe-
ters coupled to Heyer-Schulte low-pressure neonatal
valves (Heyer-Schulte- Integra, New Jersey, USA) were
inserted into the lateral ventricle of hydrocephalic H-Tx
rats at 15d. This age approximates the stage when hydro-
cephalus in these animals advances from a moderate to a
severe state, and the developing rat cerebral cortex is close
to that of a newborn human [37]. Animals were given a
pre-operative oral dose of Cephalexin antibiotic (50 mg/
kg) and the same dose was given twice daily for 5d post-
operatively to help prevent infection. Animals were anes-
thetized with 2% halothane and prepared for sterile
surgery, and all procedures were performed under aseptic
conditions. A small incision was made over the skull and
over the lower back of the animal. A small burr hole was
created in the skull 1 mm lateral to the midline and 2 mm
posterior to Bregma. After piercing the dura mater, the tip
of the shunt catheter was advanced without use of a stylet
into the lateral ventricle, and fixed to the skull using one
to two drops of ethyl cyanoacrylate (Krazy®) glue. The dis-
tal end of the catheter was left lying in the subcutaneous
tissue above the distal lumbar vertebrae of the spine near
the caudal vertebrae. This allowed for movement of the
distal end of the catheter during growth, and prevented
the shunt catheter from being pulled out of the burr hole.
The patency of the shunt was tested by withdrawing a few
drops of CSF through the distal end of the catheter. Skin
incisions were closed using tissue staples, and an ear tag
was placed for identification purposes. The animal was
removed from anesthesia, allowed to recover on a heated
surface, and returned to the cage with its mother and lit-
termates. In the days following shunt insertion, any ani-
mals displaying neurologic dysfunction or lethargy,
suggesting a shunt failure or infection, were sacrificed and
not utilized for this study.

Sacrifice and fixation

Animals used for histology and immunohistochemistry
were deeply anesthetized with (1-4 ml depending on age)
4% chloral hydrate i.p. and perfused transcardially with
saline followed by 4% paraformaldehyde fixative in 0.1 M
PBS pH 7.4, for optimal preservation of brain morphol-
ogy. Following perfusion, the brain was removed from the
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skull, sectioned coronally into thirds (frontal, parietal and
occipital sections) and placed into paraformaldehyde. The
hydrocephalic animals were classified as having severe
hydrocephalus through observation of the dilation of the
ventricles and the thickness of the cortex, and only those
animals with clearly defined hydrocephalus were
included in this study. The control littermates were also
verified visually by inspection of the ventricles. Following
2-4 h of post-fixation, the brain was removed from the
fixative, rinsed and stored in 0.1 M PBS until paraffin
embedding.

Fresh tissue preparation

Separate groups of rats were used for Western blotting
analyses and the tissue was prepared using a fresh frozen
technique. Animals were deeply anesthetized by inhala-
tion of a halothane from a soaked cotton swab, decapi-
tated, and the brain rapidly removed and dissected on ice.
Samples from the cerebral cortex were snap-frozen in lig-
uid nitrogen and stored at -80°C. Brain tissue was homog-
enized in buffer containing: 50 mM NaF, 50 mM HEPES
(4-(2-Hydroxyethyl) piperazine-1-ethanesulfonic acid)
(pH 7.5), 2.5 mM 4-dithiotreitol-d,, (DTT), 120 mM KCl,
4 mM MgOAc, 1 mM ethylenediaminetetraacetic acid
(EDTA), 20 mM glycerophosphate, 10 nug/ml pepstatin A,
10 pg/ml aprotinin, 10 pg/ml leupeptin, 1 mM orthovani-
date, 250 nM okadaic acid and 1 mM phenylmethanesul-
fonyl fluoride (PMSF). Protein concentration was
determined by the Lowry method. Samples were added to
2X loading buffer containing: 0.125 M Tris-HCI pH 6.8,
4% sodium dodecyl sulfate (SDS), 20% glycerol, and 10%
B-mercaptoethanol and boiled for 90 sec. Equal protein
amounts were loaded into lanes for electrophoresis proce-
dures.

Western blot analysis

Aliquots containing 50 pg protein from brain homoge-
nates were electrophoresed in 10% SDS-polyacrylamide
gels. To allow for comparison between membranes, a
sample from one individual animal was loaded onto
every gel, and all samples on the membrane resulting
from that gel were standardized using the consistently
loaded sample. Beta actin expression was also used fre-
quently to ensure standard loading of gels.

Proteins were then electrophoretically transferred onto a
nitrocellulose membrane, which was fixed in 10% acetic
acid and 25% isopropanol for 15 min to ensure protein
immobilization. The membrane was then placed at 4°C
for 15 min, and rinsed 10 times in dH,O followed by one
rinse in 50 mM Tris, pH 7.4, 200 mM NaCl. All subse-
quent procedures were performed at room temperature.

For detection of GFAP, non-specific antibody binding was

pre-blocked in 5% low-fat dried milk dissolved in TTBS
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(100 mM Tris, pH 7.4, 0.9% NaCl, 0.1% v/v Tween-20)
for 45 min with gentle agitation. After rinsing with TTBS,
the membranes were incubated with anti-GFAP antibody
1:1,000 in TTBS (DAKO, USA) for 60 min and gently agi-
tated at room temperature.

After incubation in primary antibody, membranes were
washed 3X in TTBS, and incubated for 30 min in TTBS
containing anti-rabbit IgG-horseradish peroxidase conju-
gate at a 1:10,000 dilution. The membranes were then
washed 3X in TTBS, incubated in Enhanced Chemilu-
minsence (ECL - Amersham, USA) kit detection reagents
for 90 sec, drained, covered with plastic wrap and contact-
exposed to film. After film development, the bands were
quantified by densitometry (Intelligent Quantifier, Bio
Image Inc. version 3.0.0, Michigan, USA).

Immunohistochemistry

All layers of the occipital cortex and the parietal cortex
were examined from perfusion-fixed coronal sections
with immunohistochemical techniques using antibodies
specific for the astrocytic protein, GFAP, and microglial
protein, ILB4. Additionally, the area surrounding the cer-
ebral aqueduct was examined by the same immunohisto-
chemical techniques. Labeled cells were identified using
brightfield or fluorescent techniques using a Leica DMRE
microscope (Leica Microsystem Products, New Jersey,
USA).

Brains were embedded in paraffin and sectioned at 10 pm
using standard histology procedures. Before staining, the
slides were de-paraffinized and rehydrated, and subjected
to antigen retrieval by placing mounted slides into 10 mM
citrate buffer (pH 6.0) preheated to 90-100°C for 20 min,
cooled for 20 min in buffer after removal from heat, and
then washed in 0.1 M PBS.

For GFAP immunostaining, hydrated sections were incu-
bated in 3% H,O, for 10 min. The sections were then
washed in dH,0O and incubated in 5% goat serum diluted
in 0.1 M PBS for 20 min and then in anti-GFAP antibody,
1:300 (DAKO, USA) diluted in an antibody diluent rea-
gent solution (Zymed, California, USA). Primary anti-
body was then removed with a modified phosphate
buffered saline (MPBS) containing 50 mM K,HPO,, 10
mM NaH,PO,, and 10 mM Nacl, and an anti-rabbit sec-
ondary antibody (1:200, Vector Laboratories, USA) was
applied for 10 min. The secondary antibody was rinsed off
with MPBS and an avidin-biotin complex (ABC kit, Vector
Laboratories, USA) was applied for 30 min. Color was
developed for 2-10 min using an un-enhanced DAB kit
(Vector Laboratories, USA). Slides were dehydrated by
passing them through increasing concentrations of alco-
hol and three changes (5 min each) of xylene, cover-
slipped using Permount (Fisher Scientific, USA), a non-
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aqueous mounting media, and allowed to dry overnight.
For fluorescence microscopy, the same primary GFAP
antibody was used as described above, however, follow-
ing primary incubation, tissue was incubated in a TRITC-
labeled anti-rabbit secondary antibody (1:400, Sigma
Aldrich, USA) used for 2 h at room temperature. Excess
antibody was rinsed off and cover slips applied using
Aquamount (Fisher Scientific, USA) or a DAPI fluorescent
stain-impregnated hard-set mounting medium (Vector
Laboratories, USA) to label nuclei.

ILB4 from Griffonia simplicifolia is a marker for brain
microglia and peri-vascular cells [38]. Following rehydra-
tion, sections underwent antigen retrieval as described
above, and were incubated in anti-ILB4 antibody 0.2 mg/
ml (HRP labeled, Sigma Aldrich, USA) for 2 h at room
temperature. The slides were washed with deionized
water, and color developed with a nickel enhanced 3,3'-
diaminobenzidine (DAB) kit for up to 10 min (Vector
Laboratories, USA). The DAB solution was rinsed off, and
the slides were dehydrated and cover slipped as above. For
fluorescent staining, FITC-conjugated ILB4 (Sigma
Aldrich, USA) primary antibody was used at 0.2 mg/ml
and incubated at room temperature for 2 h. The slides
were then rinsed and prepared for examination as
described above.

Analysis of data and statistics

Western blots were quantified by scanning densitometry
and the data was analyzed using a Mann-Whitney U test
for two groups, or a Kruskal-Wallis test for 3 groups, fol-
lowed by individual Mann-Whitney U tests with a Bonfer-
roni correction for between group comparison. For the
quantitative assessment of astrocyte staining, the number
of positively stained GFAP cells was graded on a four-
point scale. A score of 1 indicated GFAP-labeled cells at a
relatively low quantity, 2 and 3 indicated medium and
moderate amounts, and 4 indicated that GFAP labeled
cells were present in high abundance. The data was then
analyzed using the Kruskal-Wallis and Mann-Whitney U
tests followed by a Bonferroni correction as above.

ILB4 positive cells were analyzed from their morphologic
appearance, which is a commonly accepted method to
judge relative reactivity [21,39,40], rather than on the
overall numeric density. Developmentally, microglia alter
their morphology dramatically during the early postnatal
period [41]. Microglia change from amoeboid-like cells at
postnatal day 0 to completely ramified microglia over the
first three weeks of post-natal development as seen in the
figure adapted from Orlowski et al (Fig. 1) [39,41-43].
Due to the dramatic changes in normal cellular morphol-
ogy observed during the first few weeks of life, each age
group was treated individually, and was not directly com-
pared to the other age groups. Therefore, for morphologic
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analysis of microglia in this study, hydrocephalic animals
were compared only to their age-matched control and
age-matched shunted counterparts.

Results

Gross observations: untreated hydrocephalus

At sacrifice, all untreated hydrocephalic animals were eas-
ily identified by the presence of large, domed heads. Upon
removal of the brain, these animals had a noticeable
expansion of the lateral ventricles and thinning of the cor-
tex and were classified as having severe hydrocephalus by
visual inspection. This dramatic increase in ventricular
volume and the thinning of the cortex is evident in low-
power images (Figs. 2 and 3). All animals included in this
study had similarly thinned cortices.

Gross observations: treated hydrocephalus

At the time of sacrifice, both the short-term and long-term
shunted animals had decreases in apparent ventricular
size when compared to untreated hydrocephalic rats of
the same age. Additionally, the cortex of the shunted
groups was thicker when compared to untreated hydro-
cephalic animals, although the thickness did not appear
to return to that of control levels. This reduction in ven-
tricular volume and the increase in cortical thickness can
be seen in low power images, which depict the brain of a
shunted animal at 36d (Figs. 2 and 3).

GFAP analysis by Western blots: untreated hydrocephalus
In the parietal cortex, GFAP levels in 5d hydrocephalic
animals as measured by scanning densitometry of West-
ern blots, were significantly increased by 3.68X compared
to control animals (p < 0.01) (Fig. 4). In 12d hydro-
cephalic animals, the GFAP levels were also increased over
controls by 1.69X (p < 0.05). The same trend in GFAP con-
tinued in the 21d hydrocephalic animals (2.77X; p <
0.01), and also in the 36d animals (2.69X; p < 0.01).

In the occipital cortex, there was a similar trend toward
raised levels of GFAP in hydrocephalic animals compared
to age-matched controls, although at 12d with a 1.81X
increase the difference was not significant (p > 0.05). At
the other ages, GFAP expression was increased over age-
matched controls by 2.46X at 5d (p < 0.05,) by 5.26X at
21d (p < 0.01), and by 5.23X at 36d (p < 0.01) (Fig. 5).

GFAP analysis by Western blots: treated hydrocephalus

GFAP levels in the parietal cortex exhibited significant
alterations between control, hydrocephalic and shunted
rats at 21d (p < 0.01). Shunt-treated animals had an 18%
decrease in GFAP when compared to the untreated hydro-
cephalic animals, but this failed to reach significance (Fig.
4). At 36d, the shunted animals had a 23% decrease in
GFAP levels when compared to the untreated 36d hydro-
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Ramification of microglia. This drawing illustrates the matura-
tion or ramification of the microglial cell in the rat cortex
(adapted from Orlowski et al [42]). P indicates postnatal day.
Notable is the time it takes to develop fully ramified micro-
glia.

cephalic animals (p < 0.05). An example of a representa-
tive Western blot is shown in Fig. 4.

The effect of shunting in the occipital cortex was more dra-
matic in reducing the levels of GFAP. Shunting hydro-
cephalic animals at 15d and allowing them to recover
until 21d significantly reduced the amount of GFAP
expression by 77% when compared to the untreated
hydrocephalic animals (p < 0.01) (Fig. 5). This was similar
to the expression level in control rats at 21d. Shunting at
15d and allowing a three-week post-shunt survival period
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5d

12d

21d

Figure 2

Hydrocephalic
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Histology of GFAP labeled astrocytes (cortical layers 1-3): GFAP containing cells are represented by brown staining (arrows).
These images are representative of the areas of the cortex that were graded for with quantitative scaling. The hydrocephalic
animals have more astrocytes in comparison to the age-matched control animals. Shunting reduced the relative overall appear-
ance of stained astrocytes, although not to control levels. Scale bars = 25 um. The upper right corner shows low power images
of control (upper), untreated hydrocephalic (center) and shunted animal (lower) at 36d. Shunting resulted in re-expansion of
the cortex, and dramatically reduced the apparent ventricular volume.

until 36d, significantly reduced GFAP expression by
48.2% (p < 0.05).

Astrocyte histology: untreated hydrocephalus

Qualitative histologic examination of tissue labeled with
GFAP revealed astrocytes present throughout all layers of
the cortex with relative increases in the number of posi-
tively stained cells found in untreated hydrocephalic ani-

mals, regardless of age (Fig. 2). Following quantitative
grading based on the relative abundance of astrocytes in
sections, the data was then compared and graphed (Fig.
6).

At 5d, upon visual examination, the control and hydro-
cephalic animals showed small numbers of GFAP labeled
astrocytes, and these were found throughout all cortical
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5 Day

12 Day

21 Day

Figure 3
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Isolectin B4 antibody staining for detection of microglia (in cortical layers 2-3). Microglial morphology was observed in the cor-
tex of in control, hydrocephalic and shunted animals. In the 5d and 12d hydrocephalic animals, a relative lack of processes on
the microglia cell was evident, while the 21d and 36d hydrocephalic animals, had shorter thicker processes than control. Fol-
lowing shunting in both age groups, a return of fine-branched processes was seen. Scale bar = 25 pm. Low power images of
brains from 36d rats at the upper right demonstrate the gross effect of shunting (lower image) on cortical thickness and ven-
tricular volume when compared to the control (upper) and hydrocephalic brain (center).

layers (Fig. 2). Upon assigning a grade, the 5d hydro-
cephalic animals had a significant increase in the number
of astrocytes present when compared to 5d non-hydro-
cephalic animals (2.3x, p < 0.05) (Fig. 6). When examin-

ing the periventricular white matter (Fig. 7A,B) or in the
area surrounding the cerebral aqueduct (Fig. 8A,B), there
were no dramatic differences in the appearance of astro-
cytes at 5 days of age.
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Scanning densitometry analysis of Western blots for GFAP in
the parietal cortex. Above: Histogram of relative density.
Overall, GFAP levels increased with age and with the pro-
gression of hydrocephalus, with significantly higher levels of
GFAP being present in the 5d and 12d hydrocephalic animals.
GFAP content also significantly increased over control in the
21d and 36d hydrocephalic animals. Shunting reduced GFAP
levels from untreated hydrocephalic levels by 18% in the 21d
shunted group (not significant). In the 36d group, there was a
significant 23% decrease in the long term 36d shunted ani-
mals. Single asterisks indicates statistical significance at p <
0.05, double asterisk indicates significance at p < 0.01, brack-
ets indicate comparison group. N = 5 for each group, values
are means +/- standard deviation. Below: Immunoblot exam-
ple showing clarity of bands, and standard in the left lane. The
samples from the left are: lanes 3—7, 2| day control animal,
8-12, 21d shunted animals (shunted at 15d) and lanes 1315,
three of the 21d untreated hydrocephalic animals.

Qualitative histologic examination of the 12d animals
revealed astrocytes throughout all cortical layers (Fig. 2).
When sections were graded for the relative abundance of
GFAP positively stained cells, there was a 1.9 x (p < 0.05)
increase in cellular amount in the 12d hydrocephalic ani-
mals when compared to the 12d control animals. Exami-
nation of the tissue sections, in the periventricular white
matter (Fig. 7C,D) and the cerebral aqueduct (Fig. 8C,D)
showed no obvious differences between hydrocephalic
and control rats.

In the 21d hydrocephalic animals, the group with the
most severe form of hydrocephalus, GFAP stained cells
were distributed evenly throughout all cortical layers
whereas in the 21d control animals, they were within cor-
tical layers 1 and 2 (Fig. 2). When tissue sections were
graded, there was a significant 1.97x increase in the rela-
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tive number of astrocytes in the hydrocephalic animals
when compared to age matched controls (p < 0.05) (Fig.
6). Additionally, a large concentration of GFAP positive
cells was found to be present in the peri-ventricular white
matter (Fig. 7E,F), and in the cerebral aqueduct (Fig.
8E,F).

At 36d, the hydrocephalic animals also had an increase in
GFAP labeled astrocytes throughout all cortical layers
when compared to the 36d control animals (Fig. 2). After
grading, a 1.46 x increase in astrocytes was found in the
hydrocephalic animals when compared to their control
counter parts (p < 0.05). Additionally, GFAP labeled cells
were more abundant in both the periventricular white
matter (Fig. 7H,I) and the area surrounding the cerebral
aqueduct (Fig. 8H,1).

Astrocyte histology: treated hydrocephalus

Following shunting, the distribution of astrocytes was
altered in both the 21d and 36d animals. In the 21d
shunted animals, a marginal decrease in GFAP labeled
astrocytes was observed throughout all layers of the brain
tissue (Fig. 2). Furthermore, a non-significant decrease of
18.6% was measured after grading (Fig. 6). In the periven-
tricular white matter (Fig. 7G) and the area surrounding
the cerebral aqueduct (Fig. 8G), astrocyte density was
slightly reduced in the shunted animals when compared
to their hydrocephalic counterparts.

In the 36d shunted animals, there was a noticeable
decrease in relative abundance of GFAP labeled astrocytes
in the cortical layers (Fig. 2). After grading, there was a sig-
nificant 31.5% decrease (p < 0.05) in the relative number
of astrocytes when compared to age-matched untreated
hydrocephalic animals, and the grade was close to that of
the control rats. Examination of the periventricular white
matter (Fig. 7J) and the area surrounding the cerebral
aqueduct (Fig. 8J), showed a more dramatic reduction in
the numbers of labeled astrocytes in the shunted group
when compared to the untreated 36d hydrocephalic litter-
mates.

Microglia histology: untreated hydrocephalus

Although the microglial cells were not quantified, the
number of ILB4 positive cells in the cortical sections did
not increase or decrease dramatically with developmental
age or the severity of hydrocephalus. However, the cellular
morphology of the microglia was noticeably different
(Fig. 3). This change toward activated microglia has been
well documented as a response to injury [39,40,44]. In
activated microglia, processes become shorter and thicker,
while cell bodies and cellular processes stain more
intensely. Hydrocephalic animals in all age groups
appeared to have at least some activated microglia with a
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Scanning densitometry analysis of Western blots for GFAP in
the occipital cortex: histogram of relative density. There was
an increase in GFAP levels with hydrocephalus at all ages,
although at 12d it was not significant. There was a significant
increase over control at 5d, 21d and at 36d. In the shunted
groups, GFAP was significantly reduced from untreated
hydrocephalus by 76.9% at 21d and by 48.2% at 36d. Single
asterisks indicates statistical significance at p < 0.05, double
asterisk indicates significance at p < 0.01, brackets indicate
comparison group. N = 5 for each group, values are means
+/- standard deviation.

thicker cell body giving off shorter and thicker branches
and cellular processes.

Normal differentiating microglia also change morphol-
ogy. The typical maturation process of a microglial cell is
demonstrated beautifully by Orlowski et al [42], and was
used for maturation comparison in the current study (Fig.
1). In his paper, Orlowski described immature microglia
as having an amoeboid shape with little cellular differen-
tiation. As the microglial cell matured, cellular processes
became more pronounced, and by postnatal day 30, the
cell was fully ramified with extensively branched and
long, fine processes. ILB4-immunostained cells in both
control and hydrocephalic animals at the different time-
points clearly exhibited the changes in microglial mor-
phology with maturation (Fig. 3 left column). In 5d con-
trol animals, the majority of microglia had an amoeboid
shape, with very few cells having the beginning stages of
cellular processes (Fig. 3, top row). The hydrocephalic 5d
animals had microglial cells that looked similar to the
postnatal day 0 animals from Orlowski's figure (Fig. 1
top) and there was a small increase in the relative number
of these amoeboid-like cells especially in the peri-ven-
tricular white matter, although cell counting was not per-
formed. In 12d control animals, the normal microglial
population was more differentiated with established proc-
esses, although the processes were not fully ramified as in
mature microglial cells (Figs. 1, 3, 2nd row), while micro-
glia in the hydrocephalic 12d animals had shorter proc-
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Histogram of histologic grading for relative abundance of
GFAP labeled cells (cortical layers 1—4). There were signifi-
cant increases in relative abundance of positively stained
astrocytes in hydrocephalic rats at all age groups, similar to
results from the Western blot experiments. Shunting
reduced the abundance of stained cells in the 21d and in the
36d animals, but at 21d this was not significant. One asterisk
indicates significance, p < 0.05, using a Mann-Whitney non-
parametric test for two group comparisons or Kruskal-Wal-
lis non-parametric test for three-group comparison (n =5
for each group, values are means +/- standard deviation).

esses, and their cell bodies appeared to be thicker than
those in the control animals (Fig. 3, 2rdrow). By 21d, the
microglia in control animals had reached their fully ram-
ified state, with branched processes that were long and
slender (Fig. 1, 3, 3™ row). Microglia in the 21d hydro-
cephalic animals had altered and activated morphology
with a wider cell body and shorter, thicker processes (Fig.
3, 3 row). These changes in microglia morphology
toward that of an activated state continued in the 36d
hydrocephalic animals (Fig. 3, 4th row). There were no
dramatic alterations in the microglial populations of the
periventricular white matter (Fig. 7) or the cerebral aque-
duct (Fig. 8) in any of these untreated animal groups.

Microglia histology: treated hydrocephalus

Histologic examination of ILB4 stained sections shows
that shunting altered the microglial morphology from the
appearance of microglia in the untreated brain. Following
shunting (both long and short term), the shape of the
microglia began to return towards that of a resting micro-
glia cell. Microglia in shunted animals had thicker cell
processes than those of resting microglia, but these proc-
esses were not as broad and aggravated as the activated
microglia in the untreated hydrocephalic animals (Fig. 3,
3rd and 4t rows). The microglial cell activation in the 36d
shunted animals was almost completely reversed, with
less intense staining and a return of fine cellular processes.
Additionally, there was a small increase in number of
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Figure 7

Fluorescent labeling of peri-ventricular white matter (from
the parietal cortex region). Histologic sections were triple
labeled to detect the presence of GFAP (red), ILB4 (green)
and DAPI labeled nuclei (blue). No dramatic differences in
relative abundance of staining were detectable between the
5d control (A) and hydrocephalic (B) animals, or between the
12d control (C) and hydrocephalic animals (D). There was
increased abundance of GFAP staining in the peri-ventricular
white matter of 21d hydrocephalic (F) animals when com-
pared to their matched controls (E), this trend was also
noticed between the 36d (I) hydrocephalic rats and their
controls (H). Both 21d (G) and 36d (J) shunted rats had a
slight increase in overall abundance of staining over control
animals (E and H respectively). In the 36d shunted animals (J)
GFAP positively labeled cells appeared to not be in a concen-
trated band as in the 21d shunted animals (G), but were
present in a less dense band of staining, with cells migrating
and distributed farther away from the peri-ventricular white
matter. Microglia distribution in the 21d shunted animals (G)
was slightly increased, while the 36d animals (J) did not show
dramatic alterations in microglia. White dashed line demar-
cates cortical grey matter from peri-ventricular white mat-
ter. Scale bar = 100 um.
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microglia cells in the periventricular area (Fig. 7). Shunt-
ing was also found to increase the overall number of
microglial cells present in the peri-aqueductal area for
both shunt durations, and appeared as small, amoeboid
shaped cells on the ventricular surface (Fig. 8G,J).

Discussion

Gliosis is the brain's natural response to injury [45]. In
hydrocephalus, the stretch and compression of the brain
tissue caused by the enlarged ventricles can instigate the
proliferation of astrocytes and microglia. This stretch and
compression can also cause damage to connectivity path-
ways, interrupt cellular metabolism, cause cellular death
or dysfunction and impede cerebral blood flow |[1-
3,20,46-48]. Increased numbers of glial cells can inhibit
neurite outgrowth, and impede recovery of the brain tis-
sue [49-51]. This impaired recovery, along with the cell
death originally caused by hydrocephalus, may contribute
to the neurologic deficits experienced by many patients
[13-19].

Several different animal models are available to study
hydrocephalus, and one widely used method is the induc-
tion of obstructive hydrocephalus by a mechanical block-
age of CSF flow pathways with Kaolin, causing closure of
the fourth ventricle outlets. However, these injections
induce rapid onset hydrocephalus that can be variable
depending on the location of the CSF obstruction and this
method cannot mimic all types of hydrocephalus.
Although not perfectly mimicking the human form of
hydrocephalus, we utilized the naturally occurring H-Tx
model of rodent congenital hydrocephalus for our stud-
ies. These animals develop hydrocephalus due to an alter-
ation of the cerebral aqueduct, which occurs between
embryonic day 18 and post-natal day 5 [30-36]. Although
intracranial pressure in these animals does not increase
until postnatal day 10 [52], ventriculomegaly develops
steadily and progresses until the animals develop a severe
state of hydrocephalus by approximately postnatal day
15. If these animals are left untreated, the hydrocephalic
H-Tx rats will usually die by 4-6 weeks of age, with only a
few surviving longer [52].

By utilizing a naturally occurring model of hydrocepha-
lus, we have demonstrated that reactive astrocytosis, as
discerned by Western blots of GFAP and GFAP-immuno-
histochemistry, increase in parallel with the onset and
progression of hydrocephalus. Increases in GFAP levels
and relative astrocyte number were detected as early as 5d
of age, and although there was also an age dependent
increase in the overall astrocytosis with development
[53,54], the largest astrocytic responses were found in 21d
and 36d hydrocephalic animals. These dramatic astroglial
increases occurred as the hydrocephalic condition
advanced to a more severe state, indicating a relationship
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Figure 8

Fluorescent labeling of third ventricle region leading to the
cerebral aqueduct. Histologic sections were triple labeled to
detect the presence of GFAP (red), ILB4 (green) and DAPI
(blue). In both the 5d control (A) and hydrocephalic (B) ani-
mals and 12d control (C) and hydrocephalic (D), there were
no apparent differences in relative abundance of astrocytes
or microglia cells. In the 21d animals, there was a remarkable
increase in the abundance of astrocytes present in the hydro-
cephalic animals (F) when compared to the control animals
(E). This dramatic increase in staining abundance was also
noted between the control (H) and hydrocephalic (I) 36d ani-
mals. Shunting these two groups had the effect of reducing
staining intensity and density of the astrocyte cells in the
peri-aqueductal area of the untreated hydrocephalic animals.
There was an increase in the microglial population in both of
the shunted groups on the ventricular surface(G and J). Scale
bar = 100 um.
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between the severity of hydrocephalus and the amount of
astrogliosis.

Shunting hydrocephalic animals and allowing them to
survive to 21d (6d post- shunt) or 36d of age (21d post
shunt) was effective in reducing reactive astrocytosis;
GFAP levels and the number of GFAP-positive cells were
decreased, and cortical thickness was restored towards
control levels. Shunting for as little as 6d was effective in
reducing the amount of GFAP present in both the parietal
and occipital cortices, with the reduction being more dra-
matic in the occipital cortex. This difference may be
because the occipital cortex is more severely affected by
the hydrocephalic condition both grossly and in amount
of GFAP present, so treatment could have a more dramatic
result proportionally. The longer three-week shunt dura-
tion also provided a dramatic reduction in the level of
GFAP present in both the parietal cortex and the occipital
cortices. Although this reduction was significant, it was
not as pronounced in occipital cortex of the 36d animals
as it was in the occipital cortex of the 21d animals. One
possible reason for this reduced effect could be due to par-
tial occlusion of the shunt with time by growth of connec-
tive tissue into the distal end of the shunt catheter.
Although CSF flow was observed in all shunts at the time
of sacrifice, this potential growth may reduce the efficacy
of the shunt and prompt re-activation of glial cells.
Obstruction of the shunt is a common problem in the
clinical setting, and many children undergo revisions to
correct this [55,56], therefore it is not unlikely that the rats
may suffer from this same complication.

Histologic examination of GFAP labeled astrocytes
revealed increases in relative number of positively stained
cells, which correlated with the increasing GFAP levels
detected in the Western blot analysis. The increased stain-
ing in periventricular regions, notably the periventricular
white matter and the periaqueductal gray, suggests that
the stretch and compression that accompany ventricu-
lomegaly could be a primary injury mechanism.

Following shunting, the relative number of astrocytes was
altered in both the 21d and 36d animals. In both of the
shunted groups, astrocytes were present in the peri-ven-
tricular area but were only found in a narrow band just
outside the ventricles without extending far into the cor-
tex. Additionally, in the area of the third ventricle leading
to the aqueduct and in the cortex, the density of astrocytes
was greatly reduced. These reductions are most likely due
to the effective diversion of excess CSF to other sites of
absorption, which keeps intracranial pressure levels under
control and reduces the amount of stretch and compres-
sion on the cortex.
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Correlation between intracranial pressure and astrogliosis.
Representation of intracranial pressure data from H-Tx rats
by Jones et al. [52] plotted with GFAP levels in the occipital
cortex from this study, over time. Original graph of ICP from
[52] is in the lower right corner. In the overlay graph, the
similarity is shown between the large increase in GFAP levels
occurring in the occipital cortex of the 21d hydrocephalic
animals and the increase in ICP in similar animals. The fit of
the GFAP regression line in the hydrocephalic animals was
0.9997 and the control animals 0.5128. This correlation
between the hydrocephalic GFAP levels and the increase in
ICP may imply a causative effect on increasing gliosis.

Hydrocephalus also had a marked effect on microglial
morphology. In hydrocephalic animals of all ages, with
microglia at various developmental stages, these cells
responded to the hydrocephalic condition. Activation of
immature microglia in the younger 5d and 12d animals
consisted of less ramified and smaller processes, which
made the cells appear as though they were developmen-
tally delayed when compared to their control counter-
parts. This is supported by the observation that the broad,
shortened appearance of an activated microglia in 12d
hydrocephalic animals is similar to the 8d developing
microglia shown by Orlowski et al. (Fig. 1) [42]. It is pos-
sible that hydrocephalus is causing the morphologic
change of these microglia through a modified activation
in these young cells, or it may be an actual delay in micro-
glial developmental caused by the presence of hydroceph-
alus. The older 21d and 36d hydrocephalic animals
underwent a more classical transformation into an acti-
vated microglial cell. As the microglia cells become acti-
vated, they change their morphologic shape and function
from that of a resting supportive cell to that of a macro-
phage cell that helps to rid the brain of damaged tissue
[40,57].

Shunting the hydrocephalic animals altered the microglia
morphology in both the long and short term survival
groups, such that they progressed towards a typical resting

http://www.cerebrospinalfluidresearch.com/content/4/1/5

state. This effect was most dramatic in the 36d shunted
animals, where the microglia had regained most of their
fine cellular processes, their staining intensity had
returned to normal, and the relative number of cellular
branches returned to that of their control counterparts.
Together, these data imply that shunting reversed the
microglial activation. Research has also shown that fol-
lowing the insertion of a shunt, other distortions of the
brain occurring due to hydrocephalus begin to revert back
to the control state. A few examples of these other revers-
als include the decrease in ventricular volume, increase in
cortical thickness, the increase in number of cortical lam-
inae, and improvement of cortical connections [58-60].
Furthermore, some researchers believe that reducing the
presence of the glial scar can aid in the recovery of dam-
aged tissue by forming a barrier [61], and that modulation
of the glial response may actually be used to help promote
CNS repair [62,63]. Therefore understanding and control-
ling the glial response in hydrocephalus may be helpful in
reducing rigidity of the brain due to hydrocephalus [64].

Although gliosis in these animals was initiated at an early
time-point during hydrocephalus, the severity did not
escalate until the animals were older. Jones et al. previ-
ously reported that intracranial pressure in hydrocephalic
H-Tx rats increases around 10d of age [32,65,66], this cor-
relates with the overall increase in GFAP expression (Fig.
9) and the amount of GFAP stained cells that were seen in
the hydrocephalic animals in this study. Twelve days is the
age when microglia morphology began to change dramat-
ically, from a resting state to the activated state of a scav-
enging cell. One can hypothesize that a possible stimulus
for this dramatic increase in gliosis occurring during this
transition state of hydrocephalus could therefore be an
increase in ICP. Further support for this mechanism
includes evidence following shunting when presumably
ICP decreases as it does in humans, GFAP levels fall, cellu-
lar proliferation of astrocytes decreases, and microglial
morphology returns to normal.

Conclusion

This research has shown that, contrary to the previously
held belief that gliosis in the hydrocephalic brain is
restricted only to the peri-ventricular white-matter
[8,20,65,67-70], gliosis extends through all of the cortex
and the peri-aqueductal area. A correlation between the
increase of ICP due to hydrocephalus and the onset of
gliosis has been demonstrated and therefore it is possible
that the increase in intracranial pressure may be one of the
triggers for the onset of gliosis. The implantation of a
shunt, either short or long term, was effective at reducing
the increase in GFAP due to hydrocephalus, and led to a
reduction in the overall presence of both astrocytes and
microglia. Through appropriately timed shunting, this
gliosis can be prevented from increasing and controlled at
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levels closer to that of the control rats. By understanding
the timing and progression of gliosis, it is now possible to
investigate the appropriate use of glial inhibitors and
other neuroprotective agents to further control the process
of reactive gliosis, and to reduce the detrimental effects
that gliosis can impart on the brain.
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