
JOURNAL OF VIROLOGY, June 2007, p. 6757–6760 Vol. 81, No. 12
0022-538X/07/$08.00�0 doi:10.1128/JVI.00172-07
Copyright © 2007, American Society for Microbiology. All Rights Reserved.

Hepatitis B Virus X Protein Stimulates the Mitochondrial
Translocation of Raf-1 via Oxidative Stress�
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The human hepatitis B virus (HBV) X protein (HBx) plays a crucial role(s) in the viral life cycle and
contributes to the onset of hepatocellular carcinoma (HCC). HBx caused the mitochondrial translocation of
Raf-1 kinase either alone or in the context of whole-viral-genome transfections. Mitochondrial translocation of
Raf-1 is mediated by HBx-induced oxidative stress and was dependent upon the phosphorylation of Raf-1 at
the serine338/339 and Y340/341 residues by p21-activated protein kinase 1 and Src kinase, respectively. These
studies provide an insight into the mechanisms by which HBV induces intracellular events relevant to liver
disease pathogenesis, including HCC.

Hepatitis B virus (HBV) infection results in a broad range of
clinical symptoms, from mild, inapparent disease to fulminant
hepatitis. Infection with this virus remains a major worldwide
public health problem. It is estimated that there are about 500
million chronic carriers worldwide. Although the sequence of
events remains poorly defined, a significant correlation has
been made between long-term carriage of the virus and the
development of hepatocellular carcinoma (4, 6). Among the
HBV proteins encoded by the four open reading frames (S, C,
P, and X), the X protein (HBx) plays a crucial role in the
pathogenesis of hepatocellular carcinoma (6, 17). Like several
viral oncoproteins, the HBx protein is implicated in a wide
variety of cellular functions: as a trans-activator of transcrip-
tion, in deregulation of cell cycle checkpoints, as a participant
in the cellular signal transduction pathway, and in apoptosis (2,
6, 17). HBx regulates a series of cell-signaling cascades involv-
ing most notably the Ras- and Raf-induced mitogen-activated
protein kinase pathways (reviewed in reference 2).

The Raf serine/threonine kinases are involved in the Ras-
induced mitogen-activated protein kinase pathway (1, 15).
They act downstream of Ras and are activated in a significant
number of human malignancies (1, 15). There are three iso-
forms of Raf, A-Raf, B-Raf, and C-Raf, each displaying dis-
tinct expression profiles (1, 13, 15). C-Raf is ubiquitously ex-
pressed in many tissues, whereas A-Raf and B-Raf display
tissue-specific expression (1, 15). Only A-Raf and C-Raf have
been shown to translocate to mitochondria and regulate apop-
tosis (1). C-Raf, also known as Raf-1, exists in the cytoplasm as
a multiprotein complex of 300 to 500 kDa consisting of heat
shock protein 90 and dimeric protein 14-3-3. Binding of Ras to
Raf displaces the 14-3-3 complex and unmasks amino acid
residues critical for its activation. Mitochondrially localized
Raf-1 protects cells from stress-mediated apoptosis. Raf-1 con-

tains a central activation domain whose phosphorylation is
activated by p21-activated protein kinase (PAK) at amino acids
Ser338 and Ser339 or Src kinase at amino acid residues Y340 and
Y341 (5, 8). B-Raf does not contain these tyrosine residues.

The results of this study demonstrate that HBx can stimulate
the mitochondrial translocation of Raf-1 via oxidative stress.
We previously showed that HBx itself targets to mitochondria
and directly interacts with voltage-dependent anion channel 3
(VDAC3) (7, 10, 11, 12). HBx expression induces oxidative
stress via calcium signaling and activates cellular kinases, which
leads to the activation of transcription factors NF-�B and
STAT-3 and others via phosphorylation (2, 3, 14). We ob-
served that HBV-induced oxidative stress also stimulated the
translocation of Raf-1 to mitochondria. This activation in-
volves both the Src- and the PAK-mediated phosphorylation of
the activation domain of Raf-1. Src inhibitors and dominant-
negative PAK mutants abolished HBx-mediated Raf-1 mito-
chondrial translocation.

To demonstrate the role of HBx protein in regulating Raf-1
translocation, we first examined Raf-1 expression in Huh-7 cell
lysates transfected with pCMVXF, which encodes the X gene
placed under the transcriptional control of a cytomegalovirus
(CMV) promoter containing a Flag sequence. The Western
blot results show similar levels of Raf-1 expression in both
untransfected and pCMVXF-transfected Huh-7 cellular ly-
sates. (Fig. 1A). We next examined the association of Raf-1
with mitochondria. The results of Western blot analysis of
mitochondria prepared according to a detailed procedure (9)
from Huh-7 and pCMVXF cells (presented in Fig. 1B) dem-
onstrate that both HBx protein and Raf-1 are associated with
mitochondria. VDAC is used as a mitochondrial marker. To
ensure that the Raf-1 and HBx signals were not due to cyto-
plasmic contamination, the lysates were also blotted for a cy-
toplasmic marker, lactate dehydrogenase (LDH). LDH expres-
sion was not observed in these mitochondrial preparations.
The cytoplasmic fractions were also prepared and analyzed by
a Western blot assay using anti-Raf, anti-Flag (which detects
HBx), and anti-LDH (Fig. 1C). Raf-1 kinase levels were again
similar to those described for Fig. 1A, indicating that not all
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Raf-1 kinase translocates to mitochondria, consistent with pre-
vious studies (1, 15). pCMVXF-transfected cellular lysates
showed HBx expression, and LDH, used here as a cytoplasmic
protein marker, was positive for both lysates. The vectors used
thus far contained HBx under the transcriptional control of a
CMV enhancer/promoter. To verify the role of HBx when
expressed under the transcriptional control of the native pro-
moter/enhancer in the context of the whole HBV genome,
which recapitulates the viral life cycle, longer-than-genome-
length HBV constructs were transfected into Huh-7 cells (6,
16). Analysis of these cells showed Raf-1 mitochondrial trans-
location, whereas the whole-genome construct, defective in
HBx expression, failed to induce mitochondrial translocation
of Raf-1, as did the untransfected cells (Fig. 1D). We further

examined this phenomenon in transgenic mice harboring the
HBx gene expressed under the control of its native promoter/
enhancer (16). Mitochondria fractionated from liver tissues of
HBx-transgenic mice were examined by a Western blot assay.
As shown in Fig. 1D, Raf-1 also translocated to mitochondria
in HBx-transgenic mice, as did HBx. This is the first report
showing the association of the HBx with mitochondria in vivo
using a transgenic-mouse model. We and others have previ-
ously shown that HBx targets to mitochondria using a variety
of in vitro experimental strategies (7, 11, 12). In normal mouse
liver tissue, Raf-1 association with mitochondria was not ob-
served (Fig. 1E). These studies collectively provide evidence
that HBx is associated with mitochondria and causes Raf-1
translocation to mitochondria both in cells transfected with
HBx alone and in the context of the whole HBV genome.
Moreover, a similar association was also seen in transgenic
mice expressing HBx under the native promoter/enhancer
(16).

Mitochondrial translocation of Raf-1 requires phosphoryla-
tion of Ser and Tyr residues in its activation domain (5, 7). To

FIG. 1. HBx protein induces Raf-1 mitochondrial translocation.
(A) Raf-1 levels in untransfected and pCMVXF-transfected Huh-7
cellular lysates. Western blot analysis was carried out using anti-Raf-1
kinase antibody. Anti-actin was used as a protein loading control.
(B) Mitochondrial preparations from untransfected and pCMVXF-
transfected Huh-7 cells were used for Western blot analysis using
anti-Raf-1 kinase antibody. VDAC serves as a mitochondrial marker.
Anti-Flag was used to monitor HBx expression, and anti-LDH was
used to monitor for cytoplasmic contamination. (C) Cytoplasmic frac-
tions from untransfected and pCMVXF-transfected Huh-7 cells were
analyzed by Western blot assays using anti-Raf-1, anti-Flag (which
detects HBx), and anti-LDH. LDH is used here as a cytoplasmic
marker. (D) Mitochondria were fractionated (9) from untransfected
Huh-7 cells and cells transfected with whole-HBV-genome plasmids
(HBV1.3L) and an X-defective mutant plasmid of the HBV genome
[HBV1.3L (�X)] (gift from J. Ou, USC). Western blot analysis was
carried out using anti-Raf-1 kinase antibody and anti-electron trans-
port factor (anti-ETF; a mitochondrial marker) antibody. HBx protein
expression was monitored by first immunoprecipitating with anti-HBx
antibody (16), followed by immunoblotting with the same antiserum
(16). (E) Raf-1 mitochondrial translocation (9) in the HBx-transgenic
mouse. Mitochondria were fractionated from normal and HBx-trans-
genic mice (gift from James Ou). HBx was expressed under its native
promoter/enhancer (16). Western blot analysis was performed on the
mitochondrial preparation. Lane 1, normal mouse liver tissue; lane 2,
HBx-transgenic mouse liver Western blots using anti-Raf-1. ETF is
used as a mitochondrial marker. HBx expression in the HBx-transgenic
mice was determined using anti-HBx antibody by immunoprecipitation
(IP), followed by immunoblot analysis with the same antibody (gift
from Betty Slagle) (16).

FIG. 2. HBx protein activates both Src-dependent tyrosine and
PAK-1-dependent serine phosphorylation of Raf-1 and causes its mi-
tochondrial translocation. (A) HBx activates serine phosphorylation of
mitochondrial Raf-1. Western blot analysis was performed on isolated
mitochondria fractionated from untransfected Huh-7 cells and those
transiently transfected with the pCMV4X plasmid using the anti-Raf-1
Ser338 monoclonal antibody, which recognizes serine338-phosphory-
lated Raf-1 kinase (Upstate Biotechnologies). Anti-electron transport
factor (anti-ETF) was used to detect ETF, a mitochondrial marker.
HBx was monitored using anti-Flag antibody. (B) Pak-1 is required for
Raf-1 translocation. Results are shown for Western blot analysis of
isolated mitochondria prepared from untransfected Huh-7 cells (lane
1), Huh-7 cells transiently transfected with the pCMV4X plasmid (lane
2), Huh-7 cells cotransfected with pCMV4X-Flag (HBx), and domi-
nant-negative Pak-1 protein (the PAK-1 inhibitory domain containing
PAK83-149) (lane 2) using anti-Raf-1 antibody. ETF serves as a mito-
chondrial marker. HBx expression was monitored using anti-Flag an-
tibody (an internal control). (C) Western blot analysis was carried out
as described for panel B, except that a Src dominant-negative mutant
(gift from R. Jove) was used for cotransfection along with the
pCMV4X (HBx) plasmid (lane 2).
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investigate the role of HBx in phosphorylating Raf-1 at Ser338

residues, mitochondrial preparations from untransfected and
pCMVXF-transfected Huh-7 cells were used for Western blot
analysis using antiserum that recognizes Ser338 residues of
Raf-1. The results show that indeed HBx mediates the phos-
phorylation of Raf at Ser338 residues (Fig. 2A). Serine phos-
phorylation of Raf-1 is catalyzed by PAK-1 (8). Infection of
untransfected and pCMVXF-transfected Huh-7 cells with a
retrovirus encoding the autoinhibitory domain (PAK83-149) of
Pak-1 abrogated mitochondrial translocation of Raf-1, whereas
in cells expressing HBx alone, Raf-1 migrated to mitochondria
(Fig. 2B). Tyrosine340,341 phosphorylation of Raf-1 is known to
be catalyzed by Src kinase (5). Huh-7 cells coexpressing HBx
and dominant-negative Src kinase (kinase-dead pM5Hmet295;
gift from Richard Jove [Moffat Cancer Center]) also failed to
cause Raf-1 mitochondrial translocation (Fig. 2C). Together,
these results indicate that HBx must induce the activation of
Src and Pak-1 kinases to phosphorylate Raf-1 at the Tyr and
Ser residues, respectively, to trigger its mitochondrial translo-
cation. HBx activates both Tyr and Ser/Thr kinases (reviewed
in reference 2).

To examine whether HBx-induced reactive oxygen species
play a role in the Raf-1 activation process, HBx (pCMVXF
transfected)-expressing cells were treated with antioxidants N-
acetyl cysteine and pyrrolidine dithiocarbamate. The results
revealed that antioxidants prevented mitochondrial transloca-
tion of Raf-1 (Fig. 3). Cells treated with calcium chelators
(BAPTA-AM and TMB-8) did not interfere with Raf-1 mito-
chondrial translocation in either HBx or whole-HBV-genome-
transfected cells (data not shown). The role of Ca2� signaling
needs to be further characterized.

Since both HBx and Raf-1 proteins are localized to mito-
chondria, we next investigated whether there is physical inter-
action between these proteins. Mitochondrial preparations
from untransfected Huh-7 cells (Fig. 4A, lane 2) and those
transfected with pCMVXF (Fig. 4A, lane 1) were immunopre-
cipitated with anti-Raf-1 antibody, followed by immunoblot-
ting with anti-Flag antibody (Flag tagged to HBx). The pres-

ence of Raf-1 in the immunoblot indicated that Raf-1 and HBx
formed a complex (Fig. 4A). Expression of HBx-transfected
cells is shown in Fig. 4B. Immunoprecipitation of lysates with
an unrelated antibody (anti-HCV core) did not show any bands
in the immunoblots (data not shown).

These studies collectively demonstrate the ability of HBx to
induce the mitochondrial translocation of cytoplasmic Raf-1,
and while resident in mitochondria, HBx forms a protein-
protein complex with Raf-1 kinase. The functional significance
of this interaction may be that it reinforces the antiapoptotic
program in infected hepatocytes. We previously noted the ab-
sence of cytochrome c release in HBx-expressing cells (unpub-
lished results). Mitochondrial Raf-1 participates in the survival
program (13), but the exact mechanism behind the antiapop-
totic role of Raf-1 remains to be investigated. HBx-activated
Raf-1 may contribute to HBV-associated liver oncogenesis.
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