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ABSTRACT Although they lie at the conceptual core of a
wide range of scientific questions, the notions of irregular or
‘‘random’’ arrangement and the process of randomization itself
have never been unambiguously defined. Algorithmic implemen-
tation of these concepts requires a combinatorial, rather than a
probability-theoretic, formulation. We introduce vector versions
of approximate entropy to quantify the degrees of irregularity of
planar (and higher dimensional) arrangements. Selection rules,
applied to the elements of irregular permutations, define ran-
domization in strictly combinatorial terms. These concepts are
developed in the context of Latin square arrangements and valid
randomization of them. Conflicts and tradeoffs between the
objectives of irregular arrangements and valid randomization
are highlighted. Extensions to broad classes of designs, and a
diverse range of scientific applications are indicated, including
lattice-based models in physics and signal detection in seismol-
ogy and physiology.

The idea of random arrangements of points in planar arrays
arises in a vast diversity of scientific problems. Lattice-based
models in physics (1), the statistical design of experiments
(2–4), image and pattern recognition (5, 6), and forest ecology
(7) are illustrative of the myriad contexts in which this concept
is prominent. Yet despite numerous application-specific def-
initions of ‘‘too regular’’ (8–10) or ‘‘sufficiently irregular’’
(11–14), the scientific literature across multiple fields remains
silent on producing an algorithmic formulation of the extent or
degrees of irregularity of planar arrangements, for either finite
or for infinite arrays. This omission is closely linked to the
ambiguity of the expressions ‘‘picking at random’’ and ‘‘ran-
domization.’’ A precise formulation of these notions is com-
binatorial, rather than probability-theoretic, in nature (15).
Indeed, a framework for clarifying what is meant by both
‘‘regular arrangement’’ and ‘‘randomization’’ can be based on
a family of approximate entropy measures, whose one-
dimensional versions already have been effectively used to
grade the irregularity of numerical sequences (15, 16).

The primary purpose of this paper is to define and apply vector
versions of approximate entropy (ApEn) that can be used to
grade the irregularity of planar or higher dimensional arrange-
ments. After providing an initial core framework, we proceed via
an in-depth discussion of Latin square arrangements—i.e., an
n-row 3 n-column arrangement of n distinct symbols where each
symbol occurs once in each row and once in each column—and
Fisher’s notion (14) of valid randomization set. This context is one
of the simplest in which to illustrate the primary issues that are
generic to an explicit algorithmic formulation of the concept of
random arrangement in two or more dimensions. Furthermore,
reevaluation of a formulation of randomization, with its genesis
in Fisher’s early specification of design of experiments (2, 14, 17),
is of critical importance, because applications of this methodology

have proliferated throughout many disciplines, including the
physical and social sciences, and medicine. The ambiguity of the
current formulation, as it has developed over more than 75 years,
can be removed by recasting it in strictly combinatorial terms.
Such a reformulation is the secondary purpose of this paper.
Finally, we introduce a select set among the vast range of potential
applications of vector-ApEn, as indicated in Notes and Applica-
tions, for which use of vector-ApEn is likely to yield a substantial
payoff.

For Latin squares, nearest-neighbor designs, and general block
designs, we associate sets of allowable arrangements with finite
maximally irregular sequences and specified selection rules,
thereby making precise the diverse notions of ‘‘valid randomiza-
tion’’ (11, 17–19). We also identify conflicts and tradeoffs be-
tween the objectives of valid randomization and high degree of
irregularity of experimental arrangements. Furthermore, it is key
to note that we highlight N 3 N Latin squares, N # 9, not only
for conceptual clarity and computational feasibility, but also
because these sized arrays are widely used in myriad practical
settings.

In much of the core discussion, we focus on a binary or yesyno
determination to decide whether Latin squares are sufficiently
irregular to be considered as potential candidates for a valid
randomization set. Already, this focus provides considerable
evaluatory capability, as it adds a dimension to previously con-
sidered perspectives. Yet further utility of vector-ApEn will be
demonstrated for medium to large arrays, where we would
typically use this technology not only to determine (nearly)
maximally irregular elements, but especially, to grade and thereby
distinguish among the large class of remaining arrays. Thus one
will be able to quantify oftentimes subtle or ‘‘insidious’’ structural
differences among arrays, even where clear features or symme-
tries are far from evident, of potential consequence in several
applications indicated below.

Irregularity of Planar Arrangements. There are manifold
options for making precise the concept of degrees of irregu-
larity in the plane, as a consequence of both diverse geomet-
rical configurations and projected applications. A readily
adaptable basic building block that we use is a vector adap-
tation of approximate entropy (15, 20).

Definition 1. Given a finite two-dimensional integer lattice
A, a finite set S, a function u:A3 S, a non-negative integer m,
a positive real number r, and a specified vector direction v, for
all points i in A, define the block xv(i) 5 (u(i), u(i 1 v) . . . ,
u(i 1 (m 2 1)v)). Blocks that exceed the boundaries of A are
either, depending on the application, excluded from consid-
eration or are defined via a wraparound condition.§

Define d(xv(i), xv(j)) 5 maxk51,2,...,m(uu(i 1 (k 2 1) v) 2 u(j 1
(k 2 1)v)u). Let Am,v :5 {all points i in A for which a length m
block in direction v starting at i is included for consideration}.
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Then let Ci
m(r) 5 (number of j such that d(xv(i), xv(j)) #

r)yuAm,vu), where uAm,vu is the cardinality of Am,v. Define

Fv
m(r) 5

1
uAm,vu

O
i[Am,v

log Ci
m(r).

Then let vector-ApEnv(m, r)(u) 5 Fv
m(r) 2 Fv

m11(r), m $ 1;
and vector-ApEnv (0, r)(u) 5 2Fv

l (r).
In this paper we restrict attention to integer alphabets for S, and

set r , 1 as a measure of resolution. With this choice of r, we are
monitoring precise matches in the blocks xv(i) and xv(j). Thus,
with this restriction at hand we suppress the dependence of ApEn
on r, denoting vector-ApEnv(m, r)(u) as vector-ApEnv (m)(u).
Vector-ApEnv (m)(u) compares the logarithmic frequency of
matches of blocks of length m (for m $ 1) with the same quantity
for blocks of length m 1 1. Small values of vector-ApEn imply
strong regularity, or persistence, of patterns in u in the vector
direction v, with the converse interpretation for large values.

The vector direction v designates arrangements of points on
which the irregularity of u is specified a priori to be of
particular importance. For example, if v 5 (0, 1), then vector-
ApEn measures irregularity along the rows of A and disregards
possible patterns, or the lack thereof, in other directions.¶ v 5
(1, 0) focuses on column irregularity; and v 5 (1, 2) or (2, 1)
or (21, 2) emphasizes knight’s move (as in chess) patterns. In
many applications, it is necessary to guarantee irregularity in
two or more directions simultaneously. This requires evalua-
tion of vector-ApEn for a set V of designated vectors. For
example, simultaneous row, column, and diagonal irregularity
assessment entails calculation of vector-ApEn for all elements
v in V 5 {(1, 0); (0, 1); (1, 21); (1, 1)}. Let 88 be a restricted
class of functions u: A 3 S, including the possibility that we
might choose 88 5 {all functions with domain A and range S}.
For a given 88 and V we formalize the idea of a maximally
irregular function, U1. To this end, write V 5 {v1, v2, . . . , vk},
and let Ui 5 {u: maxu[88 vector-ApEn vi(m)(u) is attained for
m 5 0, 1, 2, . . . , mcrit}. Then form the intersection

U1 :5 ù
i51

k

Ui.

Definition 2. The elements u1 of U1 are denoted maximally
irregular functions with respect to 88 and V.

The determination of mcrit will depend on the size and shape
of A, the choice of vector, v, and constraints defining the
elements of 88. For the small-sized square arrays illustrated
below, we restrict to mcrit 5 1 in the primary text, which
assesses replicability of pairs of contiguous points along the
specified vector direction. In the endnotes, we discuss the
enhanced refinement offered by choosing mcrit $ 2.

We now consider two sets of Latin square examples to
develop intuition for vector-ApEn. As well, the importance of
studying Latin squares in the broader context of reevaluating
Fisher’s randomization and experimental design approaches is
underscored by the following quotation:

“ ‘What would you do,’ I had asked, ‘if drawing a Latin
square at random for an experiment, you happened to draw
a Knut-Vik (Knight’s move) square?’ Sir Ronald said he
thought he would draw again and that, ideally, a theory
explicitly excluding regular squares should be developed.”
(L. J. Savage to R. A. Fisher, 1952, p. 88, ref. 21).

Quite evidently, Fisher himself was well aware of considerable
differences among Latin squares insofar as the (extent of)
persistence of internal features, although he lacked a technol-
ogy to quantify this recognition.

Formally, we provide the following specification: Let A be
a square array of side N, i.e., a lattice with elements i 5 (i1, i2),

where 1 # ij # N for j 5 1, 2. Let S 5 {1, 2, . . . , N}, and 88
:5 {u such that u(i) defines an N 3 N Latin square}.

Example 1. Consider the following four 4 3 4 Latin squares.

A
1 2 3 4
2 3 4 1
3 4 1 2
4 1 2 3

B
1 2 3 4
3 4 1 2
4 3 2 1
2 1 4 3

C
1 2 3 4
4 3 2 1
3 1 4 2
2 4 1 3

D
1 2 3 4
3 1 4 2
2 4 1 3
4 3 2 1

For A, vector-ApEn(1,0)(1) 5 vector-ApEn(0,1)(1) 5 0; for B,
vector-ApEn(1,0)(1) 5 vector-ApEn(0,1)(1) 5 0.637; for C,
vector-ApEn(1,0)(1) 5 0.637, and vector-ApEn(0,1)(1) 5 1.099;
and for D, vector-ApEn(1,0)(1) 5 vector-ApEn(0,1)(1) 5 1.099.
These calculations manifest differing extent of feature repli-
cability in the (1, 0) and (0, 1) directions, with A quite regular
in both directions, B intermediately irregular in both direc-
tions, C maximally irregular in rows, yet intermediate in
columns, and D maximally irregular in both rows and columns.
Alternatively, in A, e.g., in rows, there are three occurrences
each of four pairs [(1, 2), (2, 3), (3, 4), and (4, 1)], and no
occurrences of the other eight possible pairs. In B, in rows, four
pairs occur twice [(1, 2), (2, 1), (3, 4), and (4, 3)], whereas four
pairs occur once [(1, 4), (2, 3), (3, 2), and (4, 1)]. In D, in rows,
each of the 12 pairs (i, j), 1 # i, j # 4, i Þ j, occur precisely once.
(Similar interpretation follows readily for columns.)

Example 2. A Knut-Vik (KV) square, referred to above, is
defined as a Latin square such that all cells with the same
symbol can be traversed by a series of knight’s moves (as on a
chessboard) without visiting cells with other symbols. The
following KV square, denoted KV1, is generated via a very
simple procedure that results in considerable, visually appar-
ent regularities: each row, cyclically, is moved down, then to the
right (forward) two places, in a wraparound fashion:

KV1 :5

1 2 3 4 5
4 5 1 2 3
2 3 4 5 1
5 1 2 3 4
3 4 5 1 2

Wraparound vector-ApEn, where we wraparound both for
rows and columns (thus forming a ‘‘lattice point torus’’) vividly
discloses the consistency of the regularities, with wrap vector-
ApEn(1,0)(1) 5 wrap vector-ApEn(0,1)(1) 5 wrap vector-
ApEn(1,2)(1) 5 0. Thus we quantify the striking persistence of
subblocks within this square in three distinct vector direc-
tions—rows, columns, and knight’s move (1, 2).

Next, we introduce the restricted classes of Latin squares
according to the following.

Definition 3. An n 3 n Latin square u(i) is called row
complete if the n(n 2 1) ordered pairs (u(i1, i2), u(i1, i2 1 1))
are all distinct. It is called column complete if the n(n 2 1)
ordered pairs (u(i1, i2), u(i1 1 1, i2)) are all distinct. A Latin
square is complete if it is both row complete and column
complete. A diagonal square (22) has u(1, 1), u(2, 2), . . . , u(n,
n) distinct and u(1, n), u(2, n 2 1), . . . , u(n, 1) distinct.

These Latin squares arise as the maximally irregular ar-
rangements (via vector-ApEn, with m 5 1) for the designated
vector families indicated below.

V
{(0, 1)}
{(1, 0)}
{(1, 0); (0, 1)}
{(1, 1); (1, 21)}

U1

Row-complete squares
Column-complete squares
Complete squares (C)
Irregular diagonal squares (D)

There are clear limits to the restrictions in kinds of irregularity
that can be simultaneously imposed. For example, for 4 3 4
squares, because C ù D 5A, we cannot simultaneously maximize
irregularity in row, column, and both diagonal directions through-

¶We use conventional lattice array indexing in our (incremental)
vector notation.
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out the square. However, further restricting either C or D by less
stringent constraints can lead to useful arrangements that are also
interpretable as irregular. For example, consider C ù {u: u is
diagonal and pairs in adjacent cells in each diagonal direction
occur with equal frequency on opposite sides of the longest
diagonals}. This restriction defines the class of completely bal-
anced polycross designs (23, 24), a subset of C ù {u: vector-
ApEn(1,1)(m)(u) 5 vector-ApEn(1,21)(m)(u), m 5 0, 1}.

It might seem, at this point, that the complete squares or the
polycross designs—depending on the application—should
qualify for the interpretation of random 4 3 4 Latin squares.
Although this appears entirely appropriate based on an irreg-
ularity criterion, the essential point, observed by Bailey (25),
is that neither of these families forms a valid randomization set,
the definition of which we now recall.

In the setting of experimental design Fisher (14) defined a
Latin square subject to its classical (26) combinatorial formula-
tion and a process of randomization. In the randomization step a
square is selected from a set of Latin squares having the property
that every pair of cells, not in the same row or column belongs
equally frequently, across the set, to the same symbol. Such a
collection of Latin squares is referred to as a valid randomization
set.

For this property to hold, a set S must have the property that
every pair of cells lying in different rows and columns has the
same symbol in exactly 1y(n 2 1) of the squares in S. (For a superb
discussion of valid randomization sets for quite general designs,
see Bailey and Rowley; ref. 18.) It is then straightforward to
observe that neither the set of 48 complete 4 3 4 Latin squares
nor the set of 24 polycross designs satisfy this property, for n 5
4.

Latin Squares. Latin squares are among the simplest row-
column experimental designs. They have a history of explicit
utilization (23, 27) dating to 1788 and appear implicitly in card
puzzles as early as 1624. Simplicity, range of applicability (23), and
the fact that these designs are at the core of the earliest attempts
to define random arrangements make them ideally suitable for
illustrating diverse aspects of irregularity of planar arrangements.

Quasi-Complete Squares. For small orders (e.g., order # 9)
completeness is an intuitively reasonable minimal criterion for
implementation of the idea of maximally irregular Latin squares.
However, there are no complete squares of order 3, 5, and 7
[Owens (28) identified all complete squares of order 4, 6, and 8]).
To satisfy the need for irregular squares for orders where
complete squares do not exist, Freeman (29) proposed the use of
quasi-complete squares. By this we mean a square of order n in
which the n(n 2 1) adjacent pairs of elements that occur in the
rows include each unordered pair of distinct elements exactly
twice; similarly for the columns. Unlike complete Latin squares,
quasi-complete squares exist for all finite orders.

Within the class of quasi-complete squares, the most irreg-
ular, in the sense of minimal repetition of specific ordered pairs
in adjacent cells in rows and columns, are those squares that
best approximate complete squares. These squares are mem-
bers of U1 5 U1 ù U2, where Ui 5 {u: maxu[88 vector-ApEn
vi(m)(u) is attained for m 5 0 and m 5 1}, for i 5 1, 2. V 5
{v1, v2} 5 {(1, 0); (0, 1)}, and 88 5 quasi-complete squares.

There is considerable variation in degrees of irregularity
among quasi-complete squares of given order. For example, let

88A 5

1 2 3 4 5
2 4 5 3 1
3 5 2 1 4
4 3 1 5 2
5 1 4 2 3

and 88B 5

1 2 3 4 5
2 4 1 5 3
3 1 5 2 4
4 5 2 3 1
5 3 4 1 2

.

88A and 88B both are quasi-complete squares of order 5;
however, 88A is more irregular than 88B, with vector-
ApEn(1,0)(1) (88A) 5 1.040 . vector-ApEn(1,0)(1) (88B) 5
0.693, and vector-ApEn(0,1)(1)(88A) 5 1.040 . vector-

ApEn(0,1)(1)(88B) 5 0.693, manifesting the observation that 10
ordered pairs occur exactly once in each of rows and columns
of 88A whereas no ordered pairs occur only once in either rows
or columns of 88B. From an experimental design perspective,
maximally irregular quasi-complete squares allow the criterion
of directedness (29)—i.e., the ordered pair (p, q) is interpreted
as different from the ordered pair (q, p)—to be well-
approximated, while respecting a size restriction of odd order
for which there are no complete squares.

A natural criticism of the interpretation of quasi-complete, and
particularly of complete, squares as being very irregular is the fact
that many of them have striking symmetry or other internal
similarity properties. For example, a Latin square of order 2m is
said to have s-symmetry (23) by rows if u(i, j) 1 u(i, 2m 1 1 2
j) 5 2m 1 1 for all coordinates (i, j) (similarly for columns). All
24 of the 4 3 4 completely balanced polycross designs are
s-symmetric by rows and columns. They are also magic squares
in the sense that row, column, and diagonal entries all sum to 10.
Indeed, diagonal Latin squares of any order are also magic
squares.

Many of the remaining 4 3 4 complete squares, as well as
numerous 5 3 5 quasi-complete squares are symmetric about
the main diagonal. The central point is that minimizing
repetition of pairs of adjacent entries in rows and columns, one
natural notion of irregular, is nearly incompatible with a
simultaneous objective of eliminating symmetries in Latin
squares of orders 4 and 6.

Many complete Latin squares of orders 8 and 10 have no
s-symmetry (24); e.g., of the 88 standardized complete squares
of order 8, 24 have no s-symmetry; of the 5,488 standardized
complete squares of order 10, 3,660 have no s-symmetry. We
propose that candidates for a valid randomization set of order
2m should, minimally, be complete, lack s-symmetry, and have
no diagonal or total symmetry. Among quasi-complete higher
odd-order squares, elimination of symmetries also should be a
minimal prerequisite for such selection.

Another internally persistent feature prominent among com-
plete squares is the presence of Latin subsquares. For squares of
order 4 and 6, this is unavoidable, because every Latin square of
these sizes has proper Latin subsquares. However, for squares of
order 8, there are exactly three Latin squares that have no Latin
subsquares of any size. Given the large number of complete
squares of order 8, we must compromise in meeting the multiple
objectives of minimal number of Latin subsquares, completeness,
and a large set of irregular squares as candidates to comprise a
valid randomization set. How this should be, if indeed it can be
done to ensure valid randomization sets for squares of order 8 and
higher, is an open question.

Mutually Orthogonal Squares. Definition 4(i). Latin squares
L1 5 uuaijuu and L2 5 uubijuu on n symbols are said to be orthogonal
if every ordered pair of symbols occurs exactly once among the
n2 pairs (aij, bij), 1 # i, j # n.

(ii) A set of n-1 pairwise orthogonal Latin squares of order
n is called a complete set (CMOS 5 complete mutually
orthogonal system).

Fisher (30) pointed out that a complete set of mutually
orthogonal Latin squares (CMOS) is a valid randomization set.
To facilitate their use in the design of experiments, Fisher and
Yates (FY, ref. 31, 1938 and 1963 editions) published CMOS for
squares of orders 3, 4, 5, 7, 8, and 9.¶ As noted at the outset, these
are sizes of Latin squares that find very wide practical utilization.
Examination of the CMOS in FY (ref. 31, 1963 edition, pp.
88–89) reveals:

(i) For squares of order 4, vector-ApEn(1,0)(1)(u) 5 vector-
ApEn(0,1)(1)(u) ' 0.637 where u is any member of the CMOS.
This is only intermediate irregularity, because vector-
ApEn(1,0)(1)(u) 5 vector-ApEn(0,1)(1)(u) ' 1.099 for all com-

iRecall that mutually orthogonal Latin squares of order 6 do not exist.
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plete squares of order 4. Furthermore, no 4 3 4 complete square
has an orthogonal mate, because they all have no transversals.

(ii) There is one strict KV and one weak KV square** in the
CMOS of orders 5 and 7. None of the members of these CMOS
are quasi-complete.

(iii) No member of CMOS of order 8 is quasi-complete. Six
of the seven squares in the CMOS are magic squares, and the
remaining square has identical elements for all entries on the
major and minor diagonals. All squares in the CMOS are
s-symmetric by rows.

(iv) For order 9, no squares in the CMOS are quasi-
complete.

Hence selection of an element from any CMOS in ref. 31 is
guaranteed to yield a square with a more regular arrangement
than would be the case if one put a higher priority on irregularity
relative to validity. The case of squares of orders 5 and 7 is
particularly vexing, because two of the four members (respec-
tively, two of six members) of the respective CMOS are KV. This
is in direct conflict with Fisher’s view, expressed in the quotation
above (21), that these arrangements are too regular.

For squares of orders 5 and 7, it is possible to meet the twin
demands of high irregularity, as defined by quasi-complete-
ness, and validity by CMOS, as demonstrated by Campbell and
Geller (32). For example, the following four squares are each
quasi-complete, and they form a CMOS.

1 2 3 4 5
2 4 5 3 1
3 5 2 1 4
4 3 1 5 2
5 1 4 2 3

1 2 3 4 5
3 5 2 1 4
5 1 4 2 3
2 4 5 3 1
4 3 1 5 2

1 2 3 4 5
5 1 4 2 3
4 3 1 5 2
3 5 2 1 4
2 4 5 3 1

1 2 3 4 5
4 3 1 5 2
2 4 5 3 1
5 1 4 2 3
3 5 2 1 4

These squares are equally row and column irregular, with
vector-ApEn(1,0)(1) 5 vector-ApEn(0,1)(1) 5 1.040 for each
square. Again, 10 ordered pairs occur exactly once in each of
rows and columns, in each square.

The requirement of irregularity that maximizes the number of
distinct ordered pairs in adjacent positions by rows and columns
within a CMOS of quasi-complete squares restricts the size of
valid randomization sets, i.e., those made up of multiple CMOS.
This kind of tradeoff is unavoidable once irregularity constraints
are imposed. However, our ability via vector-ApEn to grade the
degree of irregularity of squares facilitates the clarification,
subject to end-use requirements, of what can be viewed as suitable
candidates for a sufficiently large valid randomization set.

‘‘Random’’ Arrangements by Row and
Column Permutations

Fisher and Yates (ref. 31, 1963, 6th ed., p. 24) advise: ‘‘To
select a square at random from all possible squares of a given
size up to 6 3 6 proceed as follows:

(Step 1) Select one of the given squares (ref. 31, pp. 86–87) by
using the key numbers printed below each square, selecting a
number at random from all possible key numbers. If the key
number falls in the second of the two groups, use the conjugate
number.

(Step 2) In the case of 3 3 3, 4 3 4, and 5 3 5 squares,
permute all rows except the first of the selected square, and all
columns. Alternatively, permute all rows except the first and
assign the letters to the treatments at random. For 6 3 6
squares permute all rows and all columns at random and then
assign the letters to the treatments at random.’’

The ambiguity in step 1 that arises from the instruction to
‘‘select at random’’ will be clarified in the next section.

However, step 2 remains a problem present in the literature on
design of experiments since the first edition of ref. 31 in 1938.
The central observation is that without sharp restrictions on
the class of allowable permutations, there is no control over the
degree of irregularity of the resulting arrangement.

For example, suppose step 1 yields the square

88 5

1 2 3 4
2 3 4 1
3 4 1 2
4 1 2 3

.

This is square number 2 in FY’s first transformation set of 4 3
4 squares. As noted in Example 1, vector-ApEn(1,0)(1)(88) 5
0 5 vector-ApEn(0,1)(1)(88), quantifying the pronounced reg-
ularities that can be seen visually. Applying the permutation
~1 4 2 3
1 2 3 4! to the rows and ~4 2 3 1

1 2 3 4! to the columns of 88 yields the
intermediately irregular square

889 5

4 2 3 1
3 1 2 4
1 3 4 2
2 4 1 3

,

which is column complete, with vector-ApEn(1,0)(1)(889) 5 1.099,
yet not row-complete, with vector-ApEn(0,1)(1)(889) 5 0.637.

Conversely, if the same row permutation is applied, followed
by the column permutation ~1 2 4 3

1 2 3 4!, we obtain

880 5

1 2 4 3
4 1 3 2
2 3 1 4
3 4 2 1

,

which belongs to U1 5 class of complete squares of order 4.
In Bailey’s unified approach (33) to design of experiments,

an example is presented where 5 3 5 Latin squares arise at
stage 6 of the design steps, and these are the allowable designs.
The very regular arrangement (with vector-ApEn(1,0)(1) 5
vector-ApEn(0,1)(1) 5 0)

1 2 3 4 5
2 3 4 5 1
3 4 5 1 2
4 5 1 2 3
5 1 2 3 4

is displayed as the design to be ‘‘randomized’’ at stage 7. Bailey,
appropriately, restricts the allowable permutations to be the
transitive ones, and specifically applies the transpositions (2 3)
(4 5) to the rows and the cycle (1 4 2) to the columns. The
resulting arrangement is

4 1 3 2 5
1 3 5 4 2
5 2 4 3 1
3 5 2 1 4
2 4 1 5 3

This square is not even quasi-complete, and vis-a-vis our
earlier discussion, should not qualify as an adequately irregular
arrangement. The open problem implied by these examples is
determination of sets of allowable permutations linked to
vector-ApEn irregularity constraints.

Randomization. Although the idea of randomization has been
one of the core principles of design and analysis of experiments,
it remains a ‘‘source of obscurity that has plagued statistics for the
past 70 or more years’’ (ref. 4, p. 141). The source of the obscurity
that remains to be resolved is the ambiguity in the words ‘‘chance’’
and ‘‘picking at random.’’ Fisher and Yates (31) provided a
laboratory technique for obtaining a Latin square from a valid
randomization set. At the critical juncture of actually making a
selection, we find the disconcerting sentence, ‘‘All random selec-

**A strict KV Latin square satisfies the definition given in Example 2.
A Latin square is called weak KV when all cells with the same
symbol can be traversed by knight’s moves without visiting cells with
other symbols, where rows and columns are both considered to form
endless cyclic sequences with first row (or column) following the last,
i.e., in a wraparound or toroidal manner.
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tions that were required in the above procedure were made by the
use of two packs of playing cards’’ (ref. 31, p. 18). The discon-
certing element of this procedure is that one is assuming that the
playing cards are shuffled into a ‘‘random arrangement,’’ without
an elucidation of what a well-shuffled deck is, nor an algorithm
for generating one.

Adapting the formulation of maximally irregular sequence of
finite length (15) to include maximally irregular permutations††
relative to the lexicographic ordering (1, 2, 3, . . . , n) allows us to
give an unambiguous formulation of the process of randomiza-
tion. To this end let S be a valid randomization set whose elements
satisfy irregularity conditions given by vector-ApEn. Label the
elements of S in some specified order 1, 2, 3, . . . , uSu. Then let P0
be the maximally irregular permutations of (1, 2, 3, . . . , uSu). We
denote the elements of P0 by p1, p2, . . . puP0u where pj 5 (pj (1),
pj (2), . . . , pj (uSu)) 5 permuted elements of {1, 2, 3, . . . , uSu}.
Finally, define P to be either P0 by itself, or P0 augmented by
additional nearly maximally irregular permutations so that ele-
ments (p1, p2, . . . puPu) of P satisfy

# (j: pj(k) 5 ,)
uPu 5

1
uSu for 1 # k, , # uSu. [1]

This condition is motivated by the objective of having all Latin
squares in S present in P with equal frequency, namely, 1

uSu
. We

now provide
Definition 5. A valid randomization scheme consists of (i)

the delineation of a valid randomization set, S, containing
sufficiently irregular squares; (ii) the selection of a permuta-
tion pj [ P by a selector who is not the investigator and who
does not inform the investigator of the choice; (iii) the
selection by the investigator of an integer, k, where 1 # k # uSu,
denoting the kth element in the irregular permutation pj;
namely pj(k); and (iv) presentation to the investigator, by the
selector, of the Latin square pj(k).

This process implements what we interpret to mean ‘‘picking
at random’’ from the set S. The selector may be a computer
program that chooses the jth element from an irregular per-
mutation of {1, 2, 3, . . . , uPu}; however, the investigator should
not have control over the selection of pj. This restriction is
designed to eliminate any potential biases by the investigator
in a choice of a particular Latin square in S.

It is imperative to contrast the sets S and P in the above
definition with Fisher’s treatment of CMOS as viable candidates
for valid randomization sets. Fisher successfully codified the
notion of pairwise independence among a finite set of Latin
squares, suggested by the analogous mandate from axiomatic
probability theory. However, he failed to act on the observation
that the Latin square elements themselves are hardly interchange-
able as candidates for selection, with pronounced variation in the
extent of internal regularities among the candidate elements.

Selection rules other than the above algorithm can be
invoked to expand the set of algorithms that could be inter-
preted as mechanisms of randomization. However, the basic
thrust of our discussion is clarification that meaningful oper-
ational formulations of the idea of randomization are combi-
natorial in character. It is this insight that removes the ambi-
guity in Fisher’s original formulation.

Notes and Applications. 1) The vector-ApEn definition
generalizes without modification to n $ 3-dimensional and to
nonrectangular lattices A, thus providing a much wider range
of applicability than for the two-dimensional, square lattices
featured above.

2) For the 4 3 4 and 5 3 5 Latin squares above, ApEn with
mcrit 5 1 already provides considerable utility, allowing one to
recover, e.g., row and column completeness. For medium and
larger sized arrays, where we will use mcrit $ 2, there will be

enhanced refinement into irregularity classes in the given
vector direction(s). For example, for the vector v 5 (0, 1) with
m 5 2, we can refine row-complete squares into distinct
subclasses, based on an analysis of the extent of equidistribu-
tion of 3-blocks (triples) along a row direction.

3) A significant development, distinct and complementary
to that above, would be irregularity specifications for very large
and infinite lattices A. A clarification of what is meant by
‘‘Poisson in the plane’’ seems especially important, in this
setting. For example, on page 2 of the superb volume of Aldous
(34), we find the directive ‘‘Set down points y according to a
Poisson point process of rate l per unit area.’’ The discon-
certing fact is that constructive algorithms for, and combina-
torial characterizations of, Poisson arrays still lie in the future.

4) One also could develop a spatial form of ApEn to assess
array irregularity along parametrized curves, rather than along
vector (linear) directions. The choice(s) of curves typically would
be tailored to the requirements of specific applications. For
example, in agricultural experiments where the influence of plant
density on yield is considered (35), many density levels and row
spacings need to be evaluated. With the objective of minimizing
land area used and maximizing the number of density levels and
row spacing levels, Nelder (36) introduced a family of fanshape
designs. A requirement of irregular arrangements of treatments
at given density and spacing levels would necessitate grading of
fanshape designs via vector-ApEn along curved arcs.

5) Even within the class of KV squares, as defined in
Example 2, there is room for delineation via vector-ApEn. For
instance, compare KV1 in that example, for which wrap
vector-ApEn(1,0)(1) 5 wrap vector-ApEn(0,1)(1) 5 wrap vec-
tor-ApEn(1,2)(1) 5 0, to

KV2: 5

1 2 3 4 5
5 4 1 3 2
4 3 2 5 1
2 5 4 1 3
3 1 5 2 4

.

KV2 is also KV, in that it satisfies the knight’s move criteria
stated in Example 2, yet intuitively, it appears less regular than
KV1. Vector-ApEn quantifies this intuitive difference: for
KV2, wrap vector-ApEn(1,0)(1) 5 wrap vector-ApEn(0,1)(1) 5
1.068, and wrap vector-ApEn(1,2)(1) 5 1.124.

6) Bailey (37), appropriately criticizing many of FY’s pub-
lished Latin squares (31) for lack of stratifiability, recommends
the use of experimental arrangements where the Latin square
is the Cayley table of an Abelian group. This restriction can
introduce a high degree of regularity, as exemplified by the
Cayley tables of elementary Abelian 2-groups of orders 4 and
8 exhibited on p. 53 of ref. 37. This raises the question of the
range of achievable degrees of irregularity for Cayley tables of
Abelian groups when, for example, V 5 {(1, 0); (0, 1)}.

7) One of the crucial observations from the core text is the
relative conflict between simultaneously realizing objectives of
high degrees of vector irregularity, while minimizing other
symmetries. Several points are in order:

(i) The severity of this conflict is most pronounced for very
small squares, e.g., the 4 3 4 and 5 3 5 cases, and it already
lessens considerably (insofar as extremal instances) for mid-
sized and larger squares, e.g., N 3 N, N $ 20.

(ii) Our point is not to mandate which of symmetry vs.
irregularity should be rated as more important by the user, but
rather, to elucidate the conflict, and especially, to provide
quantitative means from which the user can deduce explicit
preferences as to how to balance these tradeoffs, based on
automated procedures applied to a suitable loss function.

(iii) If visual symmetries are apparent, this generally man-
ifests some form of regularity, in the sense of feature replica-
tion, and vector-ApEn, applied to an appropriately redefined
set of base atoms and choice of metric, typically then can

††A full exposition by the authors, ‘‘Irregular Permutations,’’ will be
published elsewhere.
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quantify this symmetry directly. We illustrate the crux of the
idea in the 4 3 4 Latin square setting, where we now view the
Latin square as consisting of four elemental subpieces, namely,
the four subblocks Sub(i, j), 1 # i, j # 2, where

Sub(i, j): 5 the 2 3 2 block

Su(2i 2 1, 2j 2 1)
u(2i, 2j 2 1)

u(2i 2 1, 2j)
u(2i, 2j) D ,

in conjunction with the distance metric d, with d 5 0 if two
subblocks identically match (for corresponding elements),
otherwise d 5 1. Consider the ‘‘trivial’’ application of vector-
ApEn, with m 5 0 (thus vector choice v is irrelevant), which
simply assesses one-dimensional equidistribution of the four
width-2 subblocks in this partition. Consider

A 5

1 2 3 4
2 1 4 3
3 4 1 2
4 3 2 1

, B 5

1 2 3 4
2 1 4 3
3 4 2 1
4 3 1 2

, and C 5

1 2 3 4
4 3 2 1
3 1 4 2
2 4 1 3

.

Then vector-ApEn(0) (A) 5 0.693, vector-ApEn(0) (B) 5
1.040, and vector-ApEn(0) (C) 5 1.386, manifesting for A, two
occurrences each of (2

1
1
2) and (4

3
3
4), for B, two occurrences of

(4
3

3
4) and one each for the two subblocks (2

1
1
2) and (1

2
2
1), and for

C, one occurrences of each of the four 2 3 2 subblocks.
Furthermore, we can reintroduce r back into consideration

in vector-ApEn, as generally is used in continuous state
applications, e.g., refs. 38 and 39. This provides considerably
more power insofar as grading ‘‘near matches.’’ For instance,
if we wished to consider bilateral symmetry (of subblocks) a
notable feature, we could redefine our metric d on subblocks,
with d 5 0 if two subblocks identically match, d 5 1y2 if two
subblocks are bilaterally symmetric to one another, otherwise
d 5 1. Then while vector-ApEn(0, r 5 0) (B) 5 1.040, observe
that vector-ApEn(0, r 5 0.5) (B) 5 0.693, calibrating the
near-match at this level of (d) resolution.

Finally, this result only hints at the power of such a view-
point, as vector-ApEn applications with m $ 1 go yet again
much further, and the range of sensible near match metrics d
and partition choices is vast.

(iv) The methodology of iii may prove very useful in applications
of vector-ApEn to image and pattern recognition programs and to
characterizations of limiting cellular automata, to assess the degree
of repeatability of prescribed features. Redefined sets of base
atoms would be shapes or features of critical interest, either on the
same scale as the original atoms, or much larger, thus providing a
more macroscopic assessment of spatial irregularity.

8) Many models within physics are lattice-based systems.
Probably the best known and simplest of these is the nearest-
neighbor Ising model (1). This binary state model has been
interpreted respectively as modeling a magnet (via spin), a lattice
gas, and as an alloy, with one of two allowed species at each site.
More general lattice systems are N-vector models (including the
classical Heisenberg model), often considered better models of a
magnet; spin-glasses (40); two-dimensional 6- and 8-vertex mod-
els (of ferroelectrics), in which the random variables are indexed
by bonds in the lattice, rather than sites; and lattice gauge models,
thought fundamental to understanding elementary particle in-
teractions (1). Determining relationships between changes in
vector-ApEn in the above models and physical correlates would
seem highly worthwhile, either theoretically or experimentally.

Also, within solid-state physics, we speculate that grading
the extent of array disorder may possibly prove useful in
assessing or predicting (i) crystal and alloy strength andyor
stability under stresses; (ii) phase transitions, either liquid-to-
gas, solid-to-liquid, or frigid-to-super-conductive; and (iii)
performance characteristics of semiconductors.

9) The analysis of travelling waves oftentimes requires a
quantification of subtle changes, particularly as to the extent of
formation, and conversely, the extent of dissolution or dissipation
of wave fronts, above and beyond an identification of primary
wave ‘‘pulses’’ and resultant derived frequency and amplitude
statistical values. Although considerable signal-to-noise analysis
methodology has been developed for and applied to this setting,
to clarify wave fronts, in the ubiquitous instances where the extent
of insidious or subordinate activity is the primary feature of
interest, a critical and further assessment of the wave patterns is
required, to which vector-ApEn should readily apply, both in two-
and three-dimensional settings. This recognition may be partic-
ularly critical near the genesis of an upcoming event of presumed
consequence. Two quite different, important applications in this
context are (i) seismologic event formation and (ii) (atrial)
fibrillationyarrhythmia mechanisms within physiology. The need
for and utility of monitoring irregularity changes, above pulse
characteristics, in a one-dimensional setting, has been explained
and well-documented in a number of endocrinologic studies (38,
39), where, as well, both correlation and spectral methods have
failed to illuminate the essential systemic changes.
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10. Yates, F. (1939) Biometrika 30, 441–464.
11. Grundy, P. M. & Healy, M. J. R. (1950) J. R. Stat. Soc. B 12, 286–291.
12. Bailey, R. A. (1983) Biometrika 70, 183–198.
13. Bailey, R. A. (1987) J. Am. Stat. Assoc. 82, 712–719.
14. Fisher, R. A. (1926) J. Minis. Agri. G. B. 33, 503–513.
15. Pincus, S. & Singer, B. H. (1996) Proc. Natl. Acad. Sci. USA 93, 2083–2088.
16. Pincus, S. & Kalman, R. E. (1997) Proc. Natl. Acad. Sci. USA 94, 3513–3518.
17. Fisher, R. (1925) Statistical Methods for Research Workers (Oliver & Boyd,

Edinburgh).
18. Bailey, R. A. & Rowley, C. A. (1987) Proc. R. Soc. London Ser. A 410,

105–124.
19. Yates, F. (1933) Emp. J. Exp. Agri. 1, 235–244.
20. Pincus, S. M. (1991) Proc. Natl. Acad. Sci. USA 88, 2297–2301.
21. Savage, L. J. (1962) The Foundations of Statistical Inference: A Discussion

(Methuen, London).
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