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ABSTRACT

Here, we describe novel puromycin derivatives
conjugated with iminobiotin and a fluorescent dye
that can be linked covalently to the C-terminus of
full-length proteins during cell-free translation. The
iminobiotin-labeled proteins can be highly purified
by affinity purification with streptavidin beads. We
confirmed that the purified fluorescence-labeled
proteins are useful for quantitative protein–protein
interaction analysis based on fluorescence cross-
correlation spectroscopy (FCCS). The apparent
dissociation constants of model protein pairs such
as proto-oncogenes c-Fos/c-Jun and archetypes of
the family of Ca21-modulated calmodulin/related
binding proteins were in accordance with the
reported values. Further, detailed analysis of the
interactions of the components of polycomb group
complex, Bmi1, M33, Ring1A and RYBP, was suc-
cessfully conducted by means of interaction assay
for all combinatorial pairs. The results indicate that
FCCS analysis with puromycin-based labeling and
purification of proteins is effective and convenient
for in vitro protein–protein interaction assay, and
the method should contribute to a better under-
standing of protein functions by using the resource
of available nucleotide sequences.

INTRODUCTION

An understanding of the rate and specificity of assembly of
biomolecular complexes is essential for a full appreciation
of the mechanisms of biological events. Further, currently
available information on genome sequences of various

organisms can be exploited as a resource for characterizing
novel functions of proteins or hypothetical proteins. For this
purpose, a high-throughput method is required for functional
protein analysis. Fluorescence correlation spectroscopy (FCS)
and fluorescence cross-correlation spectroscopy (FCCS) have
recently been applied to such important biological problems
(1–11). FCS allows monitoring of the individual movements
of fluorescence-labeled molecules through a very tiny area
(1,2). The time-dependent fluorescence autocorrelation func-
tion allows us to analyze the relative proportions of species
involved in the diffusion. Changes of the proportions can
be used to calculate the binding kinetics (3,4,8). FCCS util-
izes separate channels to detect two distinct fluorophores,
as well as the cross-correlated signals, in real time (5).
With FCCS, bound molecules can be detected even if the
differences of diffusion are not great. So far, FCCS has
been applied to the studies of DNA hybridization (5), PCR
(9), enzymatic cleavage of a DNA substrate by EcoRI endo-
nuclease (6,10) and protein–DNA interactions (11).

Fluorescence labeling of proteins is a key step for the FCS
and FCCS analysis of protein interactions. So far, chemical
modifications (12,13) and recombinant fusion tagging with
fluorescent proteins (14–17) have been used for fluorescence
labeling of proteins. These methods are often useful, but the
modifications of internal amino acid residues or the addition
of relatively large fluorescent proteins may affect the func-
tions of labeled proteins. As an alternative approach, we
have previously developed a puromycin-based method for
fluorescence labeling of proteins (18,19). By using this
method, various fluorophores can be incorporated into full-
length proteins in the presence of a low concentration of
fluorophore-conjugated puromycin in a cell-free translation
system (11). Small fluorescent probes are expected to be
less likely to interfere with the structure or biological func-
tion of proteins and cell-free protein synthesis is suitable
for a high-throughput format owing to its simplicity. We
have previously reported the FCCS analysis of protein–DNA
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interactions between RhG (rhodamine green)-labeled pro-
teins and Cy5-labeled DNA (11). Although high-throughput
analysis of protein–protein interactions in solution using
FCCS is of great interest, detection of cross-correlations
between differently labeled proteins has been difficult,
because the labeling efficiency of our method ranges from
only 10 to 30% (11), and the remaining unlabeled proteins
in solution inhibit the formation of the protein–protein com-
plex carrying both RhG and Cy5. In this study, we have
improved the purification process of fluorescence-labeled
proteins by using novel iminobiotin-conjugated fluorescent
puromycin derivatives to aid the removal of unlabeled pro-
teins, thereby making protein–protein interaction assay using
FCCS practically feasible. We used three model systems,
proto-oncogenes c-Fos and c-Jun, archetypes of the family
of Ca2+-modulated calmodulin (CaM) and CaM-related
binding proteins, and the polycomb group (PcG) complex
proteins to confirm the usefulness of our method.

MATERIALS AND METHODS

Synthesis of fluorescent puromycin derivatives

NHS-iminobiotin trifluoroacetamide was purchased from
Pierce. Iminobiotin-T(Cy5)-dC-puromycin (Figure 1A) and
iminobiotin-T(RhG)-dC-puromycin (data not shown) were
synthesized and purified as described previously (11), with
some modifications (see Supplementary Data). The structural
identity of the synthesized fluorescent puromycin analogs was
confirmed by MALDI-TOF mass spectrometry (Voyager;
Perceptive Biosystems).

Preparation of templates for translation

In a template DNA, two tags were added to the 50- and 30-
termini of the open reading frame (11,19) (Figure 1B) by
PCR and the fragment was subcloned into a pCR2.1Topo
vector (Invitrogen). The DNA template was amplified from
the clone by PCR and cleaved with XhoI. The purified
DNA was transcribed in an SP6 large-scale RNA production
system (Promega).

Fluorescence labeling and purification

Fluorescence labeling was carried out using the wheat germ
extract translation system ‘Proteios’ (Toyobo, Japan) as
described in the manufacturer’s protocol, except that a
fluorophore-conjugated puromycin was added. The translation
was terminated by the addition of RNase A (1 mg/0.3 ml;
Ambion). The purification of fluorescently labeled proteins
was performed at 4�C. The mixture was dialyzed against
nickel binding buffer (50 mM phosphate, 150 mM NaCl,
1 mM DTT and 0.05% NP-40, pH 8.0), followed by centri-
fugation at 16 000 g for 20 min. The supernatant was mixed
with 10 ml of Ni-NTA agarose (20) (SuperFlow; Qiagen) for
1 h. The supernatant was removed, and the beads were
washed three times, with agitation, in nickel binding buffer
(1.0 ml) containing 2.5 mM imidazole and 300 mM NaCl.
Proteins were eluted with 50 ml of buffer containing
0.5 M imidazole, pH 8.0. The fraction was mixed with
9 vol of 50 mM phosphate buffer (pH 8.0) containing
300 mM NaCl, 5 mM DTT and 0.05% NP-40, then 10 ml

of streptavidin–Sepharose (21) (Amersham Pharmacia) was
added and the mixture was rocked for 1 h. The beads
were washed with the buffer three times. Protein was eluted
with 50 ml of buffer (240 mM Tris–HCl, 150 mM NaCl,
0.1 M biotin, 5 mM DTT and 0.1% NP-40, pH 8.0). The
protein fraction was mixed with 10 mM DTT and kept at
4�C before use.

Immunodetection and fluorescence determination

The proteins were detected by enhanced immunoblotting (22)
with mouse anti-T7·tag antibody (Novagen) and horseradish
peroxidase (HRP)-labeled goat anti-mouse IgG (Transduction
Laboratories). The blot was determined semiquantitatively
with the T7·tag positive control recombinant protein (Nova-
gen), an ECL detection kit (Amersham Pharmacia) and a
CCD camera (ChemiDoc; Bio-Rad). Proteins separated by
SDS–PAGE were stained with SyproOrange (Molecular
Probes) and detected using a fluorescence image analyzer
(excitation at 488 nm and emission at 515–545 nm,
Molecular Imager FX; Bio-Rad). The fluorescence yield
was spectrophotometrically determined using the fluores-
cence image analyzer (Cy5 was detected with excitation
at 635 nm and emission at 670–720 nm; RhG with excita-
tion at 488 nm and emission at 515–545 nm) and a standard
dye with molecular extinction coefficients of e505 (RhG) ¼
68 000 cm�1 M�1 (measured at pH 8.0) and e647 (Cy5) ¼
250 000 cm�1 M�1.

FCCS measurement

FCCS measurement was performed on a ConfoCor2 system
(Carl Zeiss) as described previously (11). The two pinholes
and the cross-correlated volume element were adjusted by

Figure 1. Materials for fluorescence labeling. (A) The structure of a
fluorescent puromycin derivative. A fluorophore (Cy5 or RhG) and
iminobiotin were chemically conjugated to puromycin through a linker. (B)
DNA construction for fluorescence labeling of proteins. Template DNA
consists of SP6 promoter, Omega sequence and an open reading frame (ORF)
with a T7·tag at the N-terminus and a polyhistidine tag at the C-terminus,
followed by a XhoI restriction enzyme site.
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measurement (5). All solutions were prepared in water (fluor-
escence analysis grade; Dojindo, Japan) and filtered through
an Ultrafree-MC filter unit (Millipore). Fluorescently labeled
proteins were dialyzed against 50 mM phosphate, 150 mM
NaCl, 0.1% NP-40 and 1 mM DTT, pH 7.4. After centrifuga-
tion at 16 000 g for 20 min, differently labeled proteins were
mixed in a Lab-Tek 8-well chamber (Nalge Nunc) and kept
for 10 min. Interaction of c-Fos with c-Jun was also analyzed
in the presence of DNA, poly(dI–dC)·poly(dI–dC) (2 mg/ml;
Amersham Pharmacia) and the AP-1 synthetic oligonuc-
leotides of 30 bp (Dateconcept, Sapporo, Japan) (23). CaM
interactions were analyzed in the presence of 0.5 mM
CaCl2. Two autocorrelation curves and the cross-correlation
curve of FCCS data were analyzed by using fitting algorithm
described below in the software package for ConfoCor2
(Carl Zeiss).

Theory and data calibration

The theoretical background of FCCS analysis has been des-
cribed by Eigen et al. and Rigler et al. (5,6,9). The fluores-
cence autocorrelation function and the cross-correlation
function were acquired from an online system-controlling
computer software package. The normalized cross-correlation
function G(t) is given by

GgrðtÞ ¼ 1þ hdIgðtÞ · dIrðtþ tÞi
hIgi · hIri

‚ 1

where the indices refer to one or two measured fluorescence
signals, Ig and/or Ir. In the case of one fluorescent species,
Equation 1 (r ¼ g) defines normalized autocorrelation
function in a single detection channel. w1 is the radius and
w2 is half of the long axis of the confocal volume element.
The structural parameter S is the ratio of w2/w1. Two-
component model of the autocorrelation function for transla-
tional diffusion in a 3D Gaussian volume element is
described as follows:

GðtÞ¼ 1þ 1
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where tD1
and tD2

are the diffusion times of the faster com-
ponent and slower component in the assay. Y represents the
fraction of fluorescent protein with the diffusion time tD2

in
the total number of fluorescent particles N. The values of
w1,i (i ¼ g or r) were determined from the diffusion times
of rhodamine 6G (Sigma Aldrich; diffusion coefficient D ¼
2.8 · 10�10 m2 s�1) and Cy5 (mono-reactive dye, Amersham
Pharmacia; D ¼ 3.16 · 10�10 m2 s�1).
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4D · tDi

p
3

The volume elements V are calculated according to
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The measured total number of autocorrelated particles NAC,i

and complex cross-correlated particles Ncc is given by

N¼ 1

Gið0Þ� 1
6

where in the case of Ncc, Gi(0) indicates Ggr(0). The red emis-
sion excited by the green laser Qg (cross-talk fraction) was
calculated from the mean count rates of the red channel
when excited by both lasers (Cgr) and only the red laser
(Cr), using a modification of the method in the application
manual of ConfoCor2.

Qg ¼
Cgr �Cr

Cgr

7

Calculated free molecules Ni and calculated complex
molecules Ngr are as follows:

NAC‚g ¼NgþNgr 8

NAC‚ r ¼NrþQg ·Ngþð1þQgÞ ·Ngr 9

Ngr ¼
NAC‚g · ðNAC‚ rþQg ·NAC‚gÞ

Ncc �Qg ·NAC‚ g

: 10

The concentrations of each fluorescent protein were calcu-
lated with the use of A (Avogadro’s number) as follows:

ci ¼
Ni · Yi

Vi · A
: 11

The dissociation constants (Kds) are given by

Kd ¼
ðcr � cgrÞ · ðcg � cgrÞ

cgr
: 12

RESULTS

Tandem affinity purification of fluorescently labeled
proteins

c-Fos(118–211) and c-Jun(216–318) were translated in the
presence of iminobiotin–fluorophore-conjugated puromycin,
whose structure is presented in Figure 1A. The optimal
concentrations of the puromycin derivatives were 12.5 mM
as RhG and 25 mM as Cy5, respectively (data not shown).
The reaction mixtures were purified by two steps of affinity
purification with nickel-chelate beads (Figure 2A) and
streptavidin-conjugated beads (Figure 2B). Excess unincor-
porated dyes and lower molecular weight proteins were not
retained on nickel-chelate beads (Figure 2A, lane 2). The
fractions eluted with 0.5 M imidazole (Figure 2A, lane 3)
were further purified using streptavidin beads. The flow-
through fraction contained <5% of the total fluorescence
intensity, but �30% of the immunoblotting signal
(Figure 2B, lane 2). The biotin-eluted fraction (Figure 2B,
lane 3) showed a weaker signal than that of the applied
fraction (Figure 2B, lane 1) in immunodetection. These res-
ults indicate that unlabeled proteins were successfully
removed by the second step of affinity purification. The
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purified Cy5–protein fraction was identical to one band detec-
ted in SDS–PAGE by protein staining with SyproOrange
(Figure 2C, lane 2). Similarly, CaM, CaM-binding proteins
and PcG proteins were labeled and highly purified (data not
shown).

Conditions of FCCS analysis with ConfoCor2

The pinhole diameters were adjusted to 70 mm in the green
channel and 48 mm in the red channel to provide a sufficient
observation volume for our system. The overlap of the excita-
tion volumes between red and green laser lines was achieved
by exciting the Cy5 dye with both wavelengths (5). The auto-
correlation curve of the red channel with only the 633 nm
laser (red line in Supplementary Figure 1) was coincident
with the curve of the channel with only the 488 nm laser
(blue line in Supplementary Figure 1). The particle numbers

detected in the red channel and in the green channel were
24.1 and 23.7, respectively. The structural parameter S was
calculated as 5 for the green channel and as 7 for the red
channel. The diffusion time of �10 nM rhodamine 6G in
the green channel was 30 ms and that of �10 nM Cy5 dye
in the red channel was 44 ms in the laser power range
used. The effective volume elements were Vg ¼ �0.19 fl in
the green channel, Vr ¼ �0.41 fl in the red channel and
Vgr ¼ �0.26 fl in the cross-correlated channel (see
Equations 4 and 5 in Materials and Methods for definitions).
The differences between these detection volumes were
accounted for in the data analysis according to Equation 11.
The calculated diffusion coefficients of iminobiotin-T(RhG)-
dC-puromycin and iminobiotin-T(Cy5)-dC-puromycin were
2.1 and 2.3 · 10�10 m2 s�1, respectively, using FCS analysis.
The cross-talk from red to green was zero whereas the
cross-talk from green to red was �10%: this was accounted
for in the calculation of complex concentration according to
Equation 10.

FCCS analysis of c-Fos and c-Jun

The fractions of fluorescently labeled proteins to fluorescent
particles were c-FosCy5 71%, c-JunCy5 68%, c-FosRhG 69%
and c-JunRhG 67% when the functions were fitted to two-
component models with diffusion times corresponding to
those of the fluorescent derivatives using FCS analysis
(Figure 3). Diffusion coefficients of c-FosRhG, c-FosCy5,
c-JunRhG and c-JunCy5 were calculated to be 7.6–8.1 ·
10�11 m2 s�1. As shown in Supplementary Figure 2, the dif-
fusion coefficients of fluorescent-puromycin-labeled proteins
were consistent with the predictions of the Stokes–Einstein
theory (24). Concentrations of fluorescently labeled proteins
were calculated from the autocorrelation functions in the
FCCS analysis (Figure 3A–C, upper panels). The apparent
Kd values calculated with the equilibrium data are summar-
ized in Table 1. The translational diffusion time of c-Fos

Figure 2. Purification of fluorescence-labeled proteins. Subscript Cy5 or
RhG indicates a fluorophore linked to puromycin derivative. Proteins were
separated on 15–25% continuous gradient SDS–PAGE and detected using a
fluorescence imager (Cy5 or RhG) or aT7·tag antibody. (A) Affinity
purification with nickel-chelate resin. Lane 1, in vitro translation products;
lane 2, flow-through fractions; and lane 3, eluates with 0.5 M imidazole. (B)
Affinity purification with streptavidin resin. Lane 1, nickel-chelate affinity-
purified fractions; lane 2, flow-through; and lane 3, eluates with 0.1 M biotin.
(C) Protein staining with SyproOrange. Lane 1, in vitro translation products;
and lane 2, purified fractions.

Figure 3. FCCS analysis of AP-1-binding proteins. The autocorrelation function (upper panels) and cross-correlation function (lower panels) of c-FosCy5 and
c-FosRhG (A), c-JunCy5 and c-JunRhG (B), and c-JunCy5 and c-FosRhG (C). In the autocorrelation plot, red and green lines represent Cy5 and RhG. The dashed
curves (blue in cross-correlation function) represent data obtained after the addition of 50 nM AP-1 oligonucleotides.
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homodimer was determined after the addition of AP-1 DNA
by using the cross-correlation function (Figure 3A, lower
panel). In the presence of the AP-1 DNA sequence, the Kd

of the heterodimer was �80-fold lower than that of c-Fos
homodimer (Table 1). In the case of the heterodimer and
c-Jun homodimer, the Kd decreased to �70% after the addi-
tion of the AP-1 sequence. The cross-correlation function of
c-FosRhG/c-JunCy5 gave the diffusion coefficient of the cross-
correlated complex as 7.0 · 10�11 m2 s�1 in the absence of
the AP-1 sequence and 4.4 · 10�11 m2 s�1 in its presence
(Figure 3C, lower panel). The Kd of c-FosCy5/c-JunRhG was
determined to be 7 · 10�8 M in the absence of the AP-1
sequence and 5 · 10�8 M in its presence (data not shown).

FCCS analysis of CaM and CaM-binding proteins

The diffusion coefficients of CaM(1–149)RhG, calcineurin
A(328–521)Cy5, Rab3A(1–219)Cy5 and caldesmon(302–
564)Cy5 were calculated to be 7.6, 7.3, 6.8 and 7.0 ·
10�11 m2 s�1, respectively. Variations of the cross-correlation
function between CaM and CaM-binding proteins were
observed in the presence of Ca2+ (see Figure 4A–C, solid

curves). The diffusion times of the cross-correlated functions
were determined, except for that of Rab3A, by using
analyzing software. The amplitudes of the cross-correlation
functions were reduced by the addition of EGTA
(Figure 4B and C, dashed blue curves), indicating the
involvement of Ca2+-mediated interactions. The calculated
Kds after the addition of EGTA indicated a non-specific-
binding interaction or the background of the detection pro-
cedure. The significant Kd values were determined to be
2–5 · 10�7 M in the assay (Table 1).

FCCS analysis of PcG complex proteins

The diffusion coefficients of fluorescently labeled proteins
M33(1–519)Cy5, Bmi1(1–326)Cy5, Bmi1(1–326)RhG,
Ring1A(201–377)Cy5, Ring1A(201–377)RhG, RYBP(92–
228)Cy5 and RYBP(92–228)RhG were 4.1, 6.1, 6.6, 7.2, 7.4,
7.3 and 7.5 · 10�11 m2 s�1, respectively. Variations of
cross-correlation function were observed for Bmi1RhG/
M33Cy5, M33Cy5/Ring1ARhG, M33Cy5/RYBPRhG and
RYBPRhG/Ring1ACy5 (solid curves shown in Figure 5A–D
and Table 1). The significant interactions are shown schemat-
ically in Figure 6. M33 appeared to mediate the association.
To confirm the role of M33, we examined the association
with the mediator using FCCS. Interestingly, the amplitude
of the cross-correlation function of Bmi1Cy5/Ring1ARhG

was increased by the addition of non-labeled M33 (dashed
blue curves shown in Figure 5F). The diffusion coefficient
of the cross-correlated complex was 2.7 · 10�11 m2 s�1, cor-
responding to �120 kDa. The molecular brightness (C/M)
was not altered by the addition of a non-labeled protein
(19.5–20.0 kHz in the red channel and 12.7–11.3 kHz in
the green channel). In contrast, the effect of the addition of
M33 on the interactions of Ring1A/RYBP and Bmi1/RYBP
was not significant (dashed blue curves in Figure 5D and E).

DISCUSSION

Purification of fluorescently labeled proteins by using a sec-
ondary affinity tag, iminobiotin, introduced on to fluorescent
puromycin as described here, improved the sensitivity for
FCCS analysis of interactions between two distinct
fluorescence-labeled proteins. Indeed, the c-JunRhG/c-JunCy5
interactions both with and without non-labeled AP-1 oligo-
nucleotide could be detected in this study, whereas the inter-
action among c-JunRhG/Cy5-labeled AP-1/non-labeled Jun

Table 1. Concentrations of fluorescent proteins and apparent Kd values

determined using FCCS in this study

Cy5-labeled
protein (nM)

RhG-labeled
protein (nM)

Addition Kd (nM)

Fos (18.4) Fos (18.0) — ND
Fos (19.2) Fos (17.9) AP-1 DNA 3720
Jun (8.1) Jun (15.2) — 270
Jun (7.8) Jun (14.6) AP-1 DNA 190
Jun (4.8) Fos (12.3) — 69
Jun (4.5) Fos (11.5) AP-1 DNA 45
Rab3A (4.8) CaM (8.1) — ND
Rab3A (4.5) CaM (7.8) EGTA ND
Caldesmon (6.1) CaM (8.3) — 500
Caldesmon (5.7) CaM (7.5) EGTA 2300
Calcineurin (11.2) CaM (7.8) — 160
Calcineurin (11.5) CaM (7.9) EGTA 2200
M33 (5.6) Bmi1 (7.8) — 92
M33 (4.6) RYBP (5.3) — 70
M33 (5.2) Ring1A (7.7) — 51
Ring1A (4.6) RYBP (16.3) — 74
Bmi1 (4.4) RYBP (14.7) — 2300
Bmi1 (4.1) Ring1A (5.5) — 2000

ND; not determined.

Figure 4. Cross-correlation function between CaMRhG and CaM-binding proteins: Rab3ACy5 (A), caldesmonCy5 (B) and calcineurin AaCy5 (C). The dashed blue
curves represent data obtained after the addition of 5 mM EGTA.
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was not detected in the previous study (11). The apparent Kd

of c-Fos/c-Jun/AP-1 found in this study was in good agree-
ment with reported values (25,26). The Kd of c-Jun homodi-
mer and AP-1 sequence also coincided with the value of
140 nM determined previously (25). Further, the Kd of
CaM and caldesmon was in agreement with the reported
value of 550 nM (27). The apparent Kd was independent of
the concentrations of fluorescence-labeled proteins (data not
shown). These results indicate that FCCS analysis with
puromycin-based labeling of proteins is effective and con-
venient for protein–protein interaction assay, and that the
puromycin derivatives and affinity tags did not interfere sub-
stantially with the protein interactions. It should be noted that
the Kd values obtained from FCCS are minimum estimates
because small amounts of unlabeled proteins may remain.

The interaction of c-Fos homodimer and CaM/Rab3A
mediated by Ca2+ could not be identified in this study. The
Kd of c-Fos homodimer and AP-1 sequence was previously
reported to be �6 mM (28). The Kd of CaM/Rab3A was
also reported to be 20�50 mM (29,30). The interaction of
c-Fos homodimer (and c-Jun homodimer) in this study
might include interactions between single-colored proteins,
but the molecular brightness was not greater than that of

other probed proteins (data not shown). Such weak interac-
tions might be detected if the concentrations of fluorescently
labeled proteins were increased.

A surface plasmon resonance (SPR) biosensor allows real-
time analysis of specific interactions on a solid phase,
whereas FCS and FCCS detect interactions in solution. Schu-
bert et al. (31) compared the entropic contribution to the free
energy between SPR and FCS and concluded that the reaction
entropy determined from an SPR experiment was lower than
that from an FCS experiment. Indeed, the Kd between CaM
and calcineurin was determined as 1.7 · 10�8 M by means
of an SPR biosensor (32), and this is 10 times lower
than our value using FCCS. Similarly, interaction assay of
c-Fos/c-Jun heterodimer immobilized on a polystyrene tray
gave a Kd of 1 nM (33), whereas our FCCS analysis gave
70 nM. Although the immobilizing method may be advant-
ageous for the detection of protein interactions with low
affinity, we believe that Kd values in living cells are likely
to be more similar to those determined using FCCS in solu-
tion than to those determined on a solid phase.

The PcG proteins form multimeric complexes that bind to
specific genomic sites of polycomb repressive elements (34).
We applied FCCS to analyze in detail the individual associ-
ations of some PcG proteins by interaction assay of the
pairs under homogeneous conditions. As shown in Table 1,
significant interactions were found among M33/Bmi1,
M33/Ring1A, M33/RYBP and Ring1A/RYBP, respectively,
as previously confirmed by the yeast two-hybrid method
and protein pulldown assay (35,36). It appears that M33 is
a mediator in the association of these proteins (Figure 6),
but only the association of Bmi1/M33/Ring1A was confirmed
(Figure 5F). The association of Bmi1/M33/Ring1A was also
supported by applying a three-component model to fit the
autocorrelation function of Bmi1 after the addition of non-
labeled M33 (data not shown). Bmi1, M33 and Ring1A
are components of a stable core PcG repressive complex,
according to a biochemical study (37). Interestingly, our

Figure 5. Cross-correlation function of M33Cy5 and Bmi1RhG (A), M33Cy5 and Ring1ARhG (B), M33Cy5 and RYBPRhG (C), Ring1ACy5 and RYBPRhG (D),
Bmi1Cy5 and RYBPRhG (E), and Bmi1RhG and Ring1ACy5 (F). Dashed blue curves represent data obtained after the addition of non-labeled M33 (2 nM).

Figure 6. Schematic diagram of association of polycomb gene complex
proteins. Arrows indicate interactions between the proteins as judged from the
apparent Kd values in this study. Gray areas indicate triplet interaction
detected using FCCS.
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results suggest that RYBP may interact with M33 or Ring1A
in the free form without the formation of a core complex.
This is consistent with the idea that RYBP plays a role in
recruiting PcG components (38). The FCCS analysis of the
components of PcG complex proteins presented here should
be a good model for detailed analysis of other protein com-
plexes. For example, use of puromycin-based fluorescently
labeled proteins would allow FCCS analysis, as well as
FCS analysis, of the dynamics of complex formation of ret-
inoblastoma tumor suppressor complex (39). The range of
detectable interactions should be improved by using FCCS.

The tandem affinity purification method using a polyhistid-
ine tag and an iminobiotin tag was further applied to over 30
proteins and all but three were sufficiently purified for FCCS
analysis. We also observed the interactions between IgG and
its binding domain ZZ region (40), and between Smac (sec-
ond mitochondria-derived activator of caspase or DIABLO)
and XIAP (X-linked inhibitor of apoptosis protein, data not
shown) (41). Combinations of two affinity tags are expected
to help high-throughput purification of the fluorescently
labeled proteins, because nickel-chelate beads and strep-
tavidin beads for high-throughput robotic systems are already
available from several vendors. Thus, the method presented
in this paper should be applicable to a large-scale analysis
of protein–protein interactions and should also contribute to
the elucidation of protein functions in the post-genomic era.
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