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Recent experimental studies indicate that synaptic changes in-
duced by neuronal activity are discrete jumps between a small
number of stable states. Learning in systems with discrete syn-
apses is known to be a computationally hard problem. Here, we
study a neurobiologically plausible on-line learning algorithm that
derives from belief propagation algorithms. We show that it
performs remarkably well in a model neuron with binary synapses,
and a finite number of ‘‘hidden’’ states per synapse, that has to
learn a random classification task. Such a system is able to learn a
number of associations close to the theoretical limit in time that is
sublinear in system size. This is to our knowledge the first on-line
algorithm that is able to achieve efficiently a finite number of
patterns learned per binary synapse. Furthermore, we show that
performance is optimal for a finite number of hidden states that
becomes very small for sparse coding. The algorithm is similar to
the standard ‘‘perceptron’’ learning algorithm, with an additional
rule for synaptic transitions that occur only if a currently presented
pattern is ‘‘barely correct.’’ In this case, the synaptic changes are
metaplastic only (change in hidden states and not in actual synaptic
state), stabilizing the synapse in its current state. Finally, we show
that a system with two visible states and K hidden states is much
more robust to noise than a system with K visible states. We
suggest that this rule is sufficiently simple to be easily imple-
mented by neurobiological systems or in hardware.

belief propagation � computational neuroscience � perceptron �
synaptic plasticity

Learning and memory are widely believed to occur through
mechanisms of synaptic plasticity. Despite a huge amount of

experimental data documenting various forms of plasticity, as
e.g., long term potentiation and long term depression, the
mechanisms by which a synapse changes its efficacy and those by
which it can maintain these changes over time remain unclear.
Recent experiments have suggested that single synapses could be
similar to noisy binary switches (1, 2). Bistability could be in
principle induced by positive feedback loops in protein interac-
tion networks of the postsynaptic density (3–5). Binary synapses
would have the advantage of robustness to noise and hence could
preserve memory over long time scales, compared with analog
systems which are typically much more sensitive to noise.

Many neural network models of memory use binary synapses
to store information (6–12). In some of these network models,
learning occurs in an unsupervised way. From the point of view
of a single synapse, this means that transitions between the two
synaptic states (a state of low or zero efficacy, and a state of high
efficacy) are induced by pre- and postsynaptic activity alone.
Tsodyks (13) and Amit and Fusi (9, 10) have shown that the
performance of such systems (in terms of information stored per
synapse) is very poor unless two conditions are met: (i) activity
in the network is sparse (very low fraction of neurons active at
a given time); and (ii) transitions are stochastic, with on average
a balance between up (long term potentiation-like) and down
(long term depression-like) transitions. This poor performance
has motivated further studies (12) in which hidden states are

added to the synapse to provide it with a multiplicity of time
scales, allowing for both fast learning and slow forgetting.

In a supervised learning scenario, synaptic modifications are
induced not only by the activity of pre- and postsynaptic neurons
but also by an additional ‘‘teacher’’ or ‘‘error’’ signal that gates
the synaptic modifications. The prototypical network in which
this type of learning has been studied is the one-layer perceptron
that has to perform a set of input–output associations; i.e., learn
to classify correctly input patterns in two classes. In the case of
analog synapses, algorithms are known to converge to synaptic
weights that solve the task, provided that such weights exist (14,
15). On the other hand, no efficient algorithms are known to
exist in a perceptron with binary (or more generally with a finite
number of states) synapses, in the case where the number of
patterns to be learned scales with the number of synapses. In fact,
studies on the capacity of binary perceptrons (16, 17) used
complete enumeration schemes to determine numerically the
capacity. These studies found a capacity of �0.83 bits per synapse
in the random input–output categorization task, very close to the
theoretical upper bound of 1 bit per synapse. However, it is not
even clear whether there exist efficient algorithms that can reach
a finite capacity per synapse, in the limit of a large network size
N. Indeed, learning in such systems is known to be an NP-
complete task (18, 19).

Recently, ‘‘message passing’’ algorithms have been devised
that solve efficiently nontrivial random instances of NP-
complete optimization problems such as, e.g., K-satisfiability or
graph coloring (20–23). One such algorithm, belief propagation
(BP), has been applied to the binary perceptron problem and has
been shown to be able to find efficiently synaptic weight vectors
that solve the classification problem for a number of patterns
close to the maximal capacity (�0.7 bits per synapse) (24).
However, this algorithm has a number of biologically unrealistic
features (e.g., memory stored in several analog variables). Here,
we explore algorithms that are inspired from the BP algorithm
but are modified to make them biologically realistic.

This article is organized as follows. First, we present the
general scheme for the simplest setup of �1 patterns and
synapses as well as results with bounded and unbounded hidden
variables. Then, we discuss the more realistic 0,1 case with results
including the sparse coding limit. Implications of our results are
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discussed in the concluding section. Details are given in sup-
porting information (SI) Text.

Binary �1 Neurons and Synapses
The Model Neuron. We consider a neuron with two states (‘‘in-
active’’ and ‘‘active’’) together with its N presynaptic inputs that
we take to be also binary. Depending on the time scale, these two
states could correspond in a biological neuron either to emission
of a single spike or not, or to elevated persistent activity or not.
The strength of synaptic weights from presynaptic neuron i (i �
1, . . . , N) is denoted by wi. Given an input pattern of activity
{�i,i � 1, . . . , N}, the total synaptic input received by the neuron
is I � �i � 1

N wi�i. The neuron is active if this total input is larger
than a threshold � and is inactive otherwise. Such a model
neuron is sometimes called a perceptron (14). In this article, we
consider binary synaptic weights. In addition, each synapse is
characterized by a discrete ‘‘hidden variable’’ that determines the
value of the synaptic weight. In this section, we consider
{�1,�1} neurons and synapses, and � � 0; to simplify the
notation, we will also assume N to be odd, so that the total
synaptic input is never equal to 0. This assumption can be
dropped when dealing with {0,1} model neurons.

The Classification Problem. We assume that our model neuron has
to classify a set of p � �N random input patterns {� i

a, i �
1, . . . , N, a � 1, . . . , p} into two classes (active or inactive
neuron, � a � �1). The set of patterns which should be classified
as �1 (�1) is denoted by �� (��), respectively. In each pattern,
the activity of input neurons is set to 1 or �1 with probability 0.5,
independently from neuron to neuron and pattern to pattern.
The learning process consists in finding a vector of synaptic
weights w such that all patterns in ��(resp. ��) are mapped onto
output � (resp. �). Hence, the vector w has to satisfy the p
equations

� a � sign��
j�1

N

wj� j
a	 for a � 1, . . . , p . [1]

We will call such a vector a perfect classifier for this problem.
In the case of �1 synapses and inputs we are considering in this

section, the problem is the same if we consider the set �� to be
empty, i.e., � a � �1 for all a � 1, . . . , p, as we can always
redefine � j

a 3 � j
a� j

a and require the output to be positive. This
will no longer hold in the next section.

The Perceptron Learning Algorithm. In the case of unbounded
synaptic weights, there exists a standard learning algorithm that
can find a perfect classifier, provided such a classifier exists,
namely the perceptron algorithm (standard perceptron, SP) (14,
15). The algorithm consists in presenting sequentially the input
patterns. When at time � pattern �� is presented, one first
computes the total input I � �i�1

N wi
�� i

� and then

Y If I � 0, do nothing.
Y If I 
 0, change the synaptic weights as follows:

[wi
��1 � wi

� � � i
�].

This algorithm has the nice feature that it is guaranteed to
converge in a finite time if a solution to the classification problem
exists. Furthermore, it has other appealing features that makes
it a plausible candidate for a neurobiological system: the only
information needed to update the synapse is an ‘‘error signal’’
(the synapse is modified only when the neuron gives an incorrect
output) and the current activity of both presynaptic and postsyn-
aptic neurons. However, the convergence proof exists for un-
bounded synaptic weights (14), or for sign-constrained synaptic

weights (25), but not when synaptic weight can take only a finite
number of states.

Requirements for Biologically Plausible Learning Algorithms with
Binary Weights. In this article, we explore learning algorithms for
binary synaptic weights. Each synapse is endowed with an
additional discrete ‘‘hidden’’ variable hi. This hidden variable
could correspond to the state of the protein interaction network
of the postsynaptic density, which can in principle be multistable
because of positive feedback loops in such networks (5, 4). Each
synaptic weight wj will depend solely on the sign of the corre-
sponding hidden variable hj; in the following, to avoid the
ambiguous hi � 0 state, we will always represent the hidden
variables by odd integer numbers (this simplifies the notation but
does not affect the performance). We first consider the (unre-
alistic) situation of an unbounded hidden variable and then
investigate learning with bounded hidden variables. Similar to
the perceptron algorithm, we seek ‘‘on-line’’ algorithms (i.e.,
modifications are made only on the basis of the currently
presented pattern) that, at each time step �, modify synapses
based only on variables available to a synapse: (i) the current
total synaptic input I� and hence the current postsynaptic activ-
ity; (ii) the current presynaptic activity � i

�; and (iii) an error signal
indicating whether the output was correct or not. At each time
step, the current input pattern is drawn randomly from the set
of patterns, and the hidden variables hj

�3 hj
��1 and the synaptic

weights wj
� 3 wj

��1 are updated according to the algorithm.

Quantifying Performance of Various Algorithms. The maximal num-
ber of patterns for which a weight vector can be found is �max �
0.83 for random unbiased patterns (16). Hence, the performance
of an algorithm can be quantified by how close the maximal value
of � at which it can find a solution is to �max. In practice, one has
to introduce a maximal number of iterations per pattern. For
example, a complete enumeration algorithm (in which one
checks sequentially the 2N possible synaptic weight configura-
tions) is guaranteed to find a solution for any � � �max, but it
finds it in an implausibly long time (exponentially large in N).
Here, we impose a maximal number of iterations (typically 104

per pattern) and find the maximal value of � for which a given
algorithm is able to find a solution.

BP-Inspired (BPI) Algorithms. A modification of the BP algorithm
was found by Braunstein and Zecchina (24) to perform remark-
ably well in the random binary perceptron problem. However,
the BP algorithm has some features that make it implausible
from the biological point of view. In SI Text, we show that with
a number of simplifications, this algorithm can be transformed
into a much simpler on-line algorithm that satisfies all of the
requirements outlined above. The resulting algorithm is as
follows:

Compute I � ���w�, where wi
� � sign (hi

�), then
(R1) If I � 1, do nothing
(R2) If I � 1 then

(a)If hi
�� i

� � 1, then hi
��1 � hi

� � 2�i
�

(b) Else do nothing
(R3) If I � �1 then hi

��1 � hi
� � 2�i

�.

These rules can be interpreted as follows. (R1) As I � 1, the
synaptic input is sufficiently above threshold, such that a single
synaptic (or single neuron) flip would not affect the neuronal
output; therefore, all variables are kept unchanged. (R2) As I �
1, the synaptic input is just above threshold (a single synaptic or
single neuron flip could have potentially brought it below
threshold), then some of the hidden variables need to be
changed. The variables that are changed are those that were
going in the right direction; i.e., those that contributed to having
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the synaptic input go above threshold. Finally, for (R3), I 
 0 so
the output is incorrect and then all hidden variables need to be
changed. The factor of 2 included in rules R2 and R3 guarantees
that the hidden variables will still be odd when updated if they
are initialized to be so.

Note that this algorithm has two distinct features compared
with the perceptron algorithm. (i) Hidden variables obey update
rules that are similar to those of the SP algorithm, but the actual
synaptic weight is binary. (ii) One of the update rules, rule R2
(corresponding to a synaptic input just above threshold), is new
compared with SP.

To investigate the effect of rule R2 on performance, we also
simulated a stochastic version of the BPI algorithm, in which
such a rule is only applied with probability ps for each presented
pattern:

As BPI, except rule R2 is replaced by
(R2) If I � 1, then

(a) with probability ps:
i. If hi

��i
� � 1, then hi

��1 � hi
� � 2�i

�

ii. Else do nothing
(b) with probability 1 � ps, do nothing.

When the parameter ps is set to 1, one recovers the deterministic
BPI algorithm, whereas setting it to 0 (thus, in fact, removing rule
R2) transforms it into a ‘‘clipped perceptron algorithm’’ (CP);
i.e., a perceptron algorithm but with clipped synaptic weights.
Both BPI and CP algorithms are sketched in Fig. 1.

Performance with Unbounded Variables. The performance of both
deterministic and stochastic versions of the BPI algorithm was
first investigated numerically with unbounded hidden variables,
for different values of �, N, and ps. It turns out that SBPI
performs remarkably well, provided that the probability ps is
chosen appropriately—with ps � 0.3 the system can reach a
capacity of order 0.65 with a convergence time that increases

with N in a sublinear fashion (see Fig. 2). On the other hand, the
deterministic BPI (ps � 1) has a significantly lower capacity (� �
0.3), but for those lower values of � it performs significantly
faster than the SBPI algorithm—for � � 0.3 the time increases
approximately as (log N)1.5, as shown in Fig. 1D. As an example,
the algorithm perfectly classifies 38,400 patterns with 128,001
synapses with �35 presentations of each pattern only. By
eliminating completely rule R2 (i.e., CP), convergence time
becomes exponential in N rather than logarithmic, for every
tested value of �, as shown by the supralinearity of the blue
curves in Fig. 2. Hence, the specificity of rule R2 with respect to
synapses (only synapses that actually went in the right direction
for the current pattern should be modified) is a crucial feature
that makes the BPI algorithm qualitatively superior. Moreover,
the convergence time increases only mildly with �, as shown in
Fig. 2.

We also find that there is a tradeoff between convergence
speed and capacity: for each value of �, there is an optimal value
of ps that minimizes average convergence time (shown in SI Fig.
6). This optimal value decreases with �; for � � 0.3, it is close
to 1, and it decreases to 0.3 at � � 0.65. Hence, decreasing ps
enhances the capacity, at the cost of a slower convergence;
nevertheless, Fig. 2C shows that for values of � � 0.60, SBPI
(ps � 0.3) learns perfectly the set of input–output associations in
a time that scales sublinearly with N. Above � � 0.7, the
algorithm fails to solve instances in a time shorter than the
chosen cutoff time of 104. Note that for ps � 0.3, the convergence
time depends in a more pronounced way on � than in the ps �
1 case.

We have also investigated an algorithm in which ps is itself a
dynamical variable that depends on the fraction of errors
averaged over a long time window—such an algorithm with an
adaptive ps is able to combine faster convergence at low values
of � with high capacity associated with low values of ps (not
shown).

Fig. 1. Schematic representation of transitions between synaptic states in
the CP algorithm and the BPI algorithm. The cascade model introduced by Fusi
et al. (12) is shown for comparison. Circles represent the possible states of the
internal synaptic variable hi. Gray circles correspond to wi � �1, and white
circles correspond to wi � 1. Clockwise transitions happen when �i � 1, and
counterclockwise transitions happen when �i � �1. Horizontal transitions are
plastic (change value of synaptic efficacy wi), and vertical transitions are
metaplastic (change internal state only). Downward transitions make the
synapse less plastic, and upward transitions make the synapse more plastic.
When the output of the neuron is erroneous, � � w 
 0: transitions occur to the
nearest-neighbor internal state. In the CP algorithm, when the output is
correct, � � w � 0: no transitions occur. In the BPI algorithm, when the output
is barely correct, � � w � 1 (a single synaptic flip could have caused an error):
transitions are made toward less plastic states only. When the output is safely
correct, � � w � 1: no transitions occur. In the cascade model, ‘‘down’’ transi-
tions are toward nearest neighbors, whereas ‘‘up’’ transitions are toward the
highest state with opposite sign. Transition probabilities decrease with in-
creasing �h� (see ref. 12 for more details).
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Fig. 2. Performance of the BPI algorithm with unbounded hidden variables.
(A–C) Convergence time vs. N for different values and � (indicated on each
graph). Points correspond to the number of iterations per pattern until the
algorithm converges averaged over 200 pattern sets; vertical bars are standard
deviations. Dotted lines, CP; solid lines, BPI; dashed lines, SBPI with ps � 0.3.
The latter is the only one that can reach � � 0.6 but performs worse than BPI
for � � 0.3 (it is absent from A for clarity). (D) Probability that the BPI algorithm
learns perfectly 0.3 � N patterns in less than T � x � log(N)1.5 iterations per
pattern vs. x for various values of N.
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Performance with Bounded Hidden Variables. We now turn to the
situation when there is only a limited number of states K of the
hidden variables hi, since it is unrealistic to assume that a single
synapse can maintain an arbitrarily large number of hidden
states. Thus, we investigated the performance of an algorithm
with symmetrical hard bounds on the values of the hidden states,
�hi� � K � 1 for all i.

Fig. 3 shows what happens when the number of internal states
is kept fixed while varying N. For the number of states we have
considered (10 � K � 40), the optimal value of ps is 1 since in
general the stochastic version of the algorithm requires a larger
number of states to be efficient. Here, we defined the capacity
as the number of patterns for which there is 90% probability of
perfect learning in 104 iterations, and plotted in Fig. 3 the
corresponding critical � against N for different values of the
states number K, comparing BPI, CP, and the cascade model
(defined as in Fig. 1). We also compared these algorithms that
have only two ‘‘visible’’ synaptic states but K hidden states, with
the SP algorithm with K visible states, wi � hi.

It turns out that BPI achieves a higher capacity than the SP
algorithm with K visible states, when K is fixed and N is
sufficiently large, even though the maximal capacity of the binary
device is lower. Interestingly, adding an equivalent of rule R2 to
the SP algorithm allows it to overcome BPI. This issue is further
discussed in SI Text.

It is also interesting to note that at very low values of N,
performance is better with 20 states than with an infinite number
of states. Intuitively, this may be due to the fact that in the
unbounded case some synapses are pushed too far and get stuck
at high values of hi, i.e., they lose all of their plasticity, while a
solution to the learning problem would require them to come
back to the opposite value of wi.

Fig. 3D compares how convergence time changes with � for
the same four algorithms, with the same number of synapses and
same number of states per synapse: while the cascade model has
a clear exponential behavior, the BPI and SP algorithms main-
tain nearly constant performance almost up to their critical
point. The CP algorithm is somehow in between, its performance
degrading rapidly with increasing � (note the logarithmic scale).

Following the observation that an appropriate number of

internal states K can increase BPI capacity, we searched for the
value of K that optimizes capacity and found that it scales roughly
as �N (see the corresponding section and SI Fig. 8); this is
consistent with the observation that the distribution of hidden
states scales as �N (also discussed in SI Fig. 7). The fact that the
capacity is optimal for a finite value of K makes the BPI
algorithm qualitatively different from the other three, whose
performances increase monotonically with K.

For a system with a number of states that optimizes capacity,
the optimal value for ps is 0.4, rather than 0.3 as in the unbounded
case. With these settings it is possible to reach a capacity �c of
almost 0.7 bits per synapse, very close to the theoretical limit �max
� 0.83. Convergence time at high values of � scales roughly
linearly with N but with a very small prefactor (�2 � 10�3).

Binary 0,1 Neurons and Synapses, Sparse Coding
The 0,1 Model Neuron. �1 neurons with dense coding (equal
probability of �1 or �1 inputs) have the biologically implausible
feature of symmetry between the two states of activity.

A first step toward a more biologically plausible system is to
consider the situation in which both the synaptic weights wj and
neurons are 0,1 binary variables, and the inputs are � j

a � 1 with
probability f, and 0 with probability (1 � f ), where f � [0,0.5] is
the ‘‘coding level.’’ In this case, we need to take a nonzero
threshold � � 0. In the following, we choose the threshold to be
�0.3N f (see SI Text for details). We consider each input pattern
a to have a desired output � a � 1 with probability f and � a �
0 with probability (1 � f ).

The new classification problem amounts at finding a vector w
that satisfies the p equations:

� a � ��
j�1

N

wj� j
a 	 �� for a � 1, . . . , p . [2]

The Optimized Algorithm. The BP scheme can be straightforwardly
applied to the 0,1 perceptron (see SI Text for details); the
resulting BPI algorithm is very similar to the one presented
above, with two major differences. (i) The quantity to be
evaluated at each pattern presentation is not the total input I �
�j� j

�wj
� but rather the ‘‘stability parameter’’ � � (2� � � 1)(I �

�), which is positive if the pattern is correctly classified and
negative otherwise. (ii) Synaptic weights are now computed as
wi

� � 1
2
(sign(hi

�) � 1), making the synapse active (inactive) if the
hidden variable is positive (negative), respectively. The 0,1
algorithm is then the same as the one for the �1 case, in which
� replaces I. The performance of this algorithm is qualitatively
very similar to the one for the �1 case, with a lower capacity;
�0.25, to be compared with a theoretical limit of 0.59 (26). We
have explored variants of the basic BPI algorithm. In particular,
we have studied a stochastic version of the algorithm in which
rule R2 is applied with probability ps, but only for those patterns
that require � a � 0. This SBPI01 algorithm consists in

Compute I � � ��w�, where wi
� � 1

2
(sign(hi

�) � 1), and � �
(2� � � 1)(I � �), then
(R1) If � � �m � 1, then do nothing
(R2) If 0 � � � �m � 1, then

(a) If � � � 0, with probability ps, if wj
� � 0, then hj

��1 �
hj

� � 2� j
�;

(b) Else do nothing
(R3) If � 
 0, then hi

��1 � hi
� � 2� i

�(2�� � 1),

where we have introduced �m, the threshold for applying rule R2.
Since rule R2 is only applied to patterns with zero output � �, the
metaplastic changes affect only silent synapses (for which wj

� �
0) involved in the pattern (those for which � i

� � 1). Note that
using rule R2 only for patterns for which � a � 0 not only
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Fig. 3. Performance of various algorithms with hard-bounded hidden vari-
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Critical capacity vs. N, with fixed number of internal states K. (D) Convergence
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optimizes performance but also makes the algorithm simpler,
since in this way there is only the need for one secondary
threshold (� � �m) instead of two (which would have been
required if rule R2 had to be applied in all cases). The opposite
choice, i.e., using rule R2 only for patterns for which � a � 1, can
also be taken with similar results.

As in the preceding case, introducing boundaries for the
hidden variables hj can further improve performance, and the
number of states K that maximizes capacity scales again roughly
as �N (shown in the SI Fig. 8). In the case of dense coding, f �
0.5, and using the optimal value ps � 0.4, SBPI01 can reach a
storage capacity �c beyond 0.5 bits per synapse for sufficiently
high N, very close to the maximum theoretical value �max � 0.59.

Heterogeneous Synapses and Sparse Coding. One possible way to
increase capacity with a very limited number of available states
is to use ‘‘sparse’’ coding; i.e., a low value for f. In an unsuper-
vised learning scenario, it has been shown that purely binary
synapses (e.g., only two hidden states) can perform well if f is
chosen to scale as log N/N (6, 10). Here, we chose an interme-
diate scaling f � 1/�N. In addition, we also introduced heter-
ogeneity in synaptic efficacies. Possible synaptic weights were no
longer 0 and 1, but 0 and ai, where ai was drawn from a Gaussian
distribution with mean 1 and standard deviation 0.1. Likewise,
the threshold �m used for the implementation of rule R2 was
drawn randomly at each pattern presentation from a Gaussian
distribution centered in 1 with variance 0.1 The resulting algo-
rithm SBPI-Het was shown to have very similar performance to
SBPI01 in the f � 0.5 case.

In Fig. 4A, we show the maximum capacity �c (defined as for
Fig. 3) reached in the sparse coding case divided by the maxi-
mum theoretical value �max (which depends on f ), with ps � 1,
N ranging from 1,000 to 64,000 and low number of internal states.
The figure shows that a synapse with only two states (i.e., with
no metaplasticity) has a capacity of only �10% of the maximal
capacity in the whole range of N investigated. Adding hidden
states up to K � 10 improves significantly the performance,
which reaches �70% of the maximal capacity for sizes of N of
order 10,000. In fact, for such values of N the capacity decreases
when one further increases the number of states. The optimal
number of states increases with N as in the dense coding case but
with a milder dependence on N. In fact, simple arguments based
on unsupervised application of rule R2 predicts in this case an
optimal number of states scaling as N1/4/�log N, which seems to
be roughly consistent with our numerical findings. Fig. 4B shows
convergence time versus � for N � 64,000. It demonstrates again
the speed of convergence of the SBPI algorithm, whereas the
cascade model is significantly slower.

Robustness Against Noise. Binary devices have the advantage of
simplicity and robustness against noise. Here, we briefly address
the issue of resistance against noise that might affect the
multistable hidden states. Intuitively, the fact that the synaptic
weights in the BPI algorithm only depend on the sign of the
corresponding hidden variables suggests that a device imple-
menting such a learning scheme would be more resistant against
accidental changes in the internal states with respect to a device
in which the multistable state is directly involved in the input
summation. We verified this by comparing a perceptron with
binary synapses and K hidden states implementing the SBPI
algorithm with a perceptron with synapses with K visible states
implementing the SP algorithm, both in the unbounded and in
the bounded cases. The protocols used for testing robustness and
the corresponding results are presented in SI Text.

In all of the situations we tested, we found a pronounced
difference between the two devices, confirming the advantage of
using binary synapses in noisy environments or in presence of
unreliable elements.

Discussion
In this article, we have shown that simple on-line supervised
algorithms lead to very fast learning of random input–output
associations, up to close to the theoretical capacity, in a system
with binary synapses and a finite number of hidden states. The
performance of the algorithm depends crucially on a rule that
leads to synaptic modifications only if the currently shown
pattern is ‘‘barely learned’’; that is, a single synaptic f lip would
lead to an error on that pattern. In this situation, the rule
requires the synapse to have metaplastic changes only. Only
synapses that contributed to the correct output need to change
their hidden variable, in the direction of stabilizing the synapse
in its current state. This rule originates directly from the BP
algorithm. We have shown that this addition allows the BPI
algorithm to learn a fraction of bits of information per synapse
with at least roughly an order of magnitude fewer presentations
per pattern than any other known learning protocol already at
moderate system sizes and moderate values of �. Furthermore,
for a neuron with �104 to 105 synapses, when � � [0.3–0.6], the
BPI algorithm finds a solution with a few tens of presentations
per pattern, whereas the CP algorithm is unable to find such a
solution in 104 presentations per pattern. Finally, we showed that
this algorithm renders a model with only two visible synaptic
states and K hidden states much more robust to noise than a
model with K visible states.

Other recent studies have considered the problem of learning
in networks with binary synapses. Senn and Fusi (27) introduced
a supervised algorithm that is guaranteed to converge for an
arbitrary set of linearly separable patterns, provided there is a
finite separation margin between the two classes. For sets of
random patterns, this last requirement limits learning to a
number of patterns that does not increase with N. Fusi et al. (12)
introduced a model that bears similarity with the model we
consider (binary synapses with a finite number of hidden states),
with unsupervised transitions between hidden states. We have
shown here that a supervised version of this algorithm performs
significantly worse than the BPI algorithm.

Since the additional simple rule R2 has such a spectacular
effect on performance, we speculate that neurobiological sys-
tems that learn in the presence of supervision must have found
a way to implement such a rule. The prediction is that when a
system learns in the presence of an ‘‘error’’ signal and synaptic
changes occur in presence of that signal, then metaplastic
changes should then occur in the absence of the error signal but
when the inputs to the system are very close to threshold. After
exposure to such an input, it should be more difficult to elicit a
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visible synaptic change, since the synaptic hidden variables take
larger values. The fact that the algorithms developed here are
digital during retrieval and that discrete (even noisy) hidden
variables are only needed during learning could also have
implications in large-scale electronic implementations, in which

the overhead associated with managing and maintaining multi-
stable elements in a reliable way may be of concern.
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