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Control regions in the brain are thought to provide signals that
configure the brain’s moment-to-moment information processing.
Previously, we identified regions that carried signals related to task-
control initiation, maintenance, and adjustment. Here we characterize
the interactions of these regions by applying graph theory to resting
state functional connectivity MRI data. In contrast to previous, more
unitary models of control, this approach suggests the presence of two
distinct task-control networks. A frontoparietal network included the
dorsolateral prefrontal cortex and intraparietal sulcus. This network
emphasized start-cue and error-related activity and may initiate and
adapt control on a trial-by-trial basis. The second network included
dorsal anterior cingulate/medial superior frontal cortex, anterior
insula/frontal operculum, and anterior prefrontal cortex. Among
other signals, these regions showed activity sustained across the
entire task epoch, suggesting that this network may control goal-
directed behavior through the stable maintenance of task sets. These
two independent networks appear to operate on different time scales
and affect downstream processing via dissociable mechanisms.
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Humans possess unrivaled cognitive flexibility. When perform-
ing goal-directed tasks, humans are thought to adopt task sets

that flexibly configure information processing in response to chang-
ing task demands. The brain’s task-control system is thought to
consist of functionally diverse regions that are anatomically sepa-
rate from downstream processing systems (1).

Previously, we studied mixed blocked/event-related fMRI data
across a wide range of tasks (2). Because mixed fMRI designs can
disambiguate sustained set-maintenance activity from more tran-
sient set and trial-related activity (3, 4), we were able to identify
regions that carried three different putative task-control signals: (i)
activity time-locked to the beginning of task periods (control
initiation), (ii) set-maintenance signals sustained across the entire
task period, and (iii) error-related activity (for feedback and control
adjustment). Using cross-studies analyses, we identified a collection
of regions thought to support these various task-control signals.

The dorsal anterior cingulate cortex/medial superior frontal
cortex (dACC/msFC) and bilateral anterior insula/frontal opercu-
lum (aI/fO) were the only regions that showed all three task-control
signals (set initiation, maintenance, and feedback and adjustment)
across a wide range of tasks. Therefore, we proposed that the
dACC/msFC and aI/fO might form the ‘‘core’’ of a system for task
set implementation (2, 5). Other regions of interest (ROIs), such as
the anterior prefrontal cortex (aPFC), dorsolateral prefrontal
cortex (dlPFC), and inferior parietal lobule (IPL), previously
implicated in various control functions (6–10), carried different
combinations of signals in different sets of tasks, including consid-
erably less evidence of sustained activity. Based on these fMRI
activation results (2), a single centralized control system anchored
by the ‘‘core’’ regions (dACC/msFC, aI/fO), which also included
aPFC and dlPFC, was proposed (Fig. 1A).

The ability to perform myriad tasks requires control functions
that persist across time and prevail against distraction, but can
also respond quickly to unpredictable demands that arise during

task performance. In contrast to previous models of control (2,
11, 12), including that proposed in Fig. 1 A, complex adaptive
systems models favor multiple ‘‘controlling variables’’ often
occurring on different time scales over more centralized control
because they offer greater resilience and flexibility. Thus, ‘‘faster
levels invent, experiment, and test; the slower levels stabilize and
conserve accumulated memory of past successful, surviving
experiments’’ (13).

Our activation data alone were insufficient for making strong
inferences about the presence or absence of multiple control
systems. To test our ‘‘core’’ model (Fig. 1A) against a multiple
control architecture predicted by complex systems theory, we felt
the need to learn more about the interregional interactions between
the putative task-control regions we had identified previously. In
the current study, we elucidated the functional integration of
task-control regions in terms of the correlation structure of their
blood oxygenation level-dependent signal (BOLD) activity. The
field has settled on at least two types of approaches to the analysis
of interregional correlations in BOLD activity. One approach is to
examine the effective connectivity temporarily induced by manip-
ulating the demands of a specific task (12). A second option is to
employ resting state functional connectivity MRI (rs-fcMRI) (14–
22), which is the method used in this paper.

rs-fcMRI measurements are based on the observation that
spontaneous low-frequency (�0.1 Hz) BOLD fluctuations in dis-
tant, but functionally related, gray matter regions are correlated at
rest (16, 21–23) (Fig. 1B). Resting functional connectivity was first
described in the motor system (14). Important validation studies
have since confirmed that resting state fluctuations are large in
magnitude (% of BOLD signal change) and highly consistent across
subjects (21, 22).

Seed-based connectivity methods, for example, allow one to map
the resting state correlations of a single-seed region with every
other voxel in the brain (Fig. 1C). Such seed-based maps reliably
reveal biologically plausible relationships between brain regions in
humans (20) and macaques (24). For example, placing a seed in the
right aI/fO reveals its functional connections to the left aI/fO and
the dACC/msFC (Fig. 1C).

Given these observations, one reasonable speculation regarding
correlations in spontaneous BOLD fluctuations between brain
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regions is that they may, at least in part, reflect a longstanding
history of coactivation. Consistent with Hebbian mechanisms (25),
repeated coactivation during everyday activity may have led to
greater synaptic efficiencies between certain regions, causing their
spontaneous BOLD fluctuations to be consistently correlated. The
relative contributions of ‘‘synaptic modifications’’ and the under-
lying ‘‘connectional anatomy’’ to rs-fcMRI patterns remain to be
determined.

To characterize the interregional relations for our predefined
ROIs (2), we applied graph theory (18, 19, 26) to a large resting
BOLD data set (74 young adults). Graph theory defines a graph as
a set of nodes (in this study, ROIs) and edges (functional connec-
tions). By focusing on region pairs, this approach allowed us to
simultaneously visualize the connectivity structure of a large num-
ber of ROIs. Graphs can also identify groups or ‘‘components’’ of
regions that are disconnected from all other nodes in the graph, as
well as highly connected network ‘‘hubs’’ (27). Graph theory has
been used to characterize complex systems as diverse as the U.S.
power grid, Caenorhabditis elegans’ neuronal networks (28), and
anatomical connections of the macaque visual system (29).

Results
Thirty-nine putative task-control ROIs (Table 1) were derived
from the previous cross-studies analyses described above (2).
Pairwise BOLD correlations (functional connections) were ex-
tracted for this set of ROIs to generate a correlation matrix (see
Materials and Methods).

Graph Analysis. We created unweighted, binary graphs such that
nodes were either connected or not connected. Future analyses
might take connection weights into account (29). The distribution
of r values suggested a natural division at r � 0.2 and led us to first
threshold the correlation matrix at r � 0.2 [supporting information
(SI) Fig. 5]. All interregional correlations with r � 0.2 were
statistically significant at P � 10�9 (two-tailed; Bonferroni cor-
rected; t test).

Graph Metrics. The graph defined by the r � 0.2 threshold was sparse
(Fig. 2A and SI Fig. 6A). It contained only �8% of all possible
connections (61 edges). The structure of this task-control graph
differed strongly from both completely random and completely
regular graphs with the same number of regions and connections
(SI Fig. 6) classically used for structural comparisons (28). The
task-control graph separated into eight disconnected components,
whereas 100 randomly generated graphs contained on average

Fig. 1. Analyzing interactions between predefined task-control regions using
rs-fcMRI. (A) Old hypothetical framework of centralized control system based on
multistudy (10 tasks, 183 subjects) analyses. [Reproduced with permission from
ref. 2 (Copyright 2006, Elsevier).] Control initiation (yellow), set maintenance
(red), and feedback/control adjustment (blue). (B) rs-fcMRI is measured by calcu-
lating the correlations in spontaneous BOLD fluctuations between brain regions.
Spontaneous resting state BOLD fluctuations for two sample regions (right aI/fO
and left aI/fO), measured in a single subject. (C) Voxelwise rs-fcMRI map for a
sample seed region, R aI/fO (4, 16, 36).

Table 1. ROIs sorted into components based on rs-fcMRI

ROI

Coordinates Sustained

x y z Comp Neg Pos Cue Err

R IPS 30 �61 39 1 X
L IPS �31 �59 42 1 X
R frontal cortex 41 3 36 1 X
L frontal cortex �41 3 36 1
R precuneus 10 �69 39 1 X
L precuneus �9 �72 37 1 X
midcingulate 0 �29 30 1 X
R IPL 51 �47 42 1 X
L IPL �51 �51 36 1 X
R dIPFC 43 22 34 1 X
L dIPFC �43 22 34 1
R al/fO 36 16 4 2 X X X
L al/fO �35 14 5 2 X X X
dACC/msFC �1 10 46 2 X X X
R aPFC* 27 50 23 2 X* X* X
L aPFC* �28 51 15 2 X* X* X
R ant thalamus 10 �15 8 2 X X
L ant thalamus �12 �15 7 2 X
R lat cerebellum 31 �61 �29 3 X
L lat cerebellum �32 �66 �29 3 X
R inf cerebellum 18 �80 �33 3 X
L inf cerebellum �19 �78 �33 3 X
R TPJ 53 �46 17 4 X
L TPJ �53 �46 17 4
R midoccipital 27 �89 3 5
L midoccipital �27 �89 3 5 X X
R lingual 8 �82 4 5 X
L lingual �8 �82 4 5 X
R posttemporal 44 �74 26 6 X
L posttemporal �40 �78 24 6 X
R postcingulate 10 �56 16 6 X
L postcingulate �11 �57 13 6 X
R fusiform 35 �65 �9 6 X
L fusiform �34 �62 �15 6 X
R ant fusiform 25 �44 �12 6
L ant fusiform �25 �44 �12 6 X
R midtemporal 51 �33 �2 7 X
L midtemporal �53 �31 �5 7 X
vmPFC 1 31 �2 8 X

*Only for subset of 10 tasks included in cross-studies analyses.
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1.9 � 0.5 (SD) components (SI Fig. 6B). Completely regular
‘‘lattice’’ graphs always consist of a single component (SI Fig. 6C).

The eight components were strongly connected within them-
selves as reflected by the very high clustering coefficient [(Cp) 0.57;
see Materials and Methods], a metric for the local ‘‘intraconnect-
edness’’ of neighborhoods within a graph (28). The Cp for the
task-control graph was similar to that of a comparable regular graph
(0.63) and much greater than the average Cp of random graphs
(0.07 � 0.04 SD).

The characteristic path length [(Lp), the shortest path connecting
regions averaged across all pairs of regions] of the task-control
graph was much smaller (Lp � 1.43) than that of comparable
random (Lp � 3.0 � 0.15 SD) and regular (Lp � 5.4) graphs (SI
Table 2 and SI Fig. 7). The large Cp and short characteristic Lp
further indicated that the task-control graph consisted of several
distinct and ‘‘clumpy’’ components (28).

Graph Components. The largest component (Figs. 2A and 3) con-
sisted of 11 ROIs in frontal and parietal cortex (frontoparietal
component). The intraparietal sulcus (IPS) belonged to this com-
ponent, as did the frontal cortex, dlPFC, IPL, precuneus, and
midcingulate cortex.

The three regions hypothesized to form the ‘‘core’’ of a human
task-set system (dACC/msFC, left aI/fO, and right aI/fO) (2) were
part of a second component (Figs. 2A and 3). Bilateral aPFC,
previously implicated in set maintenance (6, 7, 10, 30, 31), also
belonged to this component, as did bilateral regions in the anterior
part of the thalamus. For simplicity, we refer to this second
component (dACC/msFC, aI/fO, aPFC, and thalamus) as the
cinguloopercular component.

The remaining components were not as clearly related to task
control (Fig. 3). Four cerebellar regions that had all shown error-
related activity in the cross-studies analyses of fMRI activations (2)
formed a separate component. Another component consisted of
four occipital regions. An eight-ROI component consisted of
fusiform regions and parts of the brain’s default network (32).

To determine how these findings were affected by changes in the
graph-definition threshold, lower r-value thresholds were also an-
alyzed (Fig. 2). Lowering the graph analysis threshold to r � 0.175
increased the number of edges to 71 (Fig. 2B). The number of
components decreased from eight to seven (random: 1.6 � 0.54 SD)
because the occipital component became connected to the default/
fusiform component. Overall, the graphs generated by thresholding
at r � 0.2 and r � 0.175 were similar, indicating that our findings
are robust to small changes in the graph-definition threshold.

Further decreasing the threshold to r � 0.15 increased the

Fig. 2. Task-control graphs across different thresholds. 2D pseudoanatomi-
cal renderings of task-control graphs. (A) Thresholded at r � 0.2 (P � 1 � 10�9;
two-tailed; Bonferroni corrected; t test). (B) Thresholded at r � 0.175 (P � 1 �
10�7; two-tailed; Bonferroni corrected; t test). (C) Thresholded at r � 0.15 (P �
5 � 10�5; two-tailed; Bonferroni corrected; t test).

Fig. 3. Task-control graph components (r � 0.2) on the brain. Eight separate
components that constitute task-control graph (r � 0.2) displayed on inflated
surface rendering of the brain. Nodes are color-coded by components in Fig.
2A. Interregional correlations were significant at P � 1 � 10�9 (two-tailed;
Bonferroni corrected; t test).
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number of connections to 85 and lowered the number of compo-
nents to three (Fig. 2C). One component combined the frontopa-
rietal, cerebellar, and middle temporal regions. A second compo-
nent consisted of the cinguloopercular, occipital, and fusiform
regions. Even at the r � 0.15 threshold, the cinguloopercular and
frontoparietal ROIs remained in separate components.

More important, the frontoparietal and cinguloopercular com-
ponents also differed in their connection patterns to other parts of
the brain. At r � 0.15, the IPL and dlPFC became connected to
cerebellar regions. In contrast, cinguloopercular regions (aI/fO,
thalamus) became connected to putative downstream sensory
regions in the occipital cortex (L, �8, �82, 4; R, 8, �82, 4).

Lowering the graph definition threshold did not randomly add
additional connections. Instead, the highly intraconnected clumps
(large Cp) became still more strongly intraconnected, and some
interclump short cuts appeared between ‘‘bridge’’ regions (Fig. 2C
and SI Fig. 8). Furthermore, the task-control graphs always re-
tained structure different from both completely random and com-
pletely regular even when the graph-definition thresholds were
lowered further to r � 0.125 and r � 0.1 (SI Table 2 and SI Fig. 8).

Validation of Graph Results Using Hierarchical Clustering. Hierarchi-
cal clustering (SI Fig. 9) generated eight clusters that were strikingly
similar to the eight components generated by the (r � 0.2) graph
analysis (SI Fig. 10). The cinguloopercular, frontoparietal, cerebel-
lar, occipital, and temporoparietal junction components from the
graph analysis mapped precisely onto the clustering results (see SI
Text). The strong convergence between the graph and clustering
results demonstrates that our findings are independent of the
specific analysis method.

Discussion
The principal finding of the present study is that humans possess
separable frontoparietal and cinguloopercular networks with dis-
parate resting state connectivity patterns. These networks also show
disparate functional properties (2). Our study showed that the
network structure is ‘‘clumpy,’’ with Cps as high as those of
completely regular graphs, but with shorter Lps. At all graph
definition thresholds tested, the pattern of functional connections
was far from random (27). Even at lower correlation thresholds (r �
0.15), no path connected the frontoparietal and cinguloopercular
ROIs. Further, there was strong ‘‘intraconnectedness’’ within the
sets of ROIs and a lack of connections between the sets.

Based on the differences in their connectivity and activation
profiles, we propose that these networks support distinct adaptive
control (frontoparietal) and stable set-maintenance (cingulooper-
cular) functions. We suggest that this ‘‘dual-network’’ account of
task control better captures the phenomenology than previous
‘‘unitary’’ models of executive control (e.g., see refs. 2 and 11).

To discuss the possible functions of the frontoparietal and
cinguloopercular networks in detail, we combine connectivity in-
formation with activation profiles from prior activation studies (2)
summarized in Table 1.

Frontoparietal Network: Active, Adaptive Online Control. The IPS,
precuneus, midcingulate, and lateral frontal cortex carried only
start cue-related activity. The right IPL and dlPFC carried only
error-related activity. Further, only 1 of the 11 ROIs in the
frontoparietal network showed sustained activity across tasks (left
IPL; see Table 1). This activation profile suggests that the fronto-
parietal network may support control initiation and provide flex-
ibility by adjusting control in response to feedback. The frontopa-
rietal adaptive control network appears to include the dorsal
attention network proposed by Corbetta et al. (33). The dorsal
attention network seems to be functionally connected to the IPL
and dlPFC, regions previously implicated in control (9, 34, 35).

The IPS is thought to play a major role in the top–down
control of attention (33). Our finding that the IPS occupies a

central integrative position in the frontoparietal network (SI Fig.
11) is consistent with the notion that the frontoparietal network
exerts top–down control. Imaging studies of attention have
shown the precuneus and midcingulate cortex to be coactivated
with the IPS and lateral frontal cortex (36). A study by Woldorff
et al. (36) showed that the IPS (coordinates: L, �28, �62, 41; R,
32, �61, 45) and lateral frontal cortex (coordinates: L, �48, 3,
43; R, 46, 6, 43) were active when a cue was interpreted but
attention was not shifted, whereas the precuneus was only active
when attention was shifted.

The frontal region (41, 3, 36) we identified appears to be situated
somewhat inferior to the human homologue of the frontal eye
fields. Closely adjacent regions in the frontal cortex have been
suggested to help direct motor attention (37). Therefore, the IPS
and frontal cortex may decode the meaning of cues, and the
precuneus and midcingulate may help direct selective attention.

It is thought that the dlPFC aids in the adjustment of top–down
control in response to feedback (e.g., errors) by integrating infor-
mation from one trial to the next, often over many seconds (11).
Consistent with activation studies that showed the dlPFC’s activa-
tion profile to be similar to the IPL’s (2, 34), the current study
demonstrates that the dlPFC is functionally connected to the IPL.
A recent fMRI study by Liston et al. (9) demonstrated that a region
in the right posterior parietal cortex (coordinates: 53, �38, 40),
close to our IPL region (coordinates: 51, �47, 42), was sensitive to
conflict at the level of stimulus presentation (9). Liston et al.
suggested that the posterior parietal cortex might signal stimulus
conflict to the dlPFC, which then adjusts control parameters
accordingly.

Both the dlPFC and IPL were functionally connected to error-
responsive cerebellar regions (Fig. 2C). Consistent with the crossed
nature of connectional anatomy between the cerebellum and
cortex, right cerebellar regions were functionally connected to the
left frontal and parietal regions and vice versa. Previous work
indicates that the cerebellum may generate error codes (see ref. 38),
suggesting that the IPL and dlPFC might receive cerebellar error
signals that support the rapid, continual fine-tuning of control
settings and decision making (Fig. 4).

Cinguloopercular Network: Stable Maintenance of Task Mode and
Strategy. The cinguloopercular network included all of the ROIs
that had previously shown overlap of task initiation, maintenance,
and monitoring/adjustment signals, along with the thalamus (Table
1). The major functional distinctions between the cinguloopercular
and frontoparietal control networks were this overlap across con-
trol signals and the much greater prevalence of longer acting,
across-trial set-maintenance activity in the cinguloopercular net-
work. Therefore, we propose that the cinguloopercular network
contributes to the flexible control of human goal-directed behavior
through the stable, across-trial implementation of task sets in
downstream sensorimotor processors (Fig. 4). Consistent with this
hypothesis, the cinguloopercular network was functionally con-
nected to putative downstream processors in occipital cortex (Fig.
2C). These occipital regions in turn were functionally connected to
other posterior regions in fusiform and extrastriate cortex (Fig. 2C).

As discussed below, the combination of results presented here
and in the literature suggests that the dACC/msFC and aI/fO ‘‘core’’
might in part support a basic domain-independent and externally
directed ‘‘task mode’’ (5) in opposition to the brain’s ‘‘default
mode’’ (32), whereas the aPFC might provide more specific rep-
resentations of plans, subgoals (39), rules (10, 40), and/or strategies
(31) for complex task paradigms. The cinguloopercular network we
identified thus unifies a set of regions (aPFC, dACC/msFC, aI/fO)
individually associated with different executive functions, such as
rule maintenance (40) and performance monitoring (41). Although
previously debated (1, 11), recent studies in humans (2, 35, 42–44)
and macaques (45, 46) have demonstrated preparatory and main-
tenance control signals in the dACC/msFC, indicating that the
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dACC/msFC actively exerts top–down control over sensory (47)
and limbic brain regions (48).

In contrast, the aI/fO has received less attention as a potential
task-control region (2, 49). The aI/fO, sometimes labeled ventro-
lateral prefrontal cortex or anterior ventrolateral prefrontal cortex,
has been present in several imaging experiments that measured
control signals (10, 40, 50). Important studies in humans and
nonhuman primates have implicated the aI/fO in the representation
of task rules (8, 49). Consistent with a central role in task control,
the aI/fO connectivity profile identified it as a hub of the proposed
human cinguloopercular network (SI Fig. 11).

Prior studies have associated the aPFC (lateral area 10) with
complex higher order task-control functions (39, 51). Sakai et al.
(30) reported extended task set-related activity in aPFC (L, �30,
56, 4; R, �32, 56, 8) that appeared to be domain-dependent (30).
Other fMRI experiments have shown that the aPFC is more
active when subjects have to switch between task sets (6) or
implement complex rules (40). It seems reasonable that regions
(dACC/msFC, aI/fO) central to the implementation of a domain-
general task mode would be strongly functionally connected to
regions important for the implementation of complex task rules
and strategies, such as the aPFC.

Possible Interactions Between the Frontoparietal and Cinguloopercu-
lar Networks. The frontoparietal and cinguloopercular control
networks were strongly intraconnected and quite separate from
each other (Fig. 2C and SI Figs. 8–10), suggesting that they carry
out dissociable control functions. The networks may nonetheless
communicate with each other (Fig. 4A). The frontoparietal net-
work may provide the cinguloopercular network with more rapid
control initiation and adjustment signals, whereas the cingulooper-
cular network may maintain set throughout the entire task period
to affect downstream processing.

If the frontoparietal and cinguloopercular networks were to
communicate, why did none of our large-scale analyses reveal a link
between them? Our analyses were limited to a set of 39 predefined
ROIs. Therefore, we may not have included an additional member
of both networks that could act as a specialized information transfer
‘‘bridge’’ between them. By adding additional functionally defined
ROIs to our analysis stream, we might be able to identify paths that
functionally connect the frontoparietal and cinguloopercular net-
works. We expect a significantly larger set of ROIs (�39) to form

a single ‘‘small-world’’ network (19, 29) that consists of several
dense clumps held together via long-range short cuts, maintaining
relative separateness among the components.

Some studies have suggested transient correlations in BOLD
signal between the dACC and dlPFC during difficult dual-task
situations (52). Although dual-task situations may temporarily
induce interactions between the dACC and dlPFC, such situations
may not occur frequently enough to have generated long-term
resting connectivity between the two control networks.

Across a series of activation studies (2), functional dissocia-
tions were apparent between members of the two networks.
Therefore, the two control networks may well function in parallel
(Fig. 4B). Both networks might exert parallel top–down control
over downstream processing, albeit through different mecha-
nisms. In such a framework, both the adaptive (frontoparietal)
and stable (cingulooperuclar) task-control networks would in-
dependently interpret cues and receive bottom–up performance
feedback signals. The frontoparietal network would maintain
control signals online in working memory from one or a small
number of trials to the next, enabling it to implement task control
on a faster trial-to-trial basis. The cinguloopercular network, in
contrast, would implement and update basic task sets only on a
slower time scale.

One potential advantage of a more parallel organization would
be increased resiliency to perturbation or damage. Many complex
systems in nature seem to be affected by different ‘‘control vari-
ables’’ that can operate at different time scales and exert control
through relatively separate mechanisms (13). Further research is
needed to decide between the interactive (Fig. 4A) and parallel
(Fig. 4B) alternatives for top–down control or possible hybrid
organizations. Our current data seem most consistent with a more
parallel architecture.

Materials and Methods
Data Acquisition and Processing. All functional imaging data were
obtained on the same 1.5 Tesla scanner and processed exactly as
described previously in Miezin et al. (53). Details can be found in
SI Text.

Functional Connectivity Preprocessing. Preprocessing for functional
connectivity analyses was carried out exactly as previously described
(20) (see SI Text).

Fig. 4. Dual-network hypothesis of task control. Thin arrows schematize strong functional connections, ovals schematize hubs, and thick arrows schematize
putative flow of information. (A) Information may flow between the frontoparietal and cinguloopercular networks, such that the stable control network receives
control initiation signals from the adaptive control network at the beginning of a task period, as well as adjustment signals during task performance. (B)
Alternatively, the frontoparietal and cinguloopercular control networks may be organized in parallel. Both networks might interpret cues, implement top–down
control, and process bottom–up feedback. The frontoparietal network may adjust task control on a trial-by-trial basis, whereas the cinguloopercular network
might affect downstream processing in a more stable fashion. Frameworks intermediate between A and B are also consistent with the data.
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ROI Definition. Thirty-nine ROIs were derived from cross-studies
analyses (183 subjects, 10 tasks) of task-control signals by creating
12-mm diameter spheres around previously identified center of
mass coordinates (2). See SI Text for further details.

Extraction of Regionwise Resting State Time Series. Resting state
(fixation) data from 74 young adults (18–35 years old) were
included in the analyses. For each subject, at least 256 TRs (640 sec)
of fixation resting state BOLD data were available. For each of the
39 ROIs, a resting state time series was extracted separately for each
individual. For 10 of the subjects, the resting data (fixation) were
continuous. For the remaining 64 subjects, the resting periods
(fixation) were taken from different interleaved experimental de-
signs that also contained task periods. Our method for extracting
resting periods from blocked fMRI designs was validated in a recent
study (54).

Generation of Seed-Based Resting Functional Connectivity Maps.
Voxelwise resting state functional connectivity statistical maps (Fig.
1C) were generated by using a random effects approach as previ-
ously described (15).

Computation of Mean Regionwise Correlation Matrix. The resting
state BOLD time series were correlated region by region for each
subject across the full length of the resting time series, creating 74
square correlation matrices (39 � 39). To combine correlation
coefficients (r) across subjects, the Schmidt–Hunter method for
metaanalyses of r values was used because it is more conservative
than comparable methods (18, 55).

We performed 741 one-sample t tests (two-tailed) on Fisher’s
Z-transformed (normally distributed) correlation coefficients to
test whether they were significantly different from zero (18). To
account for multiple comparisons, Bonferroni’s correction was
applied.

Graph Analysis. All graph theoretical calculations were performed
in Matlab 7.2 (Natick, MA). The algorithms for computing graph
theoretical metrics were based on those generously made available
by Olaf Sporns (www.indiana.edu/%7Ecortex/connectivity�toolbox.
html) (27). We only used unweighted undirected graphs, and we did
not allow for regions to be connected to themselves.

All graph theoretical metrics were calculated for the original
graph as well as 100 completely random graphs (SD) and a regular
lattice graph, as first introduced by Watts et al. (28). In a regular or
lattice graph, each region is only connected to the next regions
around the ring. Because graph measures can be sensitive to node
degree, we generated a second set of randomized and latticized
controls for which the node degrees were preserved (29) (SI Table
3). The graph analysis conclusions were unaffected by node degree
preservation. Graphs were visualized using Pajek (www.vlado.
fmf.uni-lj.si/pub/networks/pajek).
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