Human autoimmune anti-proteinase 3 scFv from a phage display library

R. FINNERN*, E. PEDROLLO*, I. FISCH[†], J. WIESLANDER[‡], J. D. MARKS[§], C. M. LOCKWOOD[¶] &

 W. H. OUWEHAND*^{††} *Department of Transfusion Medicine, University of Cambridge and [†]Centre for Protein Engineering, MRC, Cambridge, UK, [‡]Wieslab AB, Lund, Sweden, [§]Department of Anaesthesia and Pharmaceutical Chemistry, University of California, San Francisco, CA, USA, [¶]School of Clinical Medicine, University of Cambridge, Cambridge, and

††National Institute for Biological Standards and Control, Potters Bar, UK

(Accepted for publication 16 September 1996)

SUMMARY

This is the first study describing recombinant human antibody fragments directed to the autoantigen proteinase 3 (PR3) from an immune B cell source. Detection of these autoantibodies has proven valid for the diagnosis and monitoring of Wegener's granulomatosis. The described antibody fragment (scFv) was isolated from a phage display library prepared from the IgG-positive splenic lymphocytes of a patient with systemic autoimmunity. The cloning strategy was designed to maintain the diversity of the antibody variable gene repertoire, and sequencing of several variable genes demonstrated that all major heavy and light chain families were represented. We found an over-representation of particular heavy chain variable domains in splenic lymphocytes which differ from the ones frequently found in peripheral blood lymphocytes. It was possible to obtain specific scFv to PR3 after a single round of selection and the binding could be inhibited by the patients' sera. Although the antibody fragments in the splenic repertoire were found to be highly mutated, it was interesting to find that the selected scFv showed only limited somatic mutation. Furthermore, we could demonstrate that the removal of the mutations had no effect on binding specificity.

Keywords human V gene phage display libraries scFv antibody fragment autoimmunity proteinase 3

INTRODUCTION

Autoimmune diseases count among the major medical problems of today's industrialized societies. However, the origin of autoantibodies is not yet clear. They might arise directly from the repertoire of germ-line variable domain (V) genes, like antibodies, or from 'disease-specific' V genes. Several mechanisms have been proposed, such as polyclonal B cell activation [1], molecular mimicry [2], or a failure to anergize or induce apoptosis of self-reactive B cells [3].

Wegener's granulomatosis (WG) is a disease of uncertain etiology which produces necrotizing granulomas of the upper and lower respiratory tract in association with necrotizing crescentic glomerulonephritis and vasculitis [4]. Autoantibodies against the neutrophil serine protease proteinase 3 (PR3) are the diagnostic marker in the diagnosis of WG and related vasculitides [5–7]. Disease exacerbation is generally preceded by a bacterial upper airway infection combined with the production of anti-neutrophil cytoplasmic autoantibodies (ANCA) [8–10]. It is uncertain which mechanism underlies the induction of the ANCA-related immune

Correspondence: R. Finnern, University of Lausanne, Institut de Biochimie, Chemin des Boveresses 155, CH-1066 Epalinges, Switzerland. response. ANCA may be directly pathogenic by binding to PR3 which is expressed on the cell surface of primed/activated neutrophils [11]. The treatment of choice in active generalized disease is cyclophosphamide [12]. The mechanism of cyclophosphamideinduced immunosuppression is possibly due to direct cytotoxic effect of the drug on immunocompetent lymphocytes, particularly those that have undergone antigenic differentiation and division.

We are interested in the variable (V) genes which encode antibody-binding sites. We hope that information on the V genes encoding human PR3 antibodies and the epitopes recognized may be valuable in elucidating the precise mechanisms underlying the vasculitic process. Studying the human B cell repertoire using hybridoma technology has proved to be very difficult in the case of isolating human MoAbs against self antigens [13,14]. In most cases only low-affinity, cross-reactive IgM antibodies, not representative of pathogenic autoantibodies, were obtained. These limitations have been largely overcome by the display of natural and synthetic antibody V region gene repertoires on the surface of phage [15–18]. Human antibody fragments can be recovered from these libraries against virtually any antigen, including haptens, foreign proteins, cell surface antigen, and self antigen, including human anti-PR3 antibodies [19–22].

To obtain specificities against PR3, we established a V gene

repertoire derived from the RNA of γ positive splenic B cells from a patient with autoantibodies against PR3 among others. The nucleotide sequence of the V genes of the PR3 antibody was determined and compared with the most homologous germ-line gene in the database. The immunological specificity of the antibody fragment was analysed by ELISA, immunofluorescence, Western blot and inhibition with patient sera. Finally, the role of the mutations of the heavy chain V gene (V_H) on the binding of PR3 was studied by replacing the mutated V_H gene (framework 1, CDR1, framework 2, CDR2 and framework 3) by its germ-line counterpart.

MATERIALS AND METHODS

Patient data

A 55-year-old male with a long history of psoriatic arthropathy was presented with pneumonia and upper airway infection. He had a massive splenomegaly, combined with a severe neutropenia. He had an elevated serum immunoglobulin level of polyclonal nature. The autoantibody screen showed rheumatoid factor activity and autoantibodies against cardiolipin, dsDNA, neutrophil surface antigen and ANCA, the latter being specific for PR3. Neurologically, he had a debilitating peripheral neuropathy, mainly sensory in nature and most likely autoimmune. A vasculitic component was assumed but not proven on histopathological examination. The x-rays showed evidence for interstitial lung disease. The etiology of the progressive lung disease has not been clarified. However, the positive ANCA test was suggestive for an autoimmune component of the lung pathology. There was no evidence for any renal pathology. Before splenectomy, the patient received a Pneumovax vaccination. The splenectomy resulted in a resolution of the neutropenia and the related recurrent upper airway infections. Despite a major improvement in the general condition with a complete normalization of the haematological values and a substantial reduction in immunoglobulin levels, the symptoms of the peripheral polyneuropathy persisted. The autoantibody screen remained positive for rheumatoid factor, cardiolipin and neutrophil antigens. Only the dsDNA antibodies were no longer detectable.

Construction of the IgG-derived V gene phage display library

The spleen tissue was cut into small pieces and squeezed through a sieve. The lymphocytes were isolated by layering the eluate onto a Ficoll gradient of 1.077 g/cm^2 . The lymphocytes were harvested from the interface and washed in ice-cold PBS before RNA isolation [23]. In brief, cells were lysed in 5 M guanidine iso-thiocyanate, 10 mM EDTA, 50 mM Tris–HCl pH 7.5 and 1 mM DTT by vortexing. The RNA was precipitated first with 4 M LiCl₂ overnight at 4°C and then with 3 M LiCl₂. The isolated RNA was solubilized in 0.1% SDS, 1 mM EDTA, 10 mM Tris–HCl pH 7.5, followed by phenol/chloroform extraction and ethanol precipitation, and stored at -70° C.

The primers used for the amplification of the cDNA are shown in Table 1.

The cDNA synthesis was carried out for the $V_H\gamma$, $V_L\lambda$ and $V_L\kappa$ separately by diluting 4 μ g total RNA in 5 μ l water. The RNA was added to a 45 μ l reaction mixture, resulting in a 50 μ l reaction mixture containing 140 mM KCl, 50 mM Tris–HCl pH 8·1, 8 mM MgCl₂, 10 mM DTT, 250 mM of each dNTP (dATP, dGTP, dTTP, dCTP), 10 pmol relevant constant region specific primers for IgG, $C\kappa$ and $C\lambda$, respectively, and first strand cDNA synthesized. This mixture was heated to 67°C for 5 min before 80 U of human placental RNase inhibitor and 50 U of avian myeloblastosis virus (AMV) reverse transcriptase were added. The mixture was incubated at 42° C for 1 h, heated to 100° C for 3 min, quenched on ice and centrifuged for 5 min.

Polymerase chain reaction (PCR) was used to amplify $V_H\gamma$, $V_L\kappa$ and $V_L\lambda$ genes. Reaction mixtures (50 μ l) were prepared containing 5 µl cDNA, 20 pmol of each forward and back primer (equimolar mixture of the family-specific primers), $20 \,\mu l$ dNTP-Mix, 10 mm KCl, 10 mm (NH₄)₂SO₄, 20 mm Tris-HCl pH 8.8, 20 mM MgCl₂, 100 μ g bovine serum albumin (BSA)/ml and 1 U Cetus DNA polymerase. The reaction mixture was cycled 30 times (94°C for 1 min, 60°C for 1 min and 72°C for 1 min). The resulting fragments were gel purified and cycled 25 times (94°C 1 min, 60°C 1 min and 72°C 1.5 min) with flanking primers containing different restriction sites. The cloning into pHenIX (Fig. 1) was carried out in two steps. First, the V_H genes were ligated into pHenIX cut with NcoI and SalI (New England Biolabs, Hitchin, UK) and electroporated into Escherichia coli TG1 [24]. Second, DNA containing the V_H library was prepared [23] and each of the fragments containing either the V κ or V λ were cloned into pHenIX-V_H cut with Apa L1 and Not1 (New England Biolabs) and electroporated separately into E. coli TG1 [24].

Soluble expression of scFv

Single ampicillin-resistant colonies were picked for the production of soluble scFv according to Marks *et al.* [25].

Selection

The phage repertoire was panned using immunotubes (Nunc, Maxisorb, Glasgow, UK) [25,26]. PR3 was coated overnight at 4° C at a concentration of 20 μ g/ml in 50 mM carbonate buffer pH 9·6.

ELISA

Single ampicillin-resistant colonies were screened to identify those producing antigen-binding scFv by ELISA essentially as described in Ward *et al.* [27], except that the bound scFv were detected with alkaline phosphatase-conjugated anti-mouse IgG Fc specific (Sigma, Poole, UK). The assay was developed with *p*-nitrophenyl phosphate (Sigma) in 1 M diethanolamine buffer containing MgCl₂ pH 9.7. Reactions were stopped with 50 μ l of 3 M NaOH and readings taken at OD_{405 nm}.

Specificity ELISA

The specificity of scFv was determined by ELISA on a panel of antigens: neutrophil extract, myeloperoxidase (MPO), PR3, elastase, lysozyme, lactoferrin, cathepsin G, human serum albumin, BSA, cytochrome C, cardiolipin and H1-stripped chromatin. The ELISA was performed as described.

Competition ELISA

Patient sera were tested for their ability to compete with the scFv fragment for binding to PR3. The ELISA was performed essentially as described above. First, serial dilutions of the scFv were tested in ELISA to determine the scFv concentration corresponding to 75% of the maximal absorbance at 405 nm. This concentration of scFv was mixed with serial dilutions of patient sera before adding them to PR3-coated ELISA plates. Bound scFv were detected as described.

Purification of scFv

The scFv were purified by ion metal affinity chromatography

primers
gene
\geq
Human
÷
Table

										ઌૼ ઌૼ ઌૼ ઌૼ ઌૼ					
										8888888					
										1CT 1CT 1CG 1CG					
										CAG GAG CAG CAG CAG CAG CAG					
										GTG AGG GTG CAG CAG CAG					
										CTG CTG CTG CTG CTG					
										CAG CAG CAG CAG CAG CAG CAG					
										GTG GTC GTG GTG GTG GTA					ດັດ ດັດ
										CAG CAG CAG CAG CAG CAG CAG					000 000 000000000000000000000000000000
															GGT GGT GGT GGT
										ATG ATG ATG ATG ATG					CAG CAG CAG CAG
	σ.				T 3'								ຕັ ຕັ ຕັ		GAC GAC GAC
	СТТ		δ		CT			ຕ໌ ຕ໌ ຕ໌ ຕ໌ ຕ໌		000000000000000000000000000000000000000					GGT GGT GGT GGT
	999		СП		TGT			8888888		00000000000000000000000000000000000000			GT GT SGT SGT		
	GCT		GCT		CAC			TCT TCT TCT TCT TCA		888888			AG AG GT O C C C C C C C C C C C C C C C C C C		B A B B B B B B B B B B B B B B B B B B
	аП		GAA		GGC			C A G A G A G A G A G A G A G A G A G A	es	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			0000 99999		0000
	e at	mer	GП	rimer	AGG			GTG AGG GTG CAG CAG CAG	ction sit	888888			0000	sites	0000
imer	Ğ	on pri	CCT	gion p	GT			716 716 716 716	d restri				ତ ତ ତ ତ ତ ତ ତ ତ ତ ତ ତ ତ	triction	
lion pı	СТ	nt regi	0	ant reç	- 				ppende	600 600 600 600 600 600 600 600 600 600			GAC GAC GAC GAC	ded res	
ant reç	CAC	constai	с Ц	consta	⊢ ∢			000000 000004	/Ncol a	CTC CTC CTC CTC CTC			GGA GGA GGA GGA	l appen	TCA TCA TCA
consta	GTC	hain c	CT	chain	AC	lers	S	6666666	vith Sfil		rimers	(0	IGA IGA IGA	vith Sal	A A B A B A B A B A B A B A B A B A B A
chain	5	ight c	ACA	light	TGA	k prim	primer	CAG CAG CAG CAG CAG CAG CAG CAG	mers v	ស៊ <i>ណ</i> ៍ ស៊ ស៊ ស៊	/ard p	primers	ល ល ល ល	mers v	០០០០ សំសំសំសំ
avy c	For	ppa l	លី	mbda	Ω	I back	ication	ស	tion pri		Forw	cation		tion pri	al al
Human he	lgG1-4 CH1	Human ka	Ck For	Human la	C\ For	Human Vŀ	Initial amplif	VH1back VH2 back VH3 back VH4 back VH5 back VH6 back	Reamplifica	VH1 back S VH2 back S VH3 back S VH4 back S VH5 back S VH6 back S	Human JH	Initial amplifi	JH1-2 For JH3 For JH4-5 For JH6 For	Reamplifica	JH1-2 For S JH3 For Sall JH4-5 For S JH6 ForSall

primers
back
<
Human

Initial amplification primers

	ъ	ā	ო	ō.	ō	ъ.	
	8	8	8	8	8	8	
	TCT	TCT	TCT	TCT	TCT	TCT	
	CAG	CAG	CAG	CAG	CAG	CAG	
	ACC	ACT	ACG	ACC	ACG	ACT	:
	ATG	ATG	ЪЦ	ATG	CTC	CTG	
	CAG	GTG	GTG	GTG	ACA	GTG	-
	ATC	ATT	ATT	ATC	ACG	ATT	
	GAC	GAT	GAA	GAC	GAA	GAA	
-	Ω	Ω	Ω	Ω	Ω	Ω	-
-	Vk1 back	Vk2 back	Vk3 back	Vk4 back	Vk5 back	Vĸ6 back	:

Reamplification primers with ApaL1 appended restriction sites

Vk1 back Apa Vk2 back Apa Vk3 back Apa Vk4 back Apa Vk5 back Apa Vk6 back Apa	ממממממ רררבב			C C C C C C C C C C C C C C C C C C C	AGT AGT AGT AGT AGT AGT	80000000000000000000000000000000000000	CTC CTC CTC CTC CTC CTC	GAC GAA GAA GAA GAA	ATC ATT ATT ATC ATC	CAG GTG GTG ACA GTG GTG	ATG ATG TTG ATG CTC CTC	ACC ACC ACC ACC	CAG CAG CAG CAG CAG CAG CAG CAG CAG CAG	1CT TCT TCT TCT	8888888	ด์ ด์ ด์ ด์ ด์ ด์
Human J _K F	orward	prime	rs													
Initial amplifica	tion prime	Sli														
Jk1 For Jk2 For Jk3 For Jk5 For Jk5 For	QQQQQQ AAAAA a.a.a.a.a.		ETTTT	T CTC T CTC T CTC CTC	CACCAC	E E E E E E E E E E E E E E E E E E E	GGT GGT GGT GGT TGT		ຕັ ຕົ ຕັ ຕົ ຕົ							

Reamplification primers with ApaL1 appended restriction sites

88		38									
GGT GGT	GGT	TGT									
E E C	ĒĘ	100									
CAG	CAC	CAG									
CTC CTC	ATC	o To									
GAT GAT	GAT	AAT									
ĒĒ	EE	E									
ACG ACG	ACG	ACG									
80 80 80 80 80 80 80 80 80 80 80 80 80 8	86	300			ю О	ю С	ີ ເບ	ю С	ю С	ω ω	⊳
8 8 0 0 0 0 0 0	000	200			о Ю	ст Ю	N N N	0000	g	ğ	о х
1GC 1GC	1GC 7GT	190			00 00	NG NG	Q S	NG G/	AA O	NG S	NG O
ACT ACT	ACT	ACT			C D	CT C/	C C	C C	CT C	CT C/	CT C/
10G 10G	100	202			DA AC	с Ч Ч	С Ч С	с Ч Ч	с Ч Ч	C AC	G AC
00 EE					Ĕ	5 S	5 TO	CTO CTO	5 J	C	5 5
A A A	A C				GTG	000	GTG	GAG	ATA	GTG	ATG
55	с С С С С С С С С С С С С С С С С С С С	2 2 2 0 0	Ś		TCT	TCT	TAT	TCT	ЦIJ	GCT	E
5 GA GA	ν Α Ο Ο Ο Ο Ο Ο	d B B B B B B B B B B B B B B B B B B B	primer	rimers	CAG	CAG	100	TCT	CAC	CAG	AAT
-, -,	-, -	, ,,	Back	ation pi	Ω	Ω	<u>ي</u>	Ω	Ω.	Ω	2
Jk1 For Not1 Jk2 For Not1	Jk3 For Not1	Jk5 For Not1	Human VA	Initial amplific	VIX1 back	V\2 back	V _λ 3 back	Vλ4 back	V ₂₅ back	V\6 back	Vì7 back

ຕ໌ຕ໌ຕ໌ຕ໌

R. Finnern et al.

Table 1. Continued

						ຕ໌ ຕ໌ ຕ໌		
	ର୍ଜ ଜ ଜ ଜ ଜ ଜ ଜ					GGT GGT GGT		
	000000040 000000040					CTT CTG CTG		
	00000000000000000000000000000000000000					GAG CAG GAG		
	C C C C C C C C C C C C C C C C C C C					GGT GGT GGT		
	ACG ACT ACT ACT ACT					GAC GAC AAC		
	116 016 016 016 016 016 016 016					TAG TAG TAA		
	616 676 676 676 676 616 616 816					ACC		
	GCT GCT GCT GCT GCT GCT			ตัต์ เวิล		0000		
	CAG CAG CAG CAG CAG CAC							
				GGT GGT GGT				ຕ໌ ຕ໌
es	6000 6000 6000 6000 6000 6000 6000 600			CTT CTG CTG	es			AC GG
iction sit	AGT AGT AGT AGT AGT AGT AGT			GAC CAG GAG	iction sit			ATG TGA
ded restr	CCACCAC CACCACCAC CACCACCACCAC			GGT GGT GGT	ded restr	2222		GCT GTA
1 append				GAC GAC AAC	1 appeno	LTT CA CA CA		ACA TCT
th ApaL	TGA TGA TGA TGA TGA TGA	mers		TAG TAG TAA	th ApaL	A G A D A G A D A G A		GAA TTT
ners wi	ល័ ល៍ ល័ ល៍ ល៍ ល័ ល៍	ırd pri	rimers	ACC ACC ACC	ners wi	បិបិបិ ស ស ស	ners:	CAG GAA
on prin	al al al al al al	Forwa	ation p	ດັ ດັ ດັ	on prin	t t	g prir	ណ៍ ណ៍
Reamplificati	Vλ1 back Ap Vλ2 back Ap Vλ3 back Ap Vλ4 back Ap Vλ5 back Ap Vλ6 back Ap Vλ7 back Ap	Human Jλ∣	Initial amplific	Jλ1 For Jλ2-3 For Jλ4-5 For	Reamplificati	JλI For Not 1 Jλ2-3 For No Jλ4-5 For No	Sequencinç	LMB3 fdSeq1

R. Finnern et al.

Fig. 1. Structural map of the vector scFv pHenIX. The V_H and V_L genes can be cloned sequentially, V_H as Sfil or Ncol-Sall or Xhol, and the V_L domains ApaL1-Notl.

(IMAC) [28] as described in Griffiths *et al.* [26]. The eluted scFv were further purified by gel filtration and characterized by SDS–PAGE [29].

Western blot

Neutrophil extract (20 μ g/ml) was fractionated on a 12% SDS– PAGE and electroblotted onto nitrocellulose. Filters were blocked for 1 h at room temperature in 10% Marvel/PBS. Purified scFv anti-PR3 or serum from the patient of which the library was made, were incubated in Marvel/PBS for 1 h with gentle shaking at room temperature. After washing with PBS–0.05% Tween, binding of scFv was detected by the murine MoAb 9E10, followed by antimouse IgG Fc-specific horseradish peroxidase (HRP) conjugate (Sigma) and the human serum by anti-human IgG Fc-specific HRP conjugate (Sigma). HRP was visualized with 3,3'diaminobenzidine tablets (Sigma) in the presence of cobalt ions [23].

Indirect immunofluorescence

The indirect immunofluorescence assay was performed on ethanolfixed human neutrophils (kindly prepared by Allan Brownlee, Department of Medicine, Addenbrookes Hospital, Cambridge, UK). The scFv anti-PR3 or the germ-line chimaeric construct (0·1 mg/ml) were applied and incubated for 1 h at room temperature. Following three washes with PBS for 5 min, the bound scFv were detected with the MoAb 9E10, followed by anti-mouse IgG Fc FITC conjugate (Dako, High Wycombe, UK). The slides were mounted in citifluor solution and examined by incident light fluorescence microscopy using a Zeiss Axioskop (Zeiss, Jena, Germany). The mouse MoAb 4A3 [30] was used as positive control and an anti-HPA1 and anti-rhesus D scFv as negative controls.

Assessment of insert diversity by BstN1 fingerprinting The diversity of the library was analysed by BstN1 (New England Biolabs) digestion as described in Clackson *et al.* [31].

Cloning of the scFv anti-PR3 V_H CDR3/ V_L into the germ-line VH5 DP73 gene

The scFv anti-PR3 DNA was digested with the restriction enzymes NcoI and Pst1 (New England Biolabs), according to the manufacturer's instructions. The V_H germ-line gene segment DP73 (kindly provided by Ian Tomlinson, MRC Centre for Protein Engineering, Cambridge, UK) was cloned into these sites [23]. The resulting hybrid construct contained the V_H germ-line DP73 gene plus the V_H3 CDR3, the J_H and the complete V_L of the anti-PR3 scFv. The V gene sequence was confirmed by sequencing.

Sequencing of DNA

Sequencing was performed essentially as described by Griffiths et al. [26]. Individual clones were PCR-amplified using the primer LMB3 and fdSeq1 (Table 1). PCR cycle sequencing reactions with fluorescent dideoxy chain terminators (Applied Biosystems, La Jolla, CA) were carried out according to the manufacturer's instructions with oligo LMB3 and fdSeq1. Sequencing reactions were analysed on an Applied Biosystems 373A Automated DNA Sequencer and sequence analysis was performed using SeqEd (Applied Biosystems) and Mac Vector 4.5.1 (IBI Kodak, New Haven, CT). V_H genes were compared with germ-line V_H gene segments in the V_H directory compiled by Tomlinson et al. [32]. V_L genes were compared with published germ-line V κ [33] and V λ [34] gene sequences using the program Seq. Ed (Applied Biosystems). The sequences were compared with the germ-line sequences in the V BASE sequence directory (Tomlinson et al., MRC Centre for Protein Engineering, Cambridge, UK).

RESULTS

Sequence diversity of the IgG spleen library

Following the isolation of the monocluclear cells from the splenic tissue and reverse transcription of the RNA to cDNA, the V_H and V_L genes were PCR-amplified and cloned into the phagemid vector pHenIX for expression as scFv fragments. The V_H genes were cloned first and an IgG V_H library with a diversity of 4×10^6 was obtained. The V_L genes of the λ and κ chains were cloned separately and two libraries were obtained: IgG V_H/ λ repertoire was calculated as 8×10^6 and the IgG V_H/ κ as 5×10^6 . To determine the diversity of the V genes in the IgG library the V genes of 53 V_H γ , 13 V_L λ and 21 V_L κ random clones were sequenced and aligned to their most homologous germ-line V gene using the V gene directory compiled by Tomlinson *et al.* (Table 2 and Fig. 2).

Immunoreactivity of the 'non-selected' library

Ninety-six individual bacterial clones from the IgG $V_H/V\lambda$ and the IgG $V_H/V\kappa$, respectively, were induced to produce soluble scFv fragments. The bacterial supernatants were tested on six different antigens (crude neutrophil extract, PR3, MPO, lactoferrin, human serum albumin and chicken egg lysozyme) in an ELISA. There was no detectable reactivity with any of these antigens in the unselected library (data not shown).

Selection on PR3 and characterization of the scFv

The library phage was subjected to three rounds of affinity enrichment on purified PR3. After each round 96 individual bacterial clones were induced to produce soluble scFv fragments which were consequently tested for binding to the selecting antigen in an ELISA. Two clones producing PR3-reactive scFv were

Table 2. V gene usage in the unselected spleen library. Alignment to the most homologous germ-line V genes

Heavy c	hains						
VH1 DP 3	FR1 ENQLVQSGAEDVIKIPGATVIKLISCIKVSGYTFT	CDR1 DYYMH	FR2 WVQQAPGKGLEMMG	CDR2 LVDPEDGETTYAEKFQG	FR3 RVTTTRDTSTDTAYNELSSLRSEDTAVYYCAT	CDR3 FR4	
DP 8 Clone 2 clone 3	д	CYYMH DLQ DLQ	WVRQA.PGQGI.EMMG	D-S-DST	WINTRUISISTAYMELENUSATION WINTRUISISTAYMELENUS	AVCSSRICPFGADV AVCSSRCPFGADV	TECEN MECCT
DP 10 clone 4 clone 5 clone 5 clone 7 clone 2		SYALS RNT NT T-T HS-L- HS-L-	WHQAF9QCI.EMC	GIIPHERPAVAQKEQG L	RVTITADESTSTATMELSSLRSEDTAVYYCAR K	VEVUDY CLEPKUDDPREDDYTRUDV QACLENTICEDATED CRESEPRATICEDV XPBG32KVSGUDV XPBG32KVSGUDV	Maget Maret Maret Maget Maget
clone 10 clone 11 clone 12 clone 13 clone 13	N			-SMPQ A	-L	DPVHSDYRQYS DPVHSDYRQYS LSSWASSYRGEYYFD LSSWASSYRGEYYFD LSSWASSYRGEYYFD LSSWASSYRGEYYFD LSSWASSYRGEYYFD	TROCT MOCGT MOCGT MOCGT MOCGT
clone 16 clone 16 clone 17	ee	-79 NH-		NHHS-3O	CE	DQDAYARSYYYGMVV GESSMYSDS	MEQGT WEQGQ
DP 14 clone 18	QVQLVQSGAEVKKPGASVKVSCKASGYTFT	SIDIS	WVRQAPQQGLEMMG	WISAYNANINYAQKI QG	RVIMTIDISTSTAYMELRSLRSDDTAVYVCAR	DVSYCISINCYHDAFDI	WEDGET
DP 15 clone 19 clone 20	QVQLVQSGAEVKKPGASVKVSCRASGYTET	NICIXS	WVRQATTCQCI. EAMIC	WMNENSSNICTAQKFQG YARFR YARFR	RVIMIRNISISTAVMELSSLASEDTAVYYCAR	VLIMENYYYYH MUVV VLIMENYYYYH	WƏQGT WƏQGT
hv 1263	QVQLVQSGAEVKKPGSSVKVSCKASGGIFS	SIAIS	WVRQAPGQGLEMMG	RIIPILGIANYAQKFQG	RVITTADKSTSTAYMELSSLRSEDTAVYYCAR		
clone 21 clone 22	NБ	TV		RR- SS	RRQ-FNF	GPPPYSDIWYDM_DP SYSENSFYDSHDI	WOQGT WOQGT
clone 23 clone 24 clone 25 clone 25 clone 27	n-re01	RN RN RN RN	P	TUV-Y		ACTEDA-HANDREDLET ACTEDA-HANDREDLET ACTEDA-HANDREDLET ACTEDA-HANDREDLET ACTEDA-HANDREDLET ACTEDA-HANDREDLET ACTEDA-HANDREDLET ACTEDA-HANDREDLET	MƏQƏT MƏQƏT MƏQƏT MƏQƏT MƏQƏT
CH3							
DP 31 clone 28 clone 29 clone 30	EVQLVES333LNQPRRSLALSCAASGFIFD LK 	DYAMH	WVRQAPEKCLEMVS CRD SVMELT-R-D	GISMNSGSIGYADSVKG -VNNDL -VNNDL -VNNDL-	RFTISRINARNSLYLDMSLRAEDTALIYYCAK 	SRAFIVICENDEDI SRAFIVICENDEDI SRAFIVICENDEDI	Maggt Maggt Maggt
DP 46 clone 31	QVQLVIESGGGVVQPGRSLRLSCAASGFTFS	SYAMH NL	WURQAPGKGLEWVA TVT	VISYDGSNKYYADSVKG	RFTISRDNSKNTLYLQMNSLRAEDTAVYYCAR IHGT	GLILGFCSGGSCYSDY	WOQGT
DP 51 clone 32	EVQLVESGGLVQPGSLRLSCAASGFTFS qqP-KA	SVU	WJRQAFGKGLEIWS A	YISSSSTIYYADSVKG SGTS-H	RFTI SRUNAKNSLYLØMSLRDEDIRVYYCAR	XEVEDUMITISSTE	TEQEW
DP 58 clone 33	EVDLVESGGELVQPGSSLRLSCAASGFIFS	SYEWN	1SWEIDAPORKOI EMVIS	YISSSGSTIYYADSVKG TRDDYI-EKVME-	RFTISKINGLYLQMNSLRAEDTAVYYCAR	VDFDL	WERAS
VH4							
DP 65 clone 34	NN	SOGYYWS -RFL	WIRQHPGKGLEMIG TTM-	YIYYSGSTYYNPSIKS	RVTISVDISKNQFSLKLSSVIPADIAVYYCAR -I-M-R-ALN-T	GRGSFTHMLCWWFDL	TEQEM
clone 35	R	G-A	b	IPD	LLКЕЕ-RК	ALGDIDRIMAWYFDL	MCHCIT

Autoimmune scFv anti-PR3

275

eq
utinu
Co
તં
ble
[a]

MERCI	MEQGT		WGQGT WGRGT WGQGT	WEHET WEQGT	TEQEM TEQEM TEQEM TEQEW TEQEW TEQEW TEQEW		WEQGT										
CDR3 FR4 AIGDIDRLMAWYFDL	TIAPLS TRAVYGDYGKEDY		HRFYXDSSGYFDM HRAQSM#DA HGAQSM#DA LSSWGSFRFGEYYFDL	GVGRSSEYFYYYDWDV GVGRSSDYFYYNYM	ACTAEDASSSTEA ACTAEDASSSTEA ACTAEDASSSTEA ACTAEDASSSTEA ACTAEDASSSTEA ACTAEDASSSTEA ACTAEDASSSTEA ACTAEDASSSTEA ACTAEDASSSTEA		ACTESSITION OF		FR4 FOGGTIKLIVG	51AFD4E904	EGATIVILE FORTATIVILE FORTATIVILE	SUTATIATES STATEMENT STATEMENT	SUTUL	ECCELECTIVLE	ECCONTINUE FOCONTINUE FOCONTINUE	FOGETRVTVLG	FOQOTKLEIKR FOQOTKLEIKR FOOOTKVEIKR
E-RK	KLSSVTAADTAVYYCAF TT'		ØMSSLKASDTAMYYCAF 	I-S			QLNSVTPEDTAVYYCAR		CDR3 AAWDDSLNG QSQ-SN-S-SGV	GTWDSSLSA -ASMM	GTWDSSLSA GV GV GPT-G-GL	NÕN-Ð NÐSSTISSTISSÖ	SSYTSSSTL -AHAIINRDVL	CSYAGSYIF DTGF	NSRDSSGNH DRHL EDRHL	QAMDSSTA 	QQYINLP -E-HTLS -E-HTLS -E-HTLS
FR3 LKE	RVTISVDISKNQFSL		QVTISADKSISTAYL NG-V AA		NSA		RITINPDISKNQFSL		ASLAISGLQSEDEADYYC EE	SATLGITGLQTGDEADYYC	ATLGTTCLQTCDEADYYC	ASIAITGLQAEDEADYYC JT-SKT	ASLTI SGLQAEDEADYYC	ASLITISGLQAEDEADYYC VTH-	ASLITTIGAQAEDEADYYC	ATLITISGTQAMDEADYYC S	FTFTISSLQPEDIATYYC
CDR2 IPD			IYPGDSDIRYSPSPQG	K-			TYYRSKWYNDYAVSVKS K-QE-S		FR3 S GVPDRFSGSKSGTS	PS GIPDRFSGSKSGT	GIPDRFSGSKSGTS	GVPDRF935KSGTS 	DDDD	CVPDRFSGSKSGNI	GIPDRFSGSSSGM	S GIPERFSCSNSGNI	T GVPSRFSGSGSGGGTD
I	N I I		нтт	1 1			Ϋ́		CDR2 SNNQRF NK	ENNKRJ G-SN	DNNKRP Q D	GNSNRP I EDYR	EVSNRP D-T	DVSKRF N	GKUNRF -R I	QDSKRP Q	DASNLE I IF
FR2 P	WIRQPPGKGLEMIG		WRQNPGKGLENMG	S	24 24 24 24 24 24 24 24 24 24 24 24 24 2		DINGIDISERGITEMI		FR2 WYQQLPGTAPKLLLTY VV-	WYQQLPGTAPKI.LIY	WYQQLPGTAPKILLIY	WYQQLFGTAPKLLTY SSSSSS	WYQQHPGKAPKLMIY RR	WYQQHPGKAPKLMTY VI	SS 	WI ALIVIIVASÕEDAIMOVW	WYQQKPGKAPKI_LIY
CDR1 G-A	N		SYMIG HFA T	A			SNSAAMN		NIGSNIVN -IT-S-S	SXL		NIGAGYDVH SY GASY	SVYNYVS	SH-I SVYNYYDD	RSYYAS	GDKYAC	NIWISI I E
 R	'SGGSIS A-MR D		SGYSFT L-SS 'T YRSA	- d			SASCES		CDR1 SGSSS	- T	SGSSS		TGTSS	SSLDL	CEDSI	TACES -	
FR1 III	QVQLQESGFGLVKPSETLSLTUUV 		EVOLVQSAEVKKPGESLK1SCKG qE qNT qVWNT	g-n-reA	Q-1-16 Q-1-16 Q-1-19 Q-1-96 Q-1-96 Q-1-96 Q-1-96 Q-1-96 Q-1-96 Q-1-96 Q-1-96 Q-1-96 Q-1-96 Q-1-96 Q-1-96 Q-1-96 Q-1-96 Q-1-166 Q-116 Q-100		QVQLQQSGPGLVKPSQIT.SL/ICA.I.	ins	FR1 QSVLIQPPSASGTFGQRVTILSC 	7 OSVLITQPFSVSAAPGQKVITISC SGPS-À	QSVLITOPPSVSAARQQKVTITSC	QSVLTQPPSVSGAPGQRVTTSC S	QSALIQPASVSGSPQQSITISC	QSALITQPRSVSGSPGQSVITISC À-ÀL	SEEJIQDPAVSVALGQIVRJTC		TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT
clone 36	DP 71 clone 37 clone 38	VH5	DP 73 clone 39 clone 40 clone 41	clone 42 clone 43	clone 44 clone 45 clone 46 clone 48 clone 48 clone 48 clone 50 clone 51 clone 51	0H6	DP 74 clone 53	Light cha	W.1 DFL2 clone 1	W.1 humlv11 clone 2	W.1 DPL5 clone 3 clone 4 clone 5	W.1 DPL8 clone 6 clone 7	V/2 DPL11 clone 8	W.2 DPL12 clone 9	VA3 DEL16 clone 10 clone 11 clone 12	W.3 DPL23 clone 13	W.1 DEX1 clone 1 clone 2 clone 3

R. Finnern et al.

Continued
તં
Table
©

1997	Blackwell	Science 1	Ltd	Clinical	and	Experimental	Immunology	107 ·269–281
1)))	Diackwein	belence i	Liu,	cunicai	unu	Experimentat	minunoiogy,	107.207 201

FR4 FGGGTKLLEIKR	FGQGTKVEIKR	FCQGTRLEIKR	FGQGTKVEIKR	FOQGIKLEIKR FOQGIKVEIKR FOQGIKVEIKR FOQG	FGQSTRLEIKR FG FG3STRVEIKR FG3STRLEIKR FG3STRLEIKR FG3STRVEIKR	FGQGTKVEIKR	FGQGTKLEIKR	FGGGTKLEIKR	LGOGTKI ETKR
LLDYNYP LQDYNYP Q-EDLT	LQHNSYP QTY-RA-RT	LIHHC-IT QQYNSYP	QQANSFP KYT	TYL TVG NTC NTC	QQSYSTP TILPYT TILPYT LT LT LT LT LT LT LT 	QQYYSFP QGYLYT	MQALQTP G-EYT	QQYNNMP AEPELT	QYGSSP D-TYT
FK3 GVPSRFSGSGSGSTDFTL/TISSLQPEDFATYYC A-R-V-EI	GVPSRFSGSSGSGTEFTLTISSLQPEDFATYYC	GVPSRFSGSGSGTDFTLTLSSLQPEDFATYYC ÀÀFÂFG	GVPSRFSGSSGSDFTLITISSLQPEDFATYYC	GVPSRFSGSGSGTIEFTL/TJSSLQPDDFATYYC	GVESRESSSSSSIDFTL/TISSLQPEDFATYYC 	GVPSRFSGSGSGSIDFTL/TISCLQSEDFATYYC EAYHY	GVPDRFSGSSGSGTDFTLKLSRVEAEDVGVYYC	GIPARFSGSSGSTEFTL/TISSLQSEDFAVYYC	GIPDRFSGSGSGIDFTLTISRLEPEDFAVYYC
LUKZ AASSIQS STVNG	AASSLQS EE-	AASSLQS R-HT	AASSLQS	KASSLES T RT EC	AASSIQS T R R GT-E- GT-E-	AASTIQS GN	LGSNRAS -A	GASTRAT Y	GASSRAT AR
ғкz мүоокрекаркіліту N	WYQQKPGKAPKRL,IY RFS	WFQQKPGKAPKSLTY -YRE	WYQQKPGKAPKLLIY -N	WYQQKPGKAPKILLIY RH -SI 	MYQQRFGKAFYLLLY 	WYQQKPGKAPEI LI TY	WYLQKPGQSPQLLTY LR	WYQQKFGQAPRLLTTY VV-S	WYQQKPGQAPRLLLTY S-T-V
ULKI RASQGIRNDLG -TDE	RASQGIRNDLG G-PEYVS	RASQGISNYLA -PDLRTS	RASQGISSMLA DL	RASQSISSMLA T-G 	RASQSSYIN 	RMSQGISSYLA -V-ER	STSDDI	RASOSVSSNLA N-GI	RASQSVSSSYLA -TS
FRI ALQMIQSPSSLSASVGDRVIITIC d-vL-FS	DIQMIQSPSSL&ASVGDRVITTC	DIQMIQSPSSI.SASVGDRVIITIC	DIQMIQSPSSVSASVGDRVITTC vKLL	DIQMIQSPSTLASNGDRVITITC	DIOMTOSPSSLGASVGIRVITITC	VIMMIQSPSILISASTGDRVIISC d-vKKN-	DIWITQSPLSLPVIPGEPASISC e1	EIVMIQSPATLSVSPGERATLSC 1	EIVLIQSPGILSLSPGERAILSC dmASF
Vk1 DPK3 clone 4	w1 A30 clone 5	w1 L1 clone 6	Vk1 DPK5 clone 7	VK1 L12 (2) clone 8 clone 9 clone 10 clone 11	Wd DEYG clone 12 clone 13 clone 14 clone 15 clone 16 clone 17	Vk1 DPK10 clone 18	Vk2 DPK15 clone 19	Vk3 DPK21 clone 20	Vk3 DPYC2 clone 21

Fig. 2. V gene usage in the unselected immune IgG scFv phage display library (8 \times 10⁶)

already observed after a single round of selection, and the number of positive clones increased with each subsequent round. PCR fingerprint analysis of the V gene cassette showed an unique BstN1 digestion pattern. The nucleotide comparison showed that they all derived from the same original clone obtained in the first round (Table 3). The V_H domain was encoded by the DP73 gene from the small V_H5 family with six mutations resulting in five amino acid replacements in the first framework and CDR1. The V_H domain was recombined to a 13 amino acid third hypervariable loop partially encoded by the J_H4 gene. The V_L was derived from the DP κ 4 gene of the V κ 1 family and the gene segment had four substitutions, of which two were active, both located in the first framework. The DP κ 4 gene was recombined with the J κ 4 gene.

To investigate the importance of the CDR3 domain for the specific binding of the anti-PR3 scFv to PR3, a chimaeric gene was generated. The five amino acid replacements in the V_H domain of the scFv anti-PR3 were removed by replacing the mutated V_H gene segment with the germ-line DP73 gene (Table 3). Investigations by ELISA and immunofluorescence (Fig. 4) convincingly demonstrated that the immunoreactivity of the scFv is not influenced by the five amino acid replacements in the V_H domain.

The specificity of the selected clones was investigated by ELISA using six different protein antigens (Fig. 3). The scFv anti-PR3 reacted specifically with PR3 and the crude neutrophil extract. The specificity was further confirmed by indirect immuno-fluorescence (Fig. 4), Western blotting (Fig. 5) and competition with patient sera (Fig. 6).

DISCUSSION

The generation of autoantibodies of the IgG isotype against PR3 is a highly specific and sensitive marker for WG, an autoimmune disease characterized by vasculitis with necrotizing granulomas of the upper and lower respiratory tract in association with necrotizing crescentic glomerulonephritis and vasculitis. There are currently no data available on the molecular structure of the V domains of human PR3 antibodies, and studies of the effect of PR3 antibodies on endothelial cells and neutrophil function have been based so far on studies with serum autoantibodies.

We established a patient-derived V gene phage display library using a novel pHen1-derived phagemid vector (pHenIX) allowing the independent cloning of the V_H and V_L gene repertoires. The V gene repertoires were derived from the RNA obtained from the splenic mononuclear cells of a patient with a positive serum screen for PR3, neutrophil-specific membrane autoantigen, dsDNA and cardiolipin, among others. The cloning strategy was designed to maintain the diversity of the repertoire. The sequence diversity of the library was assessed, and demonstrated that all major V_H families were represented combined with a diverse set of V_L genes. Despite the limited number of V_H genes sequenced, some conclusions can be drawn about the V gene usage in splenic lymphocytes. First, some V_H gene segments like DP10 and DP73 seem to be over-represented, while in $V_{\rm H}$ genes isolated from peripheral blood lymphocytes the segment DP47 is most frequently used [35]. None of the unselected DP73 V_H gene segments is clonally related with the DP73 V_H gene of the scFv anti-PR3. Second, both the V_H and V_L repertoires showed high levels of somatic mutations, the active mutations in the V_H genes being slightly higher than in the V_L genes. The most likely explanation for this is that the V genes are derived from IgGpositive B cells.

The incidence of PR3 reactivity in the unselected library was < 1%. However, after a single round of antigen selection a bacterial

Fig. 3. Specificity ELISA of scFv anti-proteinase 3 (PR3). NE, Neutrophil extract; MPO, myeloperoxidase; HNE, human neutrophil elastase; LF, lactoferrin; CEL, chicken egg lysozyme; CytC, cytochrome C; Ca, cardiolipin; P, plastic; C, control scFv on PR3.

Autoimmune scFv anti-PR3

Table 3. Deduced amino acid sequence of scFv anti-proteinase 3 (PR3) and scFv anti-PR3/DP73. Comparison with the DP73 germ-line gene. Dashes indicate

Heavy chain FR1 CDR1 FR2 CDR2 FR3 CDR3 FR4 EVQLVQSGAEVKKPGESLKISCKGSGYSFT V_H5 DP 73 SYWIG WVRQMPGKGLEWMG IIYPGDSDTRYSPSFQG QVTISADKSISTAYLQWSSLKASDTAMYYCAF scFv PR3 ----M-----O----N-KH--LRGOLVRGNYFDY WGOGT scFv/DP73 Mutations N/AA J-gene JH4 6/5Light chain FR1 CDR1 FR2 CDR2 FR3 CDR3 FR4 Vĸ1 DPK4 DIOMTOSPSSLSASVGDRVTITC RASOGISNYLA WYQOKPGKVPKLLIY AASTLOS GVPSRF9G9G9GTDFTLTISSLOPEDVATYYC OKYNSAF scFv PR3 FGG -LTMutations N/AA J-aene Jĸ4 4/2

clone was obtained producing a specific monomeric scFv antibody fragment against PR3 which gave the characteristic cytoplasmic immunofluorescence pattern on ethanol-fixed human neutrophils, and in immunoblot the typical 29-kD band was recognized. No reactivity with other antigens was seen by ELISA or immunofluorescence studies. The antibody was not reactive with viable freshly isolated non-activated neutrophils, which is in accordance with results obtained with murine MoAbs against PR3.

identity and replacements in lower case were encoded for the primer

The $V_{\rm H}$ gene DP73 ($V_{\rm H}$ 5) encoding the PR3-reactive scFv had undergone limited somatic mutation, resulting in six nucleotide replacements which resulted in five amino acid replacements. A similar level of somatic mutation was observed in the gene encoding the V_L domain, which had been mutated at four positions which resulted in two amino acid replacements. It is interesting to note that the level of nucleotide replacements in both V genes of the scFv anti-PR3 and of other autoreactive scFv obtained from this library, e.g. U1ARNA [36] and cardiolipin (R. Finnern, PhD thesis) was significantly below the mean level of base substitutions of the random V genes from the unselected library. The reason why the autoreactive V gene segments had undergone limited somatic mutation compared with the non-selected pool of V genes is not answered by our studies, but a possible explanation may be that the self-reactive B cells containing these V genes did not receive appropriate T cell help, or alternatively that clones exposed to further mutational pressure with the inherent possible increase in affinity had been removed from the repertoire.

PR3-reactive recombinant scFv can also be obtained from V gene combinatorial libraries derived from the B cell RNA of normal healthy individuals [22]. The frequency of the PR3 binding clones in the patient-derived library, however, was significantly higher then in the non-immune library. The latter, in which the V_H repertoire was derived from IgM encoding RNA of peripheral blood lymphocytes, had to be subjected to four rounds of phage selection before a binder of low reactivity was obtained, and there was no reactivity in a similar library derived from the IgG repertoire of the healthy individuals. From this we conclude that the frequency of the PR3-reactive binders in the unselected phage population must have been relatively high.

Whether the V_H and V_L gene combination of the anti-PR3 clone resembles the *in vivo* pairing is difficult to answer. However, studies in our group and by others have shown that the recombination freedom of a V_H domain shaped by somatic mutation is limited. If the original V_L domain of such a 'shaped' V_H domain is replaced with an alternative repertoire of V_L domains, either derived from an immune source or from a non-immune source, and subsequently reselected on antigen only the original V_L with minor sequence differences will be selected. This restricted freedom in the use of alternative V_L chain genes, which is probably based on structural restrictions, implies that the V_L gene in the anti-PR3 clone might be at least a 'look-alike' of the original V_L domain.

The binding of the scFv anti-PR3 to PR3 is inhibited by the

Fig. 4. Immunofluorescence on ethanol-fixed human neutrophils. Left panel, positive immunofluorescence. (A) Anti-proteinase 3 (PR3) MoAb 4A3. (C) scFv anti-PR3 (100 μ g/ml). (E) scFv anti-PR3/DP73 (100 μ g/ml). Right panel, negative immunofluorescence. (B) Mouse MoAb 9E10 (recognizes the myc-peptide). (D) scFv anti-HPA1 (100 μ g/ml). (F) scFv anti-rhesus D (100 μ g/ml). The fluorescence seen in the negative controls originates from the staining of eosinophil granulocytes by the anti-mouse MoAb.

Fig. 6. Competetion of the binding of anti-proteinase 3 (PR3) scFv to solidphase PR3 by patient serum. \bigcirc , Negative serum; \Box , patient serum.

patient's serum, suggesting that identical or at least overlapping epitopes are recognized.

Results from studies on anti-thyroid peroxidase autoantibodies, which are present in an organ-specific autoimmune thyroid disease [37], show that the antibodies utilize a restricted number of heavy and light chain genes. The V genes were mainly from the V_H1 and the V κ 1 families and the J genes used were from the J_H4, J_H6 and J κ 1 and J κ 4 families. de Wildt *et al.* [36] used the same patient-derived library to select for binding to the autoimmune antigen U1ARNA. They also found one reactive clone. The V_H gene is derived from the V_H4 family DP65 and the V_L is a V κ 1 L12(2).

ACKNOWLEDGMENTS

The scFv anti-HPA1 was a gift from Heather Griffin and the scFv anti-rhesus D

Fig. 5. Western blot on neutrophil extract fractionated on SDS–PAGE. Lanes 1 and 3 (M), molecular weight markers; lane 2, patient serum; lane 4, scFv anti-proteinase 3.

a gift from Eric Timmers. R.F. was supported by the National Kidney Research Fund.

REFERENCES

- 1 Plotz PH. The role of autoantigens in the induction and maintenance of autoimmunity. Mol Biol Rep 1992; **16**:127–32.
- 2 Horsfall AC. Molecular mimicry and autoantigens in connective tissue diseases. Mol Biol Rep 1992; 16:139–47.
- 3 Baixeras E, Bosca L, Stauber C, Gonzalea A, Carrera AC, Gonzalo JA, Martinez C. From apoptosis to autoimmunity: insights from the signaling pathways leading to proliferation or to programmed cell death. Immunol Rev 1994; 142:53–91.
- 4 Fauci AS, Haynes BF, Katz P, Wolff SM. Wegener's granulomatosis: prospective clinical and therapeutic experience with 85 patients for 21 years. Ann Intern Med 1983; **98**:76.
- 5 Ludemann J, Gross WL. Autoantibodies against cytoplasmic structures of neutrophil granulocytes in Wegener's granulomatosis. Clin Exp Immunol 1987; 69:350–7.
- 6 Noelle B, Specks U, Luedemann J, Rohrbach MS, DeRemee RA, Gross WL. Anticytoplasmic autoantibodies: their immunodiagnostic value in Wegener's granulomatosis. Ann Int Med 1989; 111:28–40.
- 7 van der Woude FJ, Rasmussen N, Lobatto S, Wük A, Permin H, van Es LA, van der Giessen M, van der Hem GK. Autoantibodies against neutrophils and monocytes: tool for diagnosis and marker of disease activity in Wegener's granulomatosis. Lancet 1985; 1:425–9.
- 8 Falk RJ, Jennette JC. Wegener's granulomatosis, systemic vasculitis, and antineutrophil cytoplasmic autoantibodies. Annu Rev Med 1991; 42:459–69.
- 9 Gross WL, Schmitt WH, Csernok E. ANCA and associated diseases: immunodiagnostic and pathogenetic aspects. Clin Exp Immunol 1993; 91:1–12.
- 10 van der Woude FJ. Review: The current status of neutrophil cytoplasmic antibodies. Clin Exp Immunol 1989; 78:143.
- 11 Csernok E, Ernst M, Schmitt W, Bainton DF, Gross WL. Activated neutrophils express proteinase 3 on their plasma membrane *in vitro* and *in vivo*. Clin Exp Immunol 1994; 95:244–50.
- 12 Gross WL. New developments in the treatment of systemic vasculitis. Curr Opin Rheumatol 1994; 6:11–19.
- 13 Winter G, Milstein C. Man-made antibodies. Nature 1991; 349:293-9.
- 14 James K, Bell GT. Human monoclonal antibody production: current status and future prospects. J Immunol Methods 1987; 100:5–40.
- 15 Huse WD, Sastry L, Iverson SA, Kang AS, Alting-Mees M, Burton DR, Benkovic SJ, Lerner RA. Generation of a large combinatorial library of the immunoglobulin repertoire in phage lambda. Science 1989; 246:1275–81.
- 16 McCafferty J, Griffiths AD, Winter G, Chiswell DJ. Phage antibodies: filamentous phage displaying antibody variable domains. Nature 1990; 348:552–4.
- 17 Marks JD, Hoogenboom HR, Griffith AD, Winter G. Molecular evolution of proteins on filamentous phage: mimicking the strategy of the immune system. J Biol Chem 1992; 267:16007–10.
- 18 Hoogenboom HR, Winter G. By-passing immunization—human antibodies from synthetic repertoires of germline VH gene segments rearranged *in vitro*. J Mol Biol 1992; 227:381–8.
- 19 Marks JD, Ouwehand WH, Bye JM *et al*. Human antibody fragments specific for human blood group antigens from a phage display library. Bio/Technol 1993; **11**:1145–9.

- 20 Nissim A, Hoogenboom HR, Tomlinson IM, Flynn G, Midgley C, Lane D, Winter G. Antibody fragments from a 'single pot' phage display library as immunochemical reagents. EMBO J 1994; 13:692–8.
- 21 Griffiths AD, Malmqvist M, Marks JD *et al.* Human anti-self antibodies with high specificity from phage display libraries. EMBO J 1993; **12**:725–34.
- 22 Finnern R, Bye JM, Dolman KM, Zhao M-M, Short A, Marks JD, Lockwood MC, Ouwehand WH. Molecular characteristics of anti-self antibody fragments against neutrophil cytoplasmic antigens from human V gene phage display libraries. Clin Exp Immunol 1995; 102:566–74.
- 23 Sambrook J, Fritsch EF, Maniatis T. Molecular cloning: a laboratory manual. Cold Spring Harbor: Cold Spring Harbor Laboratory Press, 1989.
- 24 Dower WJ, Miller JF, Ragsdale CW. High efficiency transformation of *E. coli* by high voltage electroporation. Nucl Acids Res 1988; 16:6127– 45.
- 25 Marks JD, Hoogenboom HR, Bonnert TP, McCafferty J, Griffith AD, Winter G. By-passing immunization: human antibodies from V-gene libraries displayed on phage. J Mol Biol 1991; 222:581–97.
- 26 Griffiths AD, Williams SC, Hartley O *et al.* Isolation of high affinity human antibodies directly from large synthetic repertoires. EMBO J 1994; **13**:3245–60.
- 27 Ward S, Guessow D, Griffiths AD, Jones PT, Winter G. Binding activities of a repertoire of single immunoglobulin variable domains secreted from *Escherichia coli*. Nature 1989; 341:544–6.
- 28 Hochuli E. Aufarbeitung von Bioproteinen: Elegant und wirtschaftlich. Chemische Industrie 1989; **12**:69–70.
- 29 Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 1970; 227:680–5.
- 30 Baslund B, Segelmark M, Wiik A, Szpirt W, Petersen J, Wieslander J. Screening for anti-neutrophil cytoplasmic antibodies (ANCA): is indirect immunofluorescence the method of choice? Clin Exp Immunol 1995; 99:486–92.
- 31 Clackson T, Hoogenboom HR, Griffiths AD, Winter G. Making antibody fragments using phage display libraries. Nature 1991; 352:624–8.
- 32 Tomlinson IM, Walter G, Marks JD, Llewelyn MB, Winter G. The repertoire of human germline VH sequences reveals about fifty groups of VH segments with different hypervariable loops. J Mol Biol 1992; 227:776–98.
- 33 Cox JPL, Tomlinson IM, Winter G. A directory of human germ-line V κ segments reveals a strong bias in their usage. Eur J Immunol 1994; **24**:827–36.
- 34 Williams SC, Winter G. Cloning and sequencing of human immunoglobulin V λ gene segments. Eur J Immunol 1993; **23**:1456–61.
- 35 Cook GP, Tomlinson IM. The human immunoglobulin VH repertoire. Immunol Today 1995; 16:237–42.
- 36 de Wildt RM, Finnern R, Ouwehand WH, Griffiths AD, van Venrooij WJ, Hoet RM. Characterization of human variable domain antibody fragments against the U1 RNA-associated A protein, selected from a synthetic and patient-derived combinatorial V gene library. Eur J Immunol 1996; 26:629–39.
- 37 Chazenbalk GD, Portolano S, Russo D, Hutchison JS, Rapoport B, McLachlan S. Human organ-specific autoimmune disease. J Clin Invest 1993; 92:62–74.