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SUMMARY

The nature of the immunopathogenic relationship underlying the very strong association of coeliac
disease (CD) to the HLA-DQ (A1*0501, B1*0201) genotype is not known, but probably relates to
binding of gluten-derived epitopes to the HLA-D@1(*0501, 31*0201) heterodimer (DQ2). These
epitopes have not yet been defined. In this study we have tested the binding of various gluten-derived
peptides to DQ2 in a cellular assay using Epstein—Barr virus (EBV)-transformed B lymphocytes and
murine fibroblast transfectants. One of these peptides (peptide A), which has previously been shown to
exacerbate the CD lesian vitro andin vivo, was found to bind to DQ2, albeit only moderately, lending
further credence to its possible role in the pathogenesis of CD. The nature of peptide A’s binding to DQ2
was explored with truncated and conservative point substituted analogues and compared with the
published DQ2 binding motif, the results of which explain the observed level of binding.
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INTRODUCTION 31-49) can exacerbate the histological features of Cihhytro

Coeliac disease (CD), or gluten sensitive enteropathy, is associategda" culture studies [11] and in challenge studies on treated

in 95% of affected individuals with the HLA locus DQ2 (A1*0501 pa.ltient volunteers. [12]. Furthemore, thi§ peptide (referred to in
B1*0201). This can be inherited in eithais (in HLA-DR3 this study as peptide A) may be recognized by T cells from the

individuals) or trans (in DR5,7 heterozygous individuals) arrange-perlpheral blood of CD patients, when presented by DQ2 [13].

ment [1,2]. HLA-DQ8 (A1*0301, B1*0302) also confers a suscept- 'tr.‘ dth's .Stuldi;.""e exa{T:]'l”eAthte ﬂfdA'”g °£ various g'ﬂltelr"de”"ed
ibility in HLA-DR4 (DRB1*0401/2) southern Europeans [3,4]. PEPtides, including peptide A, to HLA-DQ2 using a cellular assay,

The association of coeliac disease to HLA-DR3 [5] is thought towrllct?l IS In contrgtit t(;f_w_(tJrk fro_;n theLrAauthtl)rs [I14]’ \_1_\/20 used 3
be through linkage disequilibrium with DQ2. soluble assay with aftinity-puriiie maolecules. These, an

The characteristic small bowel morphological changes leadin pther workers, have elucidated the peptide binding mofif of DQ2

to malabsorption in this disorder are reversed on eliminating quteilS_ﬂ]' We compare our findings, using truncations and conser-

from the diet. Current evidence suggests that gluten-sensitive sma\fﬁmve point substitutions of peptide A, with that work and spec-

intestinal T cells recognize gluten-derived peptides when presente%Jate on the implications for the molecular pathogenesis of CD.

in association with DQ2 [6], with their subsequent activation

leading to the observed mucosal damage [7-9]. The exact toxic

epitope within gluten is, however, still not known, although recent MATERIALS AND METHODS
evidence suggests that small intestinal derived T cells from Cq:’eptides

pa_1tie_nts may be able to recognize different epitopes from diﬁerenbeptides were synthesized using a solid-phase peptide synthesizer
gliadins [10]. _ (Model 431 A; Applied Biosystems Inc, Foster City, CA) on a
It has been demonstrated, however, that a 19mer peptide fromge|5aded Wang resin, and 9-fluorenylmethoxy-carbonyl for tem-
the N-terminal region of A-gliadin (corresponding to amino acids porary a-amino group protection (Calbiochem Novabiochem,
Nottingham, UK), cleaved from the resin and lyophilized. Peptide

Correspondence: Professor Paul J. Ciclitira, Gastroenterology Unit, Th@nalysis was performed by reverse phase high performance liquid
Rayne Institute, UMDS, St Thomas’ Hospital, London SE1 7EH, UK.  chromatography (HPLC) and matrix-assisted laser desorption
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ionizing mass spectrometry (Bioton Spectrometer; Applied Bio-murine monomorphic anti-HLA-DR (L243 clone; Becton Dickin-
systems). Purification ts 95% homogeneity was performed on a son, Oxford, UK) and murine anti-DQ (SPV-L3 clone; Serotec,
gel exclusion column (Sephadex G15; Pharmacia LKB Biotechnol-Oxford, UK) and conjugated goat anti-mouse-FITC MoAbs (Becton
ogy, Uppsala, Sweden) and the fractions were collected using a UMdickinson) before FACS analysis (Fig. 1). The HLA-negative K562
1 single path monitor (Pharmacia) and FRAC-100 fraction collectorerythroleukaemic cell line served as a negative control.
(Pharmacia). The resulting purified peptides were frozen using
liquid nitrogen, double-lyophilized and stored-s20°C. N-terminal ~ Transfectants
long chain biotinylation was performed on the peptidyl resin beforeMurine L-cell (DAP-3) transfectants expressing HLA-DR or -DQ
cleavage using sulfosuccinimidyl-6-biotinamidohexanoate chemisalleles were used to establish the binding affinities of the various
try (Pierce & Warriner, Chester, UK) and deprotection. Stockpeptides investigated, in comparison with two known strong
solutions of peptides were prepared in water at 2 mg/ml and storedinders—MB243-255 in the case of DQ2 and MT3-13 in the
at —20°C. The peptides were sonicated to ensure solubility. case of DR3 [18]. They were also used in the alanine point
Johansert al. [18] have demonstrated that the mycobacterial substitution experiments involving peptide A.
heat shock protein peptide MB243-255 (KPLLIIAEDVEGEY) Co-transfection of HLA-DR and -DR3 chain cDNA cloned
binds strongly to DQ2, and another, MT3-13 (KTIAYDEEARR), into the RSV.5%°[22] and RSV.3 [23] expression vectors, respec-
binds strongly to DR3. Although there is some cross-bindingtively, was accomplished using calcium phosphate precipitation.
between these two peptides and class Il molecules [14], as wEull length DQA and DQB cDNA clones were generated by
were using transfectants expressing single HLA heterodimers thieeverse transcriptase (RT)-PCR amplification of mRNA isolated
is not important. We thus used these two peptides as positive'om a homozygous DR3, DQ2 B cell line. Following complete
controls, for comparison of strength of binding, in the assays usindNA sequencing of the cDNA clones, co-transfection of the HLA
transfectants. DQA1*0501 and DQB1*0201 cDNA cloned into the RSV$8and
Apart from peptide A (LGQQQPFPPQQPYPQPQPF), corre-RSV.5 [22] expression vectors was accomplished using Lipo-
sponding to residues 31-49 of A-gliadin, two other gliadin-derivedfectamine-mediated transfection (Life Technologies). Transfected
peptides were tested. Peptide B (QQYPLGQGSFRPSQQNPQAJell lines were grown in Ex-cell 320 (JRH Biosciences, Lenexa,
corresponding to 202—220 of A-gliadin, was chosen because KKS) supplemented with 10% FCS (Life Technologies). HLA-DR
includes sequence homology with the 54-kD Elb protein oftransfectants were selected in medium containing 0-5 mg/ml G418,
adenovirus 12. This was suggested by Kagreiffal. [19] as a 10 mg/ml mycophenolic acid (Life Technologies) and 100 mg/ml
model of molecular mimicry of possible significance to the xanthine (Sigma). Cells expressing the highest levels of HLA-DR
aetiology of CD. Peptide C (VPVPQLQPQNPSQQQPQEQ), cor-or -DQ were selected by repetitive FACS sorting and cloning using
responding to 3—21 of A-gliadin, has PSQQ and QQQP tetraHLA-DR or -DQ-specific, FITC-labelled MoAbs.
peptide motifs with g3-reverse turn secondary structure, again

of suggested significance to the pathogenesis of CD [20]. Binding assays
The binding assay used was the previously described signal
B cell lines amplification method [24,25]. Briefly, cells ¢10°/well) were

B cell lines from the peripheral blood of CD patients were incubated with 5@l biotinylated peptide and 5d PBS/0-1%
immortalized using Epstein—Barr virus (EBV) transformation asbovine serum albumin (BSA; Sigma) in 96-well round-bottomed
described elsewhere [21]. These lines were homozygous for HLAplates for 18 h at 3. Each cell line/peptide combination was
DR3 and DQ2 by serological and polymerase chain reactiontested in duplicate and each peptide was tested at multiple
sequence-specific probe (PCR-SSP) genomic HLA typing. Tissueoncentrations. When transfected cell lines were used for assays,
culture was carried out in C&independent medium (Life Tech- duplicate wells without peptide were included for each transfected
nologies Ltd, Paisley, UK), 1000 U/2000 mg/ml penicillin/strepto- line and were stained using the appropriate anti-HLA-DR (L243;
mycin (Life Technologies), 5 mg/ml gentamicin (Sigma Chemical Becton Dickinson) or -DQ (SPV-L3; Serotec) specific and con-
Co., Poole, UK), and 200m.-glutamine (Life Technologies) in jugated goat anti-mouse-FITC MoAbs, in order to measure the
10% heat-inactivated fetal calf serum (FCS; Life Technologies).level of HLA expression (Fig. 2). Binding of the biotinylated
The cells were tested for HLA class Il expression by staining with _ '
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Fig. 1. Measurement of HLA-DQ2 surface expression on HLA-negative Fig. 2. Measurement of HLA-DQ2 surface expression on HLA-negative
K562 erythroleukaemic cell line (a) (mean fluorescence 1-248) and B cell®AP-3 parent line (a) (mean fluorescence 0-689) and DQ2-expressing
from a coeliac disease patient homozygous for HLA-DRS3, -DQ2 (b) (meartransfectants (b) (mean fluorescence 4-37), using murine anti-DQ (SPV-
fluorescence 14-14) using anti-DQ (SPV-L3; Serotec), and FITC-conjui3; Serotec) and FITC-conjugated goat anti-mouse (Becton Dickinson)
gated goat anti-mouse (Becton Dickinson) MoAbs, by FACS analysis. MoAbs, by FACS analysis.
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Fig. 4. Binding of peptide A to B cells homozygous for HLA-DR3, -DQ2
, and HLA-negative K562 controls by FACS analysis (see Materials and
0 A o ot ol 0 T IR RRTTT R Methods)_ Top: B cells with protein A atlﬂ'nol/l (|eft’ mean fluorescence
01 1000 01 1000 1.507) and 25@mol/l (right, mean fluorescence 6-034). Bottom: K562 cells
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Fig. 3. FACS histograms demonstrating binding of peptide A to DQ2- (right, mean fluorescence 2-889).
expressing transfectants and the HLA-negative DAP-3 parent line control.

(a) DQ2 transfectants with protein A aufol/l (left, mean fluorescence
1.28) and 25@mol/l (right, mean fluorescence 23-4). (b) DAP-3 control
with protein A at Qumol/l (left, mean fluorescence 1-50) and 250ol/
(right, mean fluorescence 8-07).

Insertions and deletions relative to the DR1 sequence were built
initially using the loop searching algorithms within COMPOSER
and subjected to energy minimization. To optimize the position of
peptides was detected by staining twice with 1:100 avidin D-FITCpeptide A within the HLA-DQ2 binding groove, candidate residues
(Vector Labs, Burlingame, CA) and once with 1:100 biotinylated for the HLA-DQ2 P1 pocket were used to align the test sequence
anti-avidin D (Vector Labs) in a sandwich amplification technique within the binding cleft. Alignments that gave unacceptable con-
at £C. Binding was measured as FITC fluorescence of 5000 eventiicts were eliminated and remaining alignments were ranked by
gated on size and propidium iodide fluorescence—to exclude deaifispection of the peptide—side chain interactions with the HLA-
cells—using an EPICS Profile Il Fluoresence Activated Cell SorteQ2 molecule, particularly those with the P1, P6 and P9 pockets,
(Coulter, Luton, UK) (Fig. 3, transfectants; Fig. 4, B cell line). ~ and by calculating interaction energies for those pockets. The
For each transfected cell line tested, linear peptide bindingoptimal model was refined using a gradient torsional optimization
means (mean channel fluorescence) were adjusted for backgrougdgorithm [26]. Initially the main chain of the molecule and the C
binding to the parental cell line (DAP-3), for each cell line’s carbons were fixed. Following the convergence of the side refine-
autofluorescence in the absence of peptide and for the level of HLAnent, all atoms of the molecule were released and the optimization
expression. Using this approach, an arbitrary unit of binding wagvas performed on the entire model.
calculated from the following formula:

(TP-T)—(dP-d) RESULTS

(T.DQ) - @DQ Direct binding of gluten-derived peptides to DQ2 and DR3
whereT.Por T= mean fluorescence of transfectant with or without The peptide MB243-255 bound well to DQ2 in our transfectant
peptide,d.P or d= mean fluorescence of parent line with or model (Fig. 5), correlating well with the different binding model of
without peptide, andT.DQ or d.DQ= mean fluorescence of Johanseret al. [14,18]. Peptide A bound moderately, peptide B

transfectant or parent line with DR or DQ MoAb. weakly and peptide C showed no appreciable binding.
The results represent mean binding values from at least three Having established that peptide A, a candidate toxic epitope
sets of experiments for each set of data. from A-gliadin, bound to DQ2-expressing transfectants, we tested
it in an assay against those expressing DR3 (Fig. 6). Binding did
Computer modelling not occur, although peptide B, on the other hand, appeared to bind

The modelling method used was similar to that used for other HLAas well to DR3 as peptide A did to DQ2. Peptide C bound very
molecules [26,27]. Briefly, the model of the HLA-DQ2 molecule weakly. The peptide MT3-13 bound strongly, as shown in soluble
was built from that of the HLA-DR1 molecule [28,29], using the assays [14,18], confirming the specificity of our model.
COMPOSER suite of programs contained within SYBYL (Tripos

Associates, St Louis, MO) [30,31]. The amino acid sequences ofruncations and point substitutions of peptide A

the «- andB-chains encoded by the DQA1*0501 and DQB1*0201 Since peptide A bound to the DQ2 transfectants, albeit only
genes were built into the coordinates of the HLA class-land3- moderately, we attempted to define the residues within it that are
chains of the HLA-DRI1:influenza HA 307-319 structure. important for binding.
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Fig. 5. Direct binding of gluten-derived peptides A, B and C and the Fig. 6. Direct binding of gluten-derived peptides and the mycobacterial

mycobacterial heat shock protein peptide MB243-255, used as a positivReat shock protein peptide MT3-13, used as a positive control, to HLA-

control, to HLA-DQ2-expressing L-cell transfectants, measured by FACSDR3-expressing L-cell transfectants, measured by FACS analysis. Net
analysis. Net binding is expressed in arbitrary units, the calculation ofhinding is expressed in arbitrary units, the calculation of which is described
which is described in Materials and Methods. (See Materials and Methods Materials and Methodsh, Peptide MT3-13, peptide A;O, peptide B;

for amino acid sequences of the peptides.Peptide A;O, peptide B;, 0, peptide C.

peptide C;Al, peptide MB243-255.

For the truncation experiments we used lymphoblastoid Bfrom the C-terminal end appeared to increase binding (Fig. 7), but
cell lines, derived from CD patients, homozygous for HLA-DR3, loss of a third amino acid in addition (Q47) resulted in a dramatic
-DQ2, having established with the transfectants that peptide Aeduction in binding.
bound to DQ2 but not to DR3. Truncation of the N-terminal L31 or L31 and G32 also resulted

Truncations of one (F49) and then two amino acids (P48, F49)n marked loss of binding. Thus, the minimum peptide derived

31 49

LGQQQPFPPQQPYPQPQP

LGQQQPFPPQQPYPQPQ -

LGQQQPFPPQQPYPQP--- E

-GQQQPFPPQQPYPQPQPF i

--QQQPFPPQQPYPQPQPF |

Neg. control i
F |
0 100 200

Binding compared to peptide A (%)
LGQQQPFPPQQPYPQPQPF

Fig. 7. Direct binding of truncated peptide A analogues (28 to B cell lines homozygous for HLA-DR3 and -DQ2, derived from coeliac
disease patients. Binding is expressed as a percentage compared with binding of peptide A. The negative control is the HLA-negative K562
erythroleukaemic cell line.
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31 49
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Fig. 8. Direct binding of alanine point substituted analogues of peptide A 25@0 HLA-DQ2-expressing L-cell transfectants. Binding is
expressed as a percentage compared with binding of peptide A. The L-cell parent line, DAP-3, is the negative control.

from peptide A that was found to bind to DQ2, with anything This is important, given the strong association between CD and this
nearing the affinity of peptide A, corresponded to residues 31—47class Il restriction molecule and the fact that peptide A has been
DQ2 transfectants were used to assess the effect of alanirghown to exacerbate the coeliac lesion botbitro [11] andin vivo
point substitutions on the binding of peptide A. Given the large[12]. Johanseret al. [14] have previously shown binding of this
representation of proline residues in the N-terminal region of A-same peptide to affinity-purified DQ2 molecules in a biochemical
gliadin, substitution of these residues was undertaken, in additioeompetitive inhibition assay. We have found a similar level of
to some glutamine residues, which are also well representedinding (i.e. moderate/weak), confirming the reproducibility of this
Alanine substitutions at P36 and P38 resulted in increased bindinfinding, using an alternative system which more closely resembles
affinity (Fig. 8), whereas substitutions at other proline positionsthe in vivo situation. Further to this, Gjertseet al [13] have
either had no effect (P46) or caused a reduction in binding (P39stablished a gluten-sensitive T cell clone from the peripheral
P42, P44, P48). Substitution by alanine at Q33 and Q41 (Fig. 8plood of a CD patient that recognizes peptide A and is restricted by

also resulted in a lowering of binding affinity. the DQ2 heterodimer. Johansehal have used the same T cell
clone to establish a functional DQ2 peptide binding assay.
Computer modelling The significance of the binding of peptide B to DR3 (Fig. 6) is

A model of the three-dimensional structure of the HLA-DQ2 unclear. Gjertsemt al. [33] have reported several gluten-respon-
peptide binding cleft, constructed from published sequences [32five T cell clones from the peripheral blood of treated CD patients
allowed the establishment of a best fit model of peptide Athat are DR-restricted, although the epitope involved is not known.
within the binding groove. The P1 pocket of the DQ2 mole- These findings suggest that DR heterodimers can bind gluten-
cule is comprised of residuegHis26, «GIn33, «Phe34,aTrp45, derived peptides and present them to T cells in the peripheral
BAsn82 and3Glu86, of whichaPhe34 an@Asn82 are conserved blood. Whether the same is true in the intestine will require further
in all DQA and DQB alleles (Fig. 9, inset). The P1 pocket thereforework, but Lundinet al. [6] did find one gluten-specific, small
has both a hydrophobic and hydrophilic character, with netintestinal derived T cell clone, restricted by DR.

negative charge contributed bgGlu86, suggesting that the The results of the truncation experiments were similar to the
pocket would show a preference for polar side chains. The optimdiindings of Johanseret al. [14], who in addition found that
three-dimensional model of peptide A bound within the HLA-DQ?2 although peptide A and A-gliadin 31-47 stimulated the peptide
binding groove suggests that residues L31 and G32 are found at th-specific clone of Gjertseat al., A-gliadin 31-48 did not. Thus,
N-terminus of the binding groove, with the side chain of Q33
anchored within the P1 pocket and Q41 at the C-terminus (Fig
9a,b).

Fig. 9. (a) Top view and (b) side view of a three-dimensional model

showing peptide A bound within the HLA-DQ&{*0501, 31*0201)
DISCUSSION binding cleft. Inset: HLA-DQu- andg-chain residues important in forming

the negatively charged anchoring P1 pocket. The circle in (b) outlines the
We have demonstrated that a peptide corresponding to residuggichoring side chain of the glutamine residue corresponding to amino acid
31-49 of A-gliadin (‘peptide A’) binds to DQ2 in a cellular assay. 33 in peptide A within the P1 pocket.
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although all these three peptides bind to DQ2, T cell recognition igecognition. There may thus be many epitopes within gliadin that
abolished when proline is at the C-terminal end (i.e. A-gliadin 31-bind with perhaps varying affinity to DQ2, but which share a
48). Why this should be so is not clear; presumably the conformasimilar conformation of residues for T cell recognition. Further
tion of the residues facing out of the class Il binding groove iswork will be required to verify or refute this hypothesis.
altered in such a way as to be unrecognizable by the T cells.
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