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INTRODUCTION

Since its discovery as a biologically active molecule in the late
1980s, nitric oxide (NO) has been found to play an important role
as signal molecule in many parts of the organism as well as
cytotoxic or regulatory effector molecule of the innate immune
response. The signal molecule NO is synthesized on demand for
short periods of time (seconds to minutes) following enzyme
activation of constitutively expressed endothelial NO synthase
(eNOS) or neuronal NO synthase (nNOS). In contrast, the induc-
ible NO synthase (iNOS) is expressed after cell activation only and
then produces NO for comparatively long periods of time (hours to
days). Thus, regulated short pulsative synthesisversusconstant NO
production differentiates between physiological and pathophysio-
logical actions of NO (for review see [1]). As human monocytes in
contrast to rodent ones do not produce large amounts of NO when
activatedin vitro, iNOS expression in human diseases has long
been questionable. However, in the last 3 years data have accu-
mulated on iNOS expression in a variety of human diseases or
disorders. We here try to review our current understanding of the
role of iNOS in human diseases.

MOLECULAR BIOLOGY OF HUMAN iNOS

The iNOS gene is under the transcriptional control of a variety of
inflammatory mediators such as cytokines, lipopolysaccharide
(LPS), and others (for review see [2]). iNOS cDNAs have inde-
pendently been cloned from several tissues with only small
differences in the deduced amino acid sequences [3–6]. The
overall nucleotide sequence identity between human and murine
iNOS cDNA is about 80% [3]. Molecular cloning revealed that the
iNOS gene is about 37 kb in length [7] and is located on chromo-
some 17 at position 17cen-q11.2 [8]. The iNOS open reading frame
is encoded by 27 exons, with translation initiation and termination
in exons 2 and 27, respectively [9]. All intron/exon boundaries of
the human iNOS gene conform strictly to the known GT/AG
donor/acceptor rule. The structure of the coding region, especially
of the cofactor binding sites, is very similar to those of human
nNOS [10] and eNOS [11,12]. Southern blot analysis revealed
single bands for nNOS and eNOS but multiple bands for iNOS
exons 22–26 in humans and apes [13,14] when using the 30 end of
an iNOS cDNA probe. An unprocessed, highly mutated pseudo-
gene has been localized on the same chromosomal region as the
functional iNOS gene by fluorescencein situ hybridization (FISH)

analysis [15]. Three minor allelic variants have been described
[16–18], one bearing pathophysiological significance in resistance
against malaria infection [18].

The high homology of iNOS isoforms among different species
and various cell types suggests that they are all products of the
same gene. However, human iNOS gene transcription in distinct
cells is reported to be regulated differently. Significant differences
between the human and the murine iNOS promoter region were
found by 30 analysis. Only 1·5 kb of the proximal 50 flanking region
of the murine promoter are necessary to confer inducibility to LPS
and interferon-gamma (IFN-g), whereas the human iNOS promo-
ter is hyporesponsive to LPS/IFN-g due to nucleotide exchanges in
the LPS/IFN-g-responsive enhancer region (¹1083 to ¹1229)
[19,20]. Additionally, the human transcription factor NF-kB,
induced by treatment with IL-1b, tumour necrosis factor-alpha
(TNF-a) and IFN-g, binds to the iNOS promoter more weakly than
mouse NF-kB does [21]. However, three regions with cytokine-
responsive cis-regulatory elements (lying between¹3·8 kb and
¹16 kb in the promoter region) confer cytokine inducibility
[22,23]. Interestingly, the human iNOS gene contains a shear-
stress responsive element (GAGACC) which is identical to that in
human eNOS, but this element does not exist in the murine iNOS
promoter [24]. Induction of NO production by this shear-stress
element seems to be a key mediator for protection of cardio-
vascular diseases via inhibition of leucocyte adhesion, platelet
aggregation, and vascular smooth muscle cell (VSMC) prolifera-
tion. At position -226 to -212 an element containing a sequence
homology to the human hypoxia-responsive element (HRE) [25]
was found in the murine promoter conferring iNOS induction at
decreased oxygen tension in IFN-g-activated macrophages [26].
Induction of the hypoxia-inducible factor-1 by hypoxia and bind-
ing to the iNOS-HRE in cooperation with IFN-g leads to iNOS
induction. The necessity for IFN-g costimulation may help to limit
iNOS expression to inflammatory sites with hypoxic conditions.
Although the activity of the human HRE is questionable due to two
mismatches in the consensus sequence, culture of human hepatoma
cells under hypoxic conditions indeed led to iNOS induction [27].
In conclusion, the human iNOS promoter is one of the largest and
most complex promoters known today (Fig. 1a,b), indicative of a
tightly controlled iNOS gene expression.

A TATA box is located 30 bp upstream of the transcription start
site and exon 2 contains the ATG initiation codon which lies in a
Kozak consensus sequence, but about 6% of the cytokine-inducible
iNOS transcripts in human macrophages and epithelial cells start at
multiple transcription initiation sites (Fig. 1a), some extending
several hundred base pairs upstream from the main TATA-directed
initiation site [28]. Further diversity in the iNOS mRNAs is gained
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by alternative splicing. Five distinct alternative splicing regions
have been found (Fig. 1c), one of which leads to the distinct
deletion of exon 5 with a translational frame shift leading to a stop
codon in exon 6 yielding a premature iNOS product of 134 amino
acids. This deletion is abundant in cerebellum, suggesting a
specific tissue-related function. Losses of exon 8 and 9, exon 9–
11, or exon 15 and 16 by alternative splicing are in frame deletions
[29]. Exon 15–16 deletion leads to iNOS proteins missing the
FMN binding site. Alternative splicing of exon 1 together with the
different transcription initiation sites leads to variable lengths of
the 50 untranslated region (UTR) in a minor fraction of the iNOS
mRNA [28]. Human iNOS mRNA has a long and complex 50UTR
containing eight partially overlapping open reading frames prior to
the start codon AUG. For other genes open reading frames in the
50UTR of a specific RNA have been shown to inhibit its translation

in a tissue-specific manner [30]. Moreover, the 30UTRs in exon 27
of both human and murine iNOS mRNA also bear regulatory
functions [31]. Both contain a UUAUUUAU motif that is common
to a variety of cytokine and oncogene mRNAs [32]. This motif has
been shown to confer RNA instability, resulting in rapid degrada-
tion [33] (thereby lowering basal promoter activity in transfection
studies [34]). Comparison of the 30 ends of the iNOS cDNAs from
murine and human cells revealed poor sequence conservation
within the 30UTR except for these AU segments. The 30UTR of
murine iNOS mRNA contains two of these copies, while the
human mRNA contains two additional elements. At least six
nucleotides of these copies match the consensus motif. Rapid
degradation due to the conserved AU-rich octanucleotide
sequences results in transient expression of iNOS mRNA with a
half life of about 6 h in murine cells. In the RAW 264 macrophage
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Fig. 1. Schematic structure of the human inducible nitric oxide synthase (iNOS) 50 flanking region (a), the upstream enhancer region (b), and
the human iNOS mRNA (c). (a) The main transcriptional start site is denoted at positionþ 1. Several potential transcription factor binding
sites are indicated. The TATA box begins at –30. TATA-independent iNOS transcripts have alternative splice sites at positions¹221,¹36
andþ191 in the 50 UTR of the gene. Possible start codons (B) of open reading frames are located at¹256,¹65,¹45,¹40 andþ187. (b)
Structure of the distal part of the human iNOS promoter which seems to be a cytokine-responsive enhancer element. This promoter region
(¹10·9 to¹8·7 kb) increases iNOS transcription orientation independently by a factor of 2. It contains multiple binding sites for transcription
factors, which are activated in response to either IFN-g (IRF-1, STAT1) or IL-1b (AP-1, IRF-1). (c) Alternative splicing of human iNOS
mRNA. The ratios of alternatively to constitutively spliced mRNA differ among tissues and depend on activation by cytokines. *Truncated
iNOS with exon 5 deletion abundant in human cerebellum [29].gIRE, IFN-g-responsive element; NF, nuclear factor; AABS, activator
binding site; SSRE, shear stress responsive element; E, exon; I, intron; IRF, interferon regulatory factor; STAT, signal transducer and
activator transcription.



cell line two different 30 ends have been found [35], indicating that
mRNAs with different stabilities may be produced via alternative
splicing. Exclusively in the human iNOS gene, the poly(A) signal,
a GT-rich region, is located 10 bp downstream from the poly(A)
site in the 30 flanking region, while the usual poly(A) signal
(AATAAA) is missing [34]. Differences in gene expression and
mRNA stability due to these two distinct signals are still not yet
known.

Obviously, further extensive studies are necessary to character-
ize all regulatory elements and transcription factors involved in
transcriptional and post-transcriptional regulation of human iNOS
gene expression. Current data indicate that its regulation reflects
considerable complexity and tissue specificity.

iNOS IN HUMAN INFECTIOUS DISEASES

In rodents, NO produced by activated macrophages via iNOS has
been found to play a major role as antiparasitic cytotoxic effector
molecule (for review see [36]). Although it is now established that
human macrophages are able to express iNOS, the relevance of
macrophage-produced NO in human infectious diseases still has to
be elucidated (for reviews see [37–39]). Data concerning iNOS
expression in human viral or bacterial infections are summarized in
Table 1. In addition,in vitro killing via NO of Mycobacterium
avium-intracellulare, Trypanosoma cruziand Leishmania major
by activated human macrophages has been found [49–51], as well
as growth inhibition ofCryptococcus neoformansby activated
human astrocytes [52]. Cytokine-activated human neutrophils
contain the iNOS protein and mediate tyrosine nitration of ingested
Staphylococcus aureusand Escherichia coli [53]. This proves
iNOS expression during a variety of infectious diseases, but
whether iNOS activity plays a dominant role in the combatting
of pathogens in humans is still under debate.

There are good indications for a key defence role for NO at the
interface between the human and the external environment. On the
surface of the tongue facultative anaerobic bacteria reduce nitrate
of the saliva rapidly to nitrite, which when swallowed will generate
NO in the micromolar range due to the acidic conditions of the
stomach [54]. Also, NO is continuously released from human skin
surfaces. Patients on long-term antibiotic therapy show reduced
NO generation, thus skin commensal bacteria are thought to reduce
sweat nitrate to nitrite, which is subsequently reduced non-
enzymatically to NO again due to the acidic conditions on the
skin surface [55]. Interestingly, in nasal airways of healthy
subjects iNOS has been found to be constitutively expressed (or

continuously induced) apically in the epithelial cells of paranasal
sinuses [56]. Sinus air contains NO in concentrations close to the
highest permissible atmospheric pollution levels [57]. All these
findings suggest that NO indeed plays a role in the human defence
against invading pathogens.

Studies with animals have shown that increased NO production
contributes to excessive vasodilation during endotoxic and cyto-
kine-induced shock. In patients with septic shock, plasma NOx and
nitrotyrosine concentrations are increased, and application of low
doses of a specific NOS inhibitor partially reverses the widespread
decrease in vascular tone as well as the fall in blood pressure, but it
also produced a decrease in cardiac output (for reviews see
[58,59]). However, additional data regarding iNOS expression in
various organs, NO production by constitutive NOSversusiNOS,
and differences in the role of NO in earlyversuslate stages of
shock are still necessary for understanding the role of iNOS
activity in this disease.

iNOS IN HUMAN AUTOIMMUNE AND
CHRONICALLY INFLAMMATORY DISEASES

Using immunocytochemistry, reverse transcriptase-polymerase
chain reaction (RT-PCR), andin situ hybridization, iNOS expres-
sion has been described in rheumatoid arthritis (RA), multiple
sclerosis (MS), and Sjo¨gren’s syndrome (Table 2). The NO
oxidation product nitrite was found to be six- to 35-fold increased
in the synovial fluid of RA patients compared with patients with
osteoarthritis [89,90]. In active demyelinating lesions of MS
patients, macrophages were found to stain for iNOS protein
[63,64] and nitrotyrosine [91], indicative of nitrosative stress.
These cells were found to produce high-output NO when isolated
and culturedin vitro [64]. Type-1 diabetes, the most prevalent
human immune-mediated disease, is the result of>90% destruc-
tion of the pancreatic islet mass. Data concerning early human
prediabetic stages do not exist, but excellent animal models (BB
rats and NOD mice) are available which spontaneously develop
diabetes closely resembling the human disease. In these animal
models, iNOS protein has been detected in macrophage islet
infiltrates during early disease stages [92,93]. Rat islet cells are
extremely prone to NO-induced cell death [94–96]. At least part of
the islet-specific toxicity of streptozotocin is due to intracellular
release of its NO moiety [97], and streptozotocin is known to be
extremely diabetogenic in humans as well. Isolated human islets
are also lysed by NO, albeit at higher concentrations [98], and the
human cells can also be activated to express iNOS mRNA and to
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Table 1. Inducible nitric oxide synthase (iNOS) expression in human infectious diseases

Infectious agent/infection Localization of iNOS References

HIV Brain cortex [40]
Cytomegalovirus-infected retina [41]
Macrophages in dorsal root ganglia [42]

Helicobacter pylori Macrophages, EC of gastric wall [43]
Polymorphonuclear leucocytes, mononuclear cells [44]

Mycobacterium tuberculosis Alveolar macrophages [45]
Respiratory tract infection Inflammatory cells in nasal mucosa [46]
Urinary tract infection Neutrophils in urine [47]
Malaria Peripheral blood mononuclear cells [48]

EC, Endothelial cells.



produce NOin vitro [99–101]. All these data are suggestive of a
similar role of iNOS activity in the human disease comparable to
the animal models of diabetes. However, it has still to be shown
whether inhibiting iNOS-derived NO in human patients will
protect from tissue-destructive processes in RA, MS and type-1
diabetes.

iNOS expression has also been found in chronically inflamma-
tory diseases of the airways, the vessels, the bowels, the kidney, the
heart, the skin and the apex of teeth (Table 2). In these various
diseases iNOS immunoreactivity has sometimes been localized to
macrophages, but in most cases is found associated with epithelial
cells around inflammatory foci. The role of epithelial iNOS activity
is not really understood. The NO produced may either serve to
limit bacterial invasion or may serve to limit local immune
reactions and concomitant tissue destruction during Th1 immune
responses. Local cytokine expression or cytokine response profiles
in the relevant diseases positive for iNOS expression invariably
correlate with the presence of proinflammatory Th1-type reactiv-
ities (Table 2). Of note is the association with IL-8, a cytokine
usually labelled as chemoattractant, which on the ground of being a
key inductor for iNOS expression in human keratinocytes [83]
appears to exert proinflammatory activity in human diseases. Due
to the close association of Th1-type cytokines and iNOS expres-
sion in human diseases, it could be argued that iNOS expression is
an epiphenomenon of inflammatory diseases only. In this case
iNOS expression would serve as an excellent marker for Th1
reactivity or imbalance. Future diagnostic evaluation may then use
this one marker instead of measuring relative expressional levels of
numerous cytokines.

iNOS EXPRESSION IN OTHER HUMAN
DISORDERS

iNOS expression has been found in a variety of other human dis-
orders (Table 3). However, courses of these diseases and cellular
iNOS expression differ considerably.

iNOS and chronic neurodegeneration
iNOS protein was found post-mortem in the brains of patients with
Alzheimer’s and Parkinson’s diseases [102–104]. Although neu-
rones are highly susceptible to the cytotoxic action of NO, it is not
yet clear whether iNOS expression accompanies late stages of
disease or whether iNOS activity contributes to the course of these
diseases.

iNOS and ischaemic events
As mentioned above, the human iNOS promoter contains a
hypoxia-responsive element. Therefore it is not surprising that
iNOS protein has been detected in cardiac myocytes and in
infiltrating macrophages of patients several days after myocardial
infarction [79,80,105]. In a rabbit heart infarction model, admin-
istration of specific NOS inhibitors significantly improved ventri-
cular performance and increased myocardial blood flow in the
surviving myocardium [117], suggesting tissue-destructive effects
of NO production via iNOS. Moreover, after cardiac transplanta-
tion iNOS protein expression in myocytes and VSMC appears to
correlate with contractile dysfunction [111].

Until now no data have been available concerning iNOS
expression in human stroke. Data on animal stroke models imply
that iNOS is expressed in areas of infarcted or injured brain. After
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Table 2. Inducible nitric oxide synthase (iNOS) expression and cytokine profile in human autoimmune and chronically inflammatory diseases

Disease Cytokine profile Localization of iNOS Reference

Rheumatoid arthritis IL-1, IL-6, IL-8, TNF-a, GM-CSF Synovial lining cells, EC, mononuclear cells, [60–62]
fibroblasts, VSMC

Multiple sclerosis IL-1, IL-2, IL-6, TNF-a, IFN-g Macrophages, microglia [63,64]
Sjögren’s syndrome IL-1b, IL-6, TNF-a, IFN-g Acinarþ ductal epithelial cells [65]

Asthma IL-1b, IL-8, TNF-a, GM-CSF Epithelium, some inflammatory cells [66]
Bronchiectasis IL-1b, IL-8, TNF-a Macrophages [67]
Idiopathic pulmonary fibrosis IL-1b, IL-6, IL-8, TNF-a, IFN-g, TGF-b Macrophages, neutrophils, airwayþ alveolar epithelium [68]
Atherosclerotic plaques IL-1, IL-6, IL-12, TNF-a, IFN-g Macrophages, foam cells, VSMC [69,70]
Ulcerative colitis IL-1, TNF-a, IFN-g Epithelial cells, inflammatory infiltrate [71–74]

Epithelial cells [75]
Crohn’s disease IL-1, TNF-a, IFN-g Epithelial cells, inflammatory infiltrate [73]

Epithelial cells [75]
Necrotizing enterocolitis IL-6, TNF-a, IFN-g Epithelial cells [76]
Coeliac disease IL-2, IL-6, TNF-a, IFN-g Epithelial cells, macrophages [77]
Glomerulonephritis TNF-a, IFN-g Macrophages [78]
Dilated cardiomyopathy IL-6, IL-8, TNF-a Myocytes [79–81]

Myocytes, EC, VSMC [82]
Psoriasis IL-1b, IL-8 Keratinocytes [83]
Cutaneous lupus erythematosus IL-1b, IL-6, TNF-a Basal epidermal layer [84]
Systemic lupus erythematosus IL-6, TNF-a EC, keratinocytes [85]
Systemic sclerosis IL-1b, IL-6, IL-8, TNF-a EC, fibroblasts, macrophages [86]
Dermatitis IL-1, TNF-a, IFN-g EC [87]
Periapical periodontitis IL-1b, IL-6, TNF-a, IFN-g Epithelial cells, EC, fibroblasts, macrophages, PMNL [88]

TNF-a, Tumour necrosis factor-alpha; GM-CSF, granulocyte-macrophage colony-stimulating factor; TGF-b, transforming growth factor-beta; EC,
endothelial cells; VSMC, vascular smooth muscle cells; PMNL, polymorphonuclear leucocytes.



focal cerebral ischaemia proinflammatory cytokines such as
TNF-a, IL-1, and IL-6 are expressed, and neuronal tissue
damage continues for days after the ischaemic event. Experimen-
tally induced focal cerebral ischaemia in rats resulted in iNOS
protein expression in neutrophils or in vascular cells 12–48 h after
the ischaemic event, depending on the stroke model. In mutant
mice deficient in nNOS or iNOS, infarct volume and neurological
deficits were significantly smaller than those in normal mice. In
contrast, eNOS knockout mice developed larger infarct volumes
than the corresponding wild-type strains (for review see [118]).
This proves the complexity of the NO-mediated effects, especially
in brain, where high enzyme activities of eNOS (to maintain
cerebral blood flow) and nNOS (to perform signalling functions)
are normally present. Thus, low-output NO production by endo-
thelial cells appears to promote regional cerebral blood flow during
ischaemia, while neuronal NO production via nNOS and later long-
lasting high-output production of NO via iNOS by inflammatory
cells may be neurotoxic.

iNOS and tumours
The role of NO during tumour development also reveals a complex
picture. High-output NO production by infiltrating macrophages
can induce tumour cell cytostasis and/or cytotoxicity. iNOS protein
has been detected in the vasculature, infiltrating macrophages, and
tumour cells of human brain, breast, lung, and colon tumours (see
Table 3). In rats, i.p. injection of colon adenocarcinoma cells was
accompanied by a decrease in concanavalin A (Con A)-induced
splenic T lymphocyte proliferation correlating with an increased
NO production by splenic macrophages [119]. Low-output NO
production within the tumour may increase tumour blood flow
and promote angiogenesis [120]. In addition, NO produced by
the tumour itself may inhibit proliferation or induce apoptosis
of T lymphocytes, which would explain the suppression of
host immune functions often observed to accompany tumour
growth.

iNOS and transplantation/implantation
In recipients of myocardial allografts, iNOS protein was found in
myocytes and VSMC. However, although iNOS mRNA was
detected in all patients at some stage, this was episodic and
occurred most frequently during the first 180 days after transplan-
tation. It was postulated that iNOS expression and contractile
dysfunction are causally related [111]. iNOS was also detected
in various cell types involved in foreign body inflammatory
reactions found around loosened joint replacement implants
[113–115]. iNOS activity of activated and prosthetic wear
debris-laden macrophages is likely to be noxious and may thus
contribute to early prosthesis failure.

iNOS expression after noxious insults
iNOS mRNA was found in all skin biopsies taken from healthy
volunteers treated with a single dose of either UV-A or UV-B, in
contrast to untreated controls. iNOS protein was labelled in a band-
like pattern confined to the highly proliferative basal layer of
keratinocytes only [84]. iNOS expression was found to be maximal
at 24 h, while 72 h post-irradiation none of the biopsies showed
iNOS-specific signals, thus closely following the kinetics of
erythema formation after sunburn which peaks at 24 h and lasts
for 2 days. It appears as if iNOS activity is the cause of the
observed long-lasting increase in local blood flow as well as
erythema and oedema formation after prolonged sunlight expo-
sure.In vitro, endogenous NO production via iNOS or exogenously
added NO protected human dermal endothelial cells from UV-A-
induced DNA fragmentation and subsequent apoptosis [121].
Thus, increased NO production may help to reduce UV-induced
damage as a first indication of a protective role for iNOS
expression in human skin. In animal models, NO plays a positive
role in wound healing. Mice deficient in iNOS exhibit impaired
wound healing, and iNOS gene transfer reverses the impaired
healing of excisional wounds (see [122]).

The inflammatory response after traumatic brain injury (TBI)

iNOS in human diseases 151

q 1998 Blackwell Science Ltd,Clinical and Experimental Immunology, 113:147–156

Table 3. Inducible nitric oxide synthase (iNOS) expression in human neurodegenerative diseases and heart infarction,
during tumour development, after transplantation, during prostheses failure and myositis

Disorder Localization of iNOS References

Alzheimer’s disease Neurofibrillary tangle-bearing neurones [102]
Astrocytes [103]

Parkinson’s disease Glial cells in the substantia nigra [104]
Heart infarction Myocytes [79–81]

Macrophages, myocytes [105]
Tumours

Brain Vasculature, tumour cells [106]
Breast Macrophages, EC, some myoepithelial cells [107]

Tumour cells, EC, stroma [108]
Lung Tumour cells, macrophages [109]
Colon Mononuclear cells, EC, tumour epithelium [110]

Heart transplantation/rejection Myocytes, VSMC [111]
Obliterative bronchiolitis PMNL, macrophages, alveolarþ airway epithelium, EC [112]
Prostheses failure Macrophages, EC [113]

Macrophages [114]
Macrophages, synovial lining cells, fibroblasts, VSMC [115]

Inclusion-body myositis Vacuolated muscle fibres, macrophages [116]

EC, Endothelial cells; VSMC, vascular smooth muscle cells; PMNL, polymorphonuclear leucocytes.



includes cytokine production, leucocyte infiltration, and microglial
activation. In rats, 24 h and 48 h after experimentally induced TBI a
marked peritrauma cerebrovascular iNOS protein expression was
found predominantly in infiltrating neutrophils [123]. This sug-
gests a role for iNOS activity in cerebrovascular disturbances and
secondary brain injury after head trauma. Although data are not yet
available, iNOS expression after TBI in man is most likely.

CONCLUDING REMARKS

Studies performed in rodents mostly imply that iNOS activity plays
a detrimental role in experimental autoimmune or chronically
inflammatory processes as well as in some other diseases. How-
ever, experimentally induced disorders are often constructed to
show a maximal effect in a relatively short period of time. In
addition, in many rodent strains Th1-associated reactions are
favoured, whereas in humans an individually regulated balance
between Th1- and Th2-mediated immune reactions is found. Thus,
the question arises whether we can infer from animal (rodent)
studies a role of iNOS in human diseases. It is crucial that we learn
about the relative timing of disease onset and iNOS expression,
especially as clinically overt disease often represents a relatively
late-stage process. Another major problem in understanding the
role of iNOS in human diseases is our lack of knowledge whether
enzyme expressionin vivo results in high- or low-output NO
production. Although the human iNOS gene is more tightly
regulated than the respective rodent gene (see first section), this
does not necessarily imply low-output NO production in humans in
all cases. Few reports only demonstrate high-output NO production
by human cellsin vitro, among these macrophages isolated from an
MS lesion, hepatocytes, dermal endothelial cells, and polymorpho-
nuclear leucocytes (PMNL) from periapical periodontitis patients,
all producing high NO concentrations similar to activated rodent
cells [64,124–126]. Thus, at leastin vitro, human cells are indeed
capable of high-output NO synthesis. Moreover, human cells
appear to be more resistant to NO-mediated effects [127]. This
may be due to a more effective DNA repair or to a higher capacity
to induce protective mechanisms, e.g. expression of heat shock
proteins (hsp). With rat islet cells over-expression of hsp70 has
been shown to confer resistance against NO [128], and suppression
of hsp70 by antisense RNA transfection of a human islet cell line
confers susceptibility to NO-mediated cytotoxicity [129].

In summary, many data on human disorders with predominant
proinflammatory Th1 reactions involving activated macrophages
and neutrophils point to a destructive activity of iNOS contributing
to local tissue damage, but as pointed out earlier, iNOS expression
is often found predominantly in cells of epithelial origin (see Table
2). We do not yet know the reason for this, but it may well be that in
these cases NO serves as a protective agent limiting bacterial
invasion or down-regulating local inflammatory reactions by
inducing cytostasis and/or apoptosis in infiltrating immune cells
like macrophages, neutrophils or T cells (for review see [1]). NO is
known to affect gene regulation, e.g. via inhibition of NF-kB
activation or by inhibiting the DNA-binding of NF-kB, AP-1 [1],
and zinc finger transcription factors like Sp1 [130], thereby limit-
ing Th1 reactions. Gene regulatory activities, instead of direct
cytotoxic actions of iNOS-derived NO, may be of higher relevance
in human diseases compared with experimentally induced rodent
diseases (Fig. 2). Data are accumulating that NO not only induces
but also inhibits programmed cell death induced by TNF-a or anti-
CD95 (Fas/APO-1) [131,132]. We recently found that iNOS

activity completely protects from UV-induced apoptosis in
dermal endothelial cells [121]. A role for NO in protecting against
adverse effects by reactive oxygen intermediates has also been
postulated.

In conclusion, a large amount of data concerning iNOS
expression in a variety of human diseases has accumulated, but
we are still far from understanding the precise role of iNOS activity
in most of these diseases.
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50 Muñoz-Ferna´ndez MA, Ferna´ndez MA, Fresno M. Activation of
human macrophages for the killing of intracellularTrypanosoma
cruzi by TNF-a and IFN-g through a nitric oxide-dependent mechan-
ism. Immunol Letters 1992;33:35–40.

51 Vouldoukis I, Riveros-Moreno V, Dugas B, Ouaaz F, Be´cherel P,
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Steensgaard P, Kolb H. Immunobiol 1997;197:230.

130 Berendji D, Kro¨ncke KD, Kolb-Bachofen V. Reversible inactivation
of the zinc finger transcription factor Sp 1 by nitric oxide suppresses
IL-1b-mediated IL-2 gene expression in lymphocytes. Immunobiol
1997;197:182–3.

131 Dimmeler S, Haendeler J, Nehls M, Zeiher AM. Suppression of
apoptosis by nitric oxide via inhibition of interleukin-1b-converting
enzyme (ICE)-like and cysteine protease protein (CPP)-32-like
proteases. J Exp Med 1997;185:601.

132 Melino G, Bernassola F, Knight RA, Corasaniti MT, Nistico` G,
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