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Inducible nitric oxide synthase in human diseases
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INTRODUCTION analysis [15]. Three minor allelic variants have been described

Since its discovery as a biologically active molecule in the Iate[lG_.lg]’ one pegrlng pathophysmloglcal significance in resistance
against malaria infection [18].

1980s, nitric oxide (NO) has been found to play an important role . - . . .
as signal molecule in many parts of the organism as well as dThe .h'gh holrln?logy Of'NOSt'S?;OETE among (Ijllfferednt stpecfletf]
cytotoxic or regulatory effector molecule of the innate immune and various cefl types suggests that they are all products of the

response. The signal molecule NO is synthesized on demand fope gene. However, human iINOS gene transcription in distinct

short periods of time (seconds to minutes) following enzymege![l\;c’vls ;efﬁrtidrfze rsgtilt?teg]d:if:]ereizlt(I;I.SS?nrl:c?r:trdlffierr(]ar:;ers
activation of constitutively expressed endothelial NO synthas etween the human a € murine promoter region were

(eNOS) or neuronal NO synthase (nNOS). In contrast, the inducetound by 3 analysis. Only 1-5 kb of the proximal ianking region

ible NO synthase (INOS) is expressed after cell activation only and"’f the murine promoter are necessary to confer inducibility to LPS

then produces NO for comparatively long periods of time (hours toand interferon-gamma (IFh), whereas the human iNOS promo-

. X ter is hyporesponsive to LPS/IF{due to nucleotide exchanges in
days). Thus, regulated short pulsative synthesisusconstant NO . .
production differentiates between physiological and pathophysioEhe LPS/IFNy-responsive enhancer regior-1083 to —1229)

logical actions of NO (for review see [1]). As human monocytes in_[19,20]. Additionally, the human transcription factor MB;

contrast to rodent ones do not produce large amounts of NO whe] cll\lu';:ed br? q tII;:estmEf: dw'tth tkI]Lﬁ,NgJénorurmn?c:orilsr factork-lalpt):an
activatedin vitro, iINOS expression in human diseases has long ) a 7, bindstothe | promoter more weakly tha

been questionable. However, in the last 3 years data have acc(pouse NF"B.d_OeS [IZ%]. H0\|/vever,t thrle_e reglotnseg]tg kcgtoklge-
mulated on iNOS expression in a variety of human diseases oreSPONSIVE: Cis-reguiatory: elements (lying betweesr an

disorders. We here try to review our current understanding of th?_zé(sng |Intthe t_prolmottﬁr Leglon) _chg;er cytoklnet !ndu0|bllr:ty
role of iINOS in human diseases. ,23]. Interestingly, the human i gene contains a shear-

stress responsive element (GAGACC) which is identical to that in
human eNOS, but this element does not exist in the murine iINOS
MOLECULAR BIOLOGY OF HUMAN iNOS promoter [24]. Induction of NO production by this shear-stress

The iINOS gene is under the transcriptional control of a variety Of\?:sngjlgtr Sd?sgssets? \2:1 %hkigi){ionr:eg;altglchc())g go;edﬁg;ogf Cle;rtdé loe't
inflammatory mediators such as cytokines, lipopolysaccharide . y e
gregation, and vascular smooth muscle cell (VSMC) prolifera-

. . . ag
LPS), and others (for re ee [2]). INOS cDNAs have inde- . o -
( ), an rs (for review see [2]). | ¢ S haven tion. At position -226 to -212 an element containing a sequence

pendently been cloned from several tissues with only small . .
differences in the deduced amino acid sequences [3—6]. Thgomology to the human hypoxia-responsive element (HRE) [25]

overall nucleotide sequence identity between human and murin\é\'::r;gggg 'CT thz:wgllqnsgoﬁrpr:nlo ter égn;?égnr?q;l;lr(gsh:d:sctl[gg]at
iINOS cDNA is about 80% [3]. Molecular cloning revealed that the xyg ion in IRpactiv phag )

. ; ) . Induction of the hypoxia-inducible factor-1 by hypoxia and bind-
iINOS gene is about 37 kb in length [7] and is located on chromo ing to the INOS-HRE in cooperation with IFy-Heads to INOS

some 17 at position 17cen-q11.2 [8]. The iNOS open reading framé . . . . T
is encoded by 27 exons, with translation initiation and termination!nducuon‘ The necessity for IFh-costimulation may help to limit

in exons 2 and 27, respectively [9]. All intron/exon boundaries ofg‘\:ohS eﬁpLessmr_w _to W;flﬁmrr]natory::_\t)eEs_ with h)_/poxg:l cgndltlons.
the human iINOS gene conform strictly to the known GT/AG t Ou? ht e.a(;'ﬂvnyo the human IS qLIJtestlor:cz:] € uehto tv\t/o
donor/acceptor rule. The structure of the coding region, especiall;r‘émﬁm"’l c eshm € consensus s_equencle, cuiture ofhuman hepatoma
of the cofactor binding sites, is very similar to those of human ells under hypoxic conditions indeed led to INOS induction [27].

NNOS [10] and eNOS [11,12]. Southern blot analysis revealedn conclusion, the human iINOS promoter.is one of 'Fhe.largest and
single bands for NNOS and eNOS but multiple bands for iNOSmOSt complex promoters known today (Fig. 1a,b), indicative of a

exons 22—26 in humans and apes [13,14] when using'taedof tlgh"zl\)fr;c_)rrkrglleq |:\IOSt gdegg bexprestsmn. fihe t ini tart
an iNOS cDNA probe. An unprocessed, highly mutated pseudo- ox1s locate b upstream ofhe franscription star

gene has been localized on the same chromosomal region as t ge and exon 2 contains the ATG initiation codon which lies in a

0 - .
functional INOS gene by fluorescenitesitu hybridization (FISH) . ozak CONSENsUS sequence, but about 6% of the_ cytqklne inducible
iINOS transcripts in human macrophages and epithelial cells start at

Correspondence: K.-D. Krmke, Research Group Immunobiology multiple transcription initiation sites (Fig. 1a), some extending
14.80, MED-Heinrich-Heine-University, PO Box 10 10 07, D-40001 Several hundred base pairs upstream from the main TATA-directed

Dusseldorf, Germany. initiation site [28]. Further diversity in the INOS mRNAs is gained
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Fig. 1. Schematic structure of the human inducible nitric oxide synthase (iINGI8hKing region (a), the upstream enhancer region (b), and

the human iINOS mRNA (c). (a) The main transcriptional start site is denoted at positioBeveral potential transcription factor binding

sites are indicated. The TATA box begins at —30. TATA-independent iINOS transcripts have alternative splice sites at p@&itipn86

and+191 in the 5UTR of the gene. Possible start codoM of open reading frames are located-&56, —65, —45, —40 and+187. (b)

Structure of the distal part of the human iNOS promoter which seems to be a cytokine-responsive enhancer element. This promoter region
(—10-9 to—8-7 kb) increases iINOS transcription orientation independently by a factor of 2. It contains multiple binding sites for transcription
factors, which are activated in response to either #{RF-1, STAT1) or IL-13 (AP-1, IRF-1). (c) Alternative splicing of human iNOS

mRNA. The ratios of alternatively to constitutively spliced mRNA differ among tissues and depend on activation by cytokines. *Truncated
iINOS with exon 5 deletion abundant in human cerebellum [Z8RE, IFN-y-responsive element; NF, nuclear factor; AABS, activator
binding site; SSRE, shear stress responsive element; E, exon; |, intron; IRF, interferon regulatory factor; STAT, signal transducer and
activator transcription.

by alternative splicing. Five distinct alternative splicing regions in a tissue-specific manner [30]. Moreover, thgBRs in exon 27
have been found (Fig. 1c), one of which leads to the distinctof both human and murine iINOS mRNA also bear regulatory
deletion of exon 5 with a translational frame shift leading to a stopfunctions [31]. Both contain a UUAUUUAU moitif that is common
codon in exon 6 yielding a premature iINOS product of 134 amincto a variety of cytokine and oncogene mRNAs [32]. This motif has
acids. This deletion is abundant in cerebellum, suggesting deen shown to confer RNA instability, resulting in rapid degrada-
specific tissue-related function. Losses of exon 8 and 9, exon 9+ion [33] (thereby lowering basal promoter activity in transfection
11, or exon 15 and 16 by alternative splicing are in frame deletionstudies [34]). Comparison of thé énds of the INOS cDNAs from
[29]. Exon 15-16 deletion leads to iINOS proteins missing themurine and human cells revealed poor sequence conservation
FMN binding site. Alternative splicing of exon 1 together with the within the 3UTR except for these AU segments. Th&JBR of
different transcription initiation sites leads to variable lengths ofmurine iINOS mRNA contains two of these copies, while the
the 5 untranslated region (UTR) in a minor fraction of the iNOS human mRNA contains two additional elements. At least six
mRNA [28]. Human iNOS mRNA has a long and compléiBR nucleotides of these copies match the consensus motif. Rapid
containing eight partially overlapping open reading frames prior todegradation due to the conserved AU-rich octanucleotide
the start codon AUG. For other genes open reading frames in theequences results in transient expression of INOS mRNA with a
5'UTR of a specific RNA have been shown to inhibit its translation half life of about 6 h in murine cells. In the RAW 264 macrophage
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cell line two different 3ends have been found [35], indicating that continuously induced) apically in the epithelial cells of paranasal
mMRNAs with different stabilities may be produced via alternative sinuses [56]. Sinus air contains NO in concentrations close to the
splicing. Exclusively in the human iNOS gene, the poly(A) signal, highest permissible atmospheric pollution levels [57]. All these
a GT-rich region, is located 10bp downstream from the poly(A)findings suggest that NO indeed plays a role in the human defence
site in the 3 flanking region, while the usual poly(A) signal against invading pathogens.
(AATAAA) is missing [34]. Differences in gene expression and Studies with animals have shown that increased NO production
mRNA stability due to these two distinct signals are still not yet contributes to excessive vasodilation during endotoxic and cyto-
known. kine-induced shock. In patients with septic shock, plasmg &@
Obviously, further extensive studies are necessary to charactenitrotyrosine concentrations are increased, and application of low
ize all regulatory elements and transcription factors involved indoses of a specific NOS inhibitor partially reverses the widespread
transcriptional and post-transcriptional regulation of human iINOSdecrease in vascular tone as well as the fall in blood pressure, but it
gene expression. Current data indicate that its regulation reflecmlso produced a decrease in cardiac output (for reviews see
considerable complexity and tissue specificity. [58,59]). However, additional data regarding iINOS expression in
various organs, NO production by constitutive N@SsusiNOS,
and differences in the role of NO in earlyersuslate stages of
shock are still necessary for understanding the role of iINOS
In rodents, NO produced by activated macrophages via iINOS haactivity in this disease.
been found to play a major role as antiparasitic cytotoxic effector
molecule (for review see [36]). Although it is now established that .
human mgcrophages areF at]))le to exgress iINOS, the relevance of c ”\(I)OSC”\‘ HUMAN AUTO”\(/;MUNESANDS S
macrophage-produced NO in human infectious diseases still has to HRONICALLY INFLAMMATORY DISEASE
be elucidated (for reviews see [37—-39]). Data concerning INOSUsing immunocytochemistry, reverse transcriptase-polymerase
expression in human viral or bacterial infections are summarized irchain reaction (RT-PCR), and situ hybridization, iINOS expres-
Table 1. In additionjn vitro killing via NO of Mycobacterium  sion has been described in rheumatoid arthritis (RA), multiple
avium-intracellulare Trypanosoma cruzand Leishmania major  sclerosis (MS), and Sgven’s syndrome (Table 2). The NO
by activated human macrophages has been found [49-51], as welkidation product nitrite was found to be six- to 35-fold increased
as growth inhibition ofCryptococcus neoformansy activated in the synovial fluid of RA patients compared with patients with
human astrocytes [52]. Cytokine-activated human neutrophil®steoarthritis [89,90]. In active demyelinating lesions of MS
contain the iINOS protein and mediate tyrosine nitration of ingestegatients, macrophages were found to stain for iINOS protein
Staphylococcus aureuand Escherichia coli[53]. This proves [63,64] and nitrotyrosine [91], indicative of nitrosative stress.
INOS expression during a variety of infectious diseases, buiThese cells were found to produce high-output NO when isolated
whether iINOS activity plays a dominant role in the combattingand culturedin vitro [64]. Type-1 diabetes, the most prevalent
of pathogens in humans is still under debate. human immune-mediated disease, is the resuit @9% destruc-
There are good indications for a key defence role for NO at thetion of the pancreatic islet mass. Data concerning early human
interface between the human and the external environment. On thgrediabetic stages do not exist, but excellent animal models (BB
surface of the tongue facultative anaerobic bacteria reduce nitratats and NOD mice) are available which spontaneously develop
of the saliva rapidly to nitrite, which when swallowed will generate diabetes closely resembling the human disease. In these animal
NO in the micromolar range due to the acidic conditions of themodels, iINOS protein has been detected in macrophage islet
stomach [54]. Also, NO is continuously released from human skininfiltrates during early disease stages [92,93]. Rat islet cells are
surfaces. Patients on long-term antibiotic therapy show reducedxtremely prone to NO-induced cell death [94—96]. At least part of
NO generation, thus skin commensal bacteria are thought to redudhe islet-specific toxicity of streptozotocin is due to intracellular
sweat nitrate to nitrite, which is subsequently reduced non+elease of its NO moiety [97], and streptozotocin is known to be
enzymatically to NO again due to the acidic conditions on theextremely diabetogenic in humans as well. Isolated human islets
skin surface [55]. Interestingly, in nasal airways of healthy are also lysed by NO, albeit at higher concentrations [98], and the
subjects iINOS has been found to be constitutively expressed (diuman cells can also be activated to express iNOS mRNA and to

iNOS IN HUMAN INFECTIOUS DISEASES

Table 1. Inducible nitric oxide synthase (iNOS) expression in human infectious diseases

Infectious agent/infection Localization of INOS References
HIV Brain cortex [40]
Cytomegalovirus-infected retina [41]
Macrophages in dorsal root ganglia [42]
Helicobacter pylori Macrophages, EC of gastric wall [43]
Polymorphonuclear leucocytes, mononuclear cells [44]
Mycobacterium tuberculosis Alveolar macrophages [45]
Respiratory tract infection Inflammatory cells in nasal mucosa [46]
Urinary tract infection Neutrophils in urine [47]
Malaria Peripheral blood mononuclear cells [48]

EC, Endothelial cells.
© 1998 Blackwell Science LtdClinical and Experimental Immunolog$13147—-156
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Table 2. Inducible nitric oxide synthase (iNOS) expression and cytokine profile in human autoimmune and chronically inflammatory diseases

Disease Cytokine profile Localization of INOS Reference
Rheumatoid arthritis IL-1, IL-6, IL-8, TNk, GM-CSF Synovial lining cells, EC, mononuclear cells, [60-62]
fibroblasts, VSMC
Multiple sclerosis IL-1, IL-2, IL-6, TNFe, IFN-y Macrophages, microglia [63,64]
Sjogren’s syndrome IL-8, IL-6, TNF-o, IFN-y Acinar+ ductal epithelial cells [65]
Asthma IL-18, IL-8, TNF-oc, GM-CSF Epithelium, some inflammatory cells [66]
Bronchiectasis IL-B, IL-8, TNF-o Macrophages [67]
Idiopathic pulmonary fibrosis IL4, IL-6, IL-8, TNF-«, IFN-y, TGF8 Macrophages, neutrophils, airwayalveolar epithelium  [68]
Atherosclerotic plaques IL-1, IL-6, IL-12, TNE&; IFN-y Macrophages, foam cells, VSMC [69,70]
Ulcerative colitis IL-1, TNFe, IFN-y Epithelial cells, inflammatory infiltrate [71-74]
Epithelial cells [75]
Crohn’s disease IL-1, TNk IFN-y Epithelial cells, inflammatory infiltrate [73]
Epithelial cells [75]
Necrotizing enterocolitis IL-6, TNFe, IFN-y Epithelial cells [76]
Coeliac disease IL-2, IL-6, TNEs IFN-y Epithelial cells, macrophages [77]
Glomerulonephritis TNFe, IFN-y Macrophages [78]
Dilated cardiomyopathy IL-6, IL-8, TNk Myocytes [79-81]
Myocytes, EC, VSMC [82]
Psoriasis IL-B, IL-8 Keratinocytes [83]
Cutaneous lupus erythematosus I8-1L-6, TNF-« Basal epidermal layer [84]
Systemic lupus erythematosus IL-6, ThNF- EC, keratinocytes [85]
Systemic sclerosis IL4, IL-6, IL-8, TNF-« EC, fibroblasts, macrophages [86]
Dermatitis IL-1, TNFe, IFN-y EC [87]
Periapical periodontitis IL4, IL-6, TNF-«, IFN-y Epithelial cells, EC, fibroblasts, macrophages, PMNL [88]

TNF-«, Tumour necrosis factor-alpha; GM-CSF, granulocyte-macrophage colony-stimulating factog3, TitaRsforming growth factor-beta; EC,
endothelial cells; VSMC, vascular smooth muscle cells; PMNL, polymorphonuclear leucocytes.

iINOS EXPRESSION IN OTHER HUMAN
DISORDERS

produce NQin vitro [99—-101]. All these data are suggestive of a
similar role of INOS activity in the human disease comparable to

the animal models of diabetes. However, it has still to be shown . . . .
o : . . L IN h f f other h -
whether inhibiting iINOS-derived NO in human patients will INOS expression has been found in a variety of other human dis

rotect from tissue-destructive processes in RA. MS and tvoe- rders (Table 3). However, courses of these diseases and cellular
(Fj)iabetes P ’ YPE-INOS expression differ considerably.

iINOS expression has also been found in chronically inflammaiNnOS and chronic neurodegeneration
tory diseases of the airways, the vessels, the bowels, the kidney, thQOS protein was found post-mortem in the brains of patients with
heart, the skin and the apex of teeth (Table 2). In these varioug|zheimer's and Parkinson’s diseases [102—104]. Although neu-
diseases iINOS immunoreactivity has sometimes been localized @nes are highly susceptible to the cytotoxic action of NO, it is not
macrophages, but in most cases is found associated with epitheliybt clear whether iINOS expression accompanies late stages of
cells around inflammatory foci. The role of epithelial INOS activity disease or whether iNOS activity contributes to the course of these
is not really understood. The NO produced may either serve tQjiseases.
limit bacterial invasion or may serve to limit local immune
reactions and concomitant tissue destruction during Thl immun&@OS and ischaemic events
responses. Local cytokine expression or cytokine response profiless mentioned above, the human iINOS promoter contains a
in the relevant diseases positive for INOS expression invariablyhypoxia-responsive element. Therefore it is not surprising that
correlate with the presence of proinflammatory Thl-type reactiviNOS protein has been detected in cardiac myocytes and in
ities (Table 2). Of note is the association with IL-8, a cytokine infiltrating macrophages of patients several days after myocardial
usually labelled as chemoattractant, which on the ground of being afarction [79,80,105]. In a rabbit heart infarction model, admin-
key inductor for iINOS expression in human keratinocytes [83]istration of specific NOS inhibitors significantly improved ventri-
appears to exert proinflammatory activity in human diseases. Dueular performance and increased myocardial blood flow in the
to the close association of Thl-type cytokines and iNOS expressurviving myocardium [117], suggesting tissue-destructive effects
sion in human diseases, it could be argued that INOS expression & NO production via iINOS. Moreover, after cardiac transplanta-
an epiphenomenon of inflammatory diseases only. In this casgon iNOS protein expression in myocytes and VSMC appears to
INOS expression would serve as an excellent marker for Thicorrelate with contractile dysfunction [111].
reactivity or imbalance. Future diagnostic evaluation may then use Until now no data have been available concerning iNOS
this one marker instead of measuring relative expressional levels afxpression in human stroke. Data on animal stroke models imply
numerous cytokines. that INOS is expressed in areas of infarcted or injured brain. After
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Table 3. Inducible nitric oxide synthase (iNOS) expression in human neurodegenerative diseases and heart infarction,
during tumour development, after transplantation, during prostheses failure and myositis

Disorder Localization of INOS References
Alzheimer's disease Neurofibrillary tangle-bearing neurones [102]
Astrocytes [103]
Parkinson’s disease Glial cells in the substantia nigra [104]
Heart infarction Myocytes [79-81]
Macrophages, myocytes [105]
Tumours
Brain Vasculature, tumour cells [106]
Breast Macrophages, EC, some myoepithelial cells [107]
Tumour cells, EC, stroma [108]
Lung Tumour cells, macrophages [109]
Colon Mononuclear cells, EC, tumour epithelium [110]
Heart transplantation/rejection Myocytes, VSMC [111]
Obliterative bronchiolitis PMNL, macrophages, alveolaairway epithelium, EC [112]
Prostheses failure Macrophages, EC [113]
Macrophages [114]
Macrophages, synovial lining cells, fibroblasts, VSMC [115]
Inclusion-body myositis Vacuolated muscle fibres, macrophages [116]

EC, Endothelial cells; VSMC, vascular smooth muscle cells; PMNL, polymorphonuclear leucocytes.

focal cerebral ischaemia proinflammatory cytokines such asNOS and transplantation/implantation

TNF-«, IL-1, and IL-6 are expressed, and neuronal tissueln recipients of myocardial allografts, iINOS protein was found in
damage continues for days after the ischaemic event. Experimemayocytes and VSMC. However, although iNOS mRNA was
tally induced focal cerebral ischaemia in rats resulted in iINOSdetected in all patients at some stage, this was episodic and
protein expression in neutrophils or in vascular cells 12—48 h aftepccurred most frequently during the first 180 days after transplan-
the ischaemic event, depending on the stroke model. In mutarthtion. It was postulated that iINOS expression and contractile
mice deficient in nNOS or iNOS, infarct volume and neurological dysfunction are causally related [111]. INOS was also detected
deficits were significantly smaller than those in normal mice. Inin various cell types involved in foreign body inflammatory
contrast, eNOS knockout mice developed larger infarct volumeseactions found around loosened joint replacement implants
than the corresponding wild-type strains (for review see [118]).[113—115]. iINOS activity of activated and prosthetic wear
This proves the complexity of the NO-mediated effects, especiallydebris-laden macrophages is likely to be noxious and may thus
in brain, where high enzyme activities of eNOS (to maintain contribute to early prosthesis failure.

cerebral blood flow) and nNOS (to perform signalling functions)

are normally present. Thus, low-output NO production by endo-INOS expression after noxious insults

thelial cells appears to promote regional cerebral blood flow duringNOS mRNA was found in all skin biopsies taken from healthy
ischaemia, while neuronal NO production via nNOS and later longvolunteers treated with a single dose of either UV-A or UV-B, in
lasting high-output production of NO via iINOS by inflammatory contrast to untreated controls. INOS protein was labelled in a band-

cells may be neurotoxic. like pattern confined to the highly proliferative basal layer of
keratinocytes only [84]. INOS expression was found to be maximal
iINOS and tumours at 24 h, while 72 h post-irradiation none of the biopsies showed

The role of NO during tumour development also reveals a complexNOS-specific signals, thus closely following the kinetics of
picture. High-output NO production by infiltrating macrophages erythema formation after sunburn which peaks at 24 h and lasts
can induce tumour cell cytostasis and/or cytotoxicity. INOS proteinfor 2 days. It appears as if INOS activity is the cause of the
has been detected in the vasculature, infiltrating macrophages, amtbserved long-lasting increase in local blood flow as well as
tumour cells of human brain, breast, lung, and colon tumours (seerythema and oedema formation after prolonged sunlight expo-
Table 3). In rats, i.p. injection of colon adenocarcinoma cells wassure.In vitro, endogenous NO production via iNOS or exogenously
accompanied by a decrease in concanavalin A (ConA)-induceddded NO protected human dermal endothelial cells from UV-A-
splenic T lymphocyte proliferation correlating with an increasedinduced DNA fragmentation and subsequent apoptosis [121].
NO production by splenic macrophages [119]. Low-output NOThus, increased NO production may help to reduce UV-induced
production within the tumour may increase tumour blood flowdamage as a first indication of a protective role for iNOS
and promote angiogenesis [120]. In addition, NO produced byexpression in human skin. In animal models, NO plays a positive
the tumour itself may inhibit proliferation or induce apoptosis role in wound healing. Mice deficient in INOS exhibit impaired
of T lymphocytes, which would explain the suppression of wound healing, and INOS gene transfer reverses the impaired
host immune functions often observed to accompany tumouhealing of excisional wounds (see [122]).

growth. The inflammatory response after traumatic brain injury (TBI)

© 1998 Blackwell Science LtdClinical and Experimental Immunolog$13147—-156
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includes cytokine production, leucocyte infiltration, and microglial Long-term production  Tightly regulated expression
activation. In rats, 24 h and 48 h after experimentally induced TBI a and/or and/or
marked peritrauma cerebrovascular iNOS protein expression was high output of low/intermediate output of

NO NO

/

found predominantly in infiltrating neutrophils [123]. This sug-
gests a role for iINOS activity in cerebrovascular disturbances and
secondary brain injury after head trauma. Although data are not yet
available, INOS expression after TBI in man is most likely.

Target cell

CONCLUDING REMARKS

Studies performed in rodents mostly imply that iINOS activity plays
a detrimental role in experimental autoimmune or chronically
inflammatory processes as well as in some other diseases. How- A
ever, experimentally induced disorders are often constructed to .
show a maximal effect in a relatively short period of time. In <
addition, in many rodent strains Thl-associated reactions are .
favoured, whereas in humans an individually regulated balance

between Th1- and Th2-mediated immune reactions is found. Thus,
the question arises whether we can infer from animal (rodent)
studies a role of iNOS in human diseases. It is crucial that we learrFffector cell

about the relative timing of disease onset and iNOS expression,

especially as clinically overt disease often represents a relatively

late-stage process. Another major problem in understanding the Rodent Human

role of iNOS in human diseases is our lack of knowledge whethelig. 2. current data suggest that inducible nitric oxide synthase (iNOS)

enzyme expressioin vivo results in high- or low-output NO  expression and NO production in humans are much more tightly regulated
production. Although the human iNOS gene is more tightly than in rodents. In addition, human cells appear to be less susceptible to NO
regulated than the respective rodent gene (see first section), thikan rodent cells. Thus, in humans NO-mediated gene regulatory effects
does not necessarily imply low-output NO production in humans inmay be of more relevance than cytotoxic effects.

all cases. Few reports only demonstrate high-output NO production

by human cell$n vitro, among these macrophages isolated from anactivity completely protects from UV-induced apoptosis in

MS lesion, hepatocytes, dermal endothelial cells, and polymorphoge | endothelial cells [121]. Arole for NO in protecting against

nuclear Iegcocytes (PMNL) from perlapl_ca_l perlodontltls patients, , qverse effects by reactive oxygen intermediates has also been
all producing high NO concentrations similar to activated rOdempostulated

cells [64,124—-126]. Thus, at ledstvitro, human cells are indeed In conclusion, a large amount of data concerning iINOS

capable of high-output NO synthesis. Moreover, human CeIISexpression in a variety of human diseases has accumulated, but

appear to be more reS|stan_t to NO-med_lated effe_cts [127]. T_h'TQNe are still far from understanding the precise role of INOS activity
may be due to a more effective DNA repair or to a higher capacnyi[(] most of these diseases

to induce protective mechanisms, e.g. expression of heat shoc
proteins (hsp). With rat islet cells over-expression of hsp70 has
been shown to confer resistance against NO [128], and suppression ACKNOWLEDGMENT
of hsp70 by antisense RNA transfection of a human islet cell lineThe authors would like to thank Dr H. Kolb for helpful discussions.
confers susceptibility to NO-mediated cytotoxicity [129].

In summary, many data on human disorders with predominant REFERENCES
proinflammatory Thl reactions involving activated macrophages

and neut_rophlls pointtoa dGStruc.tlve activity OT INQS Conmbu“ng versus cytoprotection. How, why, when where? NO Biol Chem 1997,
to local tissue damage, but as pointed out earlier, INOS expression 1-107-20
is often found predominantly in cells of (_epithel?al origin (see Tabl_e 2 Kroncke KD, Fehsel K, Kolb-Bachofen V. Inducible nitric oxide
2). We do not yet know the reason for this, butit may wellbe thatin gy nthase and its product nitric oxide, a small molecule with complex
these cases NO serves as a protective agent limiting bacterial piological activities. Biol Chem 199876:327-43.
invasion or down-regulating local inflammatory reactions by 3 Geller DA, Lowenstein CR, Shapiro Ret al. Molecular cloning and
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