
b2-glycoprotein I (b2-GPI) mRNA is expressed by several cell types involved in anti-
phospholipid syndrome-related tissue damage

B. CARONTI, C. CALDERARO, C. ALESSANDRI*, F. CONTI*, R. TINGHINO†, G. PALLADINI & G.
VALESINI* Dipartimento di Scienze Neurologiche and*Allergologia e Immunologia Clinica III, Universita` ‘La Sapienza’, and

†Istituto Superiore di Sanita`, Roma, Italy

(Accepted for publication 23 September 1998)

SUMMARY

We report here the expression ofb2-GPI mRNA by cell types involved in the pathophysiology of the
anti-phospholipid syndrome (APS), i.e. endothelial cells as a target of autoantibodies in the APS,
astrocytes and neurones involved in APS of the central nervous system (CNS). Lymphocytes were also
included in the study, as it has been demonstrated that patients with systemic lupus erythematosus-
associated CNS diseases have serum anti-lymphocyte antibodies cross-reacting with brain antigens, and
intrathecally synthesized anti-neurone antibodies. Reverse transcriptase-polymerase chain reaction
followed by restriction enzyme digestion of the product obtained demonstrated the presence ofb2-GPI
mRNA in all cell types here tested, cultured both in presence and absence of fetal calf serum. In both
culture conditions, the same cell types were immunoreactive to an anti-b2-GPI MoAb, as determined by
indirect immunofluorescence technique. Taken together, these results indicate a direct cell synthesis of
b2-GPI, suggesting an antigenic function ofb2-GPI in the APS, including the CNS disease that occurs in
this syndrome.
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INTRODUCTION

b2-GPI is an apolipoprotein involved in lipid metabolism and
classified among members of the complement control protein
superfamily [1]. Theb2-GPI sequence, determined by protein
and cDNA analysis, is strongly homologous among species [2,3].
The attention of the immunologists has recently focused onb2-GPI
because of its requirement for the formation of the antigenic
epitopes of some anti-phospholipid autoantibodies (aPL) [4–6].
In fact, clinical and experimental reports suggest thatb2-GPI is one
of the main target antigens for aPL in the anti-phospholipid
syndrome (APS), either primary (PAPS) or secondary to systemic
lupus erythematosus (SLE) [7–10]. APS is characterized by fetal
loss and a wide spectrum of clinical manifestations, including
neurological symptoms such as focal cerebral and ocular ischae-
mia, the myelopathy of lupoid sclerosis and Degos’ disease, and,
less frequently, Guillan–Barre´ polyradiculoneuritis, migraine,
chorea and seizures [11,12]. Because of the frequent association
with aPL, the clinical relevance of anti-b2-GPI autoantibodies (a
b2-GPI) in APS has been long debated [13–16]. A direct patho-
genic role of the ab2-GPI in APS has been recently suggested by
the identification of these antibodies as a population distinct from

anti-cardiolipin antibodies (aCL) [17] and by a series of clinical
reports. Thus, ab2-GPI have been associated with thrombosis and
thrombocytopenia occurring in the APS more significantly than
aPL [8,18–21]. Moreover, APS has been recently reported in
patients having ab2-GPI but not aPL. For this reason, to describe
this primary variant of the APS, some authors coined the term
‘aPL-cofactor syndrome’ [22,23]. Interestingly, central nervous
system (CNS) involvement is frequent in these conditions. The
binding of ab2-GPI to several cell elements, such as macrophages,
apoptotic thymocytes, trophoblast cells, activated platelets and, in
particular, endotheliocytes has been previously reported [24–31].
More recently, we demonstrated that ab2-GPI bind cerebrovascular
endothelium, astrocytes and neurones [32]. The ab2-GPI immu-
noreactivity indicates thatb2-GPI is present in cell types other than
hepatocytes, which represent the main site of synthesis in the
organism.

The immunoreactivity by ab2-GPI has been particularly inves-
tigated in the endothelial cells because of their relevant involve-
ment in APS pathophysiology. Whether ab2-GPI immunoreactivity
of endotheliocytes is due to the uptake of extracellularb2-GPI
molecules (i.e. of serum origin) or to direct intracellular synthesis
of the glycoprotein is still a matter of debate. Some authors
described the disappearance of ab2-GPI immunoreactivity in
endotheliocytes grown in serum-free medium [31], whereas

Clin Exp Immunol 1999;115:214–219

214 q 1999 Blackwell Science

Correspondence: Professor Guido Valesini, Allergologia e Immunolo-
gia Clinica III, Policlinico Umberto I, 00161 Roma, Italy.



others reported its lasting presence even after serum depletion [33–
36]. However, the direct evidence ofb2-GPI synthesis by cell types
involved in APS pathophysiology is provided by the demonstration
of b2-GPI mRNA in human fetal astrocytes as well as in human
cells of intestine and placenta, as determined by reverse transcrip-
tase-polymerase chain reaction (RT-PCR) [37–39]. In the present
study, we performed RT-PCR to determineb2-GPI mRNA expres-
sion by endothelial cells, a known target of autoantibodies in APS,
astrocytes and neurones, being cell populations involved in the
CNS disease of the APS. We also investigated lymphocytes
because this cell type has been a known target of a wide spectrum
of antibodies detected in sera of SLE patients, frequently with
evidence of CNS disease. These antibodies share some degree of
cross-reactivity with neuronal and glial antigens [40]. Moreover,
intrathecal synthesis of anti-neurone antibodies has been recently
demonstrated in SLE patients with CNS disease [41].

MATERIALS AND METHODS

Cells
The following human cells were used: LAN5 (neuroblastoma line),
human umbilical vein endothelial cells (HUVEC), two established
human glial cell lines T67 and T70, respectively derived from a III
WHO gemistocytic astrocytoma and from a glioblastoma, as
previously described [32,42] (kindly provided by Professor G.
Lauro, Department of Biology, III University of Rome, Italy),
HEpGL2 hepatoma line used as positive control, according to
Averna et al. and Chamleyet al. [38,39] (kindly provided by R.
Nicotra, Istituto Regina Elena, Roma, Italy), and normal skin
fibroblasts as negative controls. Cell lines were cultured in their
usual medium supplemented by 5–20% fetal calf serum (FCS) and
gentamycin (0·05 mg/ml) (GIBCO BRL, Paisley, UK). After 3 days,
one sample of each cell line was repeatedly washed in PBS pH 7·3
to remove the culture medium and then analysed; a second sample
was cultured for a further 3 days in FCS-free medium before
analysis. Peripheral blood lymphocytes from three healthy
donors were separated by Ficoll (Nycomed, Oslo, Norway)
gradient centrifugation followed by hypotonic lysis of the
erythrocytes and washed three times in PBS pH 7·3.

Detection ofb2-GPI mRNA by RT-PCR
Total RNAs, extracted from 5–10×106 cells of each line by
Ultraspec RNA isolation system (Biotecx, Houston, TX) according
to the manufacturer’s instructions, were treated with DNase I
RNase-free (GIBCO BRL) and then converted to first-strand cDNA
copies by random primers of 4mg of total RNA with Super Script
H–RNase RT, as suggested by the supplier (GIBCO BRL). Oligonu-
cleotide primers designed for PCR amplification of the humanb2-
GPI andb-actin mRNAs were checked by Genebank. Based on the
coding sequences [2,43], the following primers were used:b2-GPI-F
50 – TCTGCCATGCCAAGTTGTAAAG – 30 (784–805);b2-GPI-
R 50 – CATCGGATGCATCAGTTTTCCA – 30 (1045–1024);b-
actin-F 50 – AAGAGAGGCATCCTCACCCT – 30 (222–241);b-
actin-R 50 – TACATGGCTGGGGTGTTGAA – 30 (439–420) [44].

One quarter of cDNA synthesis reaction volume was combined
for PCR amplification in a 100-ml final volume containing each
primer and Taq polymerase (GIBCO BRL). PCR was performed for
either 35 (b2-GPI) or 25 (b-actin) cycles, each cycle consisting of
denaturation at 948C (45 s), annealing at 608C (30 s), extension at
728C (30 s), after predenaturation at 958C (2 min), and final
extension at 728C (10 min). RT-PCR products (15ml) were

electrophoresed on 2% agarose gels in TAE buffer. To rule out
the possibility of amplification of contaminating genomic DNA,
RNA samples treated with DNase were submitted to PCR ampli-
fication without RT. The optical density (OD) measurements of the
lanes on the agarose gels were performed by means of a computer-
assisted image analysis system (MCID, Imaging Research, St
Catherine’s, Ontario, Canada) using dedicated software. The
system was calibrated using a set of OD standards (Kodak,
Rochester, NY). Non-linear distance calibration was performed
using the molecular length marker (50-bp DNA ladder; GIBCO

BRL). Background subtraction was automatically performed
before analysis. In order to compare the results obtained from
each cell line cultured in presence or absence of FCS, a semi-
quantitative approach was used by comparing in the same cell line
samples the OD value ofb2-GPI lane to that ofb-actin. The RT-
PCR products were digested with the restriction enzyme Alu I
(GIBCO BRL) and electrophoresed on 2% agarose gels in TAE
buffer.

Detection ofb2-GPI by indirect immunofluorescence
Cells were cultured for 3 days on cover slides in medium contain-
ing FCS, then repeatedly washed in PBS to remove the culture
medium. For each cell line, some samples were immediately fixed
in PBS 4% formaldehyde (v/v) (1 h at room temperature); other
samples were grown for another 3 days in FCS-free medium before
fixation. The presence ofb2-GPI was detected by indirect immu-
nofluorescence (IIF) using the antibody anti-humanb2-GPI affi-
nity-purified mouse monoclonal (ab2-GPI MoAb 1A4, isotype
IgG2, 1:10 diluted in PBS) prepared as previously reported
[17,32,45]. The immune reaction was revealed by goat anti-
mouse IgG conjugated with FITC (GAM-FITC; Sigma, St Louis,
MO; 30 min at room temperature) and observed under a fluores-
cence microscope with an FITC outfit (Leitz, Wetzlar, Germany),
as described in our previous study [32]. The ab2-GPI MoAb 1A4
immunoreactivity with the lymphocytes was detected on fresh cells
spotted on slides and fixed in PBS 4% formaldehyde (v/v).
Negative controls were performed on each cell line replacing the
a b2-GPI MoAb 1A4 with mouse non-immune IgG.

RESULTS

The expression of mRNA forb2-GPI andb-actin in the different
cell lines cultured in medium containing FCS for 3 days and in
fresh lymphocytes is shown in Fig. 1. Theb2-GPI mRNA was
identified from the HEpGL2, HUVEC, LAN5, T67, T70 cell lines
and from lymphocytes, whereas no detectable signal was obtained
from the fibroblasts. The RT-PCR of RNAs resulted in amplifica-
tion of the expected bands, i.e. 262 bp forb2-GPI and 218 bp forb-
actin. Similar results were obtained from RT-PCR of RNAs
extracted from the cell lines grown for another 3 days in FCS-
free medium (data not shown). When RT-PCR products were
digested with Alu I restriction enzyme and subjected to electro-
phoresis analysis, two bands of the expected length (i.e. 101 and
161 bp) were observed, as shown in Fig. 2. The possibility of
amplification of contaminating genomic DNA was excluded,
since no products were obtained from the RNA samples subjected
to PCR without RT. Moreover, theb-actin-specific primer pairs
were selected from two exons separated by one intronic sequence
[44]. As shown in Fig. 1, the RT-PCR product ofb-actin mRNA
(218 bp), but no gene fragment (659 bp) was observed. The
immunoreactivity of the ab2-GPI MoAb 1A4, as detected by IIF,
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was observed with HEpGL2, HUVEC, T67, T70 and LAN5 cell
lines both in presence and absence of FCS in the culture medium,
and with fresh PBL, but never with the fibroblasts. The ab2-GPI
MoAb 1A4 immunoreactivity with HUVEC, T67 and T70 glial
lines, LAN5 neuroblastoma line and PBL in serum-free condition
is shown in Fig. 3 (left panels). The fluorescent pattern was
homogeneous and localized within the cytoplasm and/or on the
cell membrane. The intensity of fluorescence, as well as the
pattern, were similar to those obtained in cells cultured in
medium containing FCS (data not shown). Technique controls
performed on each cell type replacing the ab2-GPI MoAb 1A4 with
non-immune IgG were negative (Fig. 3, right panels).

DISCUSSION

The results of the present study demonstrateb2-GPI mRNA
expression by endothelial cells, astrocytes, neurones and lympho-
cytes, thus indicating that these cell types synthesizeb2-GPI. The
RT-PCR product of total RNA from these cell types resulted in
amplification of the expected band forb2-GPI mRNA, i.e. 262 bp.
The same band was also obtained from the HEpGL2 hepatocyte
cell line used as positive control forb2-GPI mRNA expression both
in this study and in previous reports [38,39].

After digestion with Alu I restriction enzyme we observed the
two expected bands (101 and 161 bp). This confirms that the RT-
PCR product resulted from the amplification of the 262 bp
sequence belonging to theb2-GPI mRNA. The results’ viability
is supported by the observations that no RT-PCR product was
obtained from RNA of fibroblasts, used as negative control, and
that PCR performed without RT on each RNA excluded the
possibility of amplifying the contaminating genomic DNA. This
latter possibility was further excluded since we observed the RT-
PCR product ofb-actin mRNA (218 bp), but no gene fragment
(659 bp), as previously demonstrated [44].

The demonstration ofb2-GPI mRNA in endotheliocytes, CNS
cells and lymphocytes, by RT-PCR, extends the knowledge that the
liver is not the unique site of synthesis ofb2-GPI. In this respect,
b2-GPI mRNA has been previously demonstrated using the same
technique in fetal astrocytes, cells of intestine and placenta [37–
39]. The question whetherb2-GPI is synthesized by endothelio-
cytes is particularly relevant, since these cells are targeted by aPL

and ab2-GPI in APS and aPL cofactor syndrome. In view of this,
the present results of ab2-GPI immunoreactivity of endothelial
cells cultured for 3 days in FCS-free conditions, and in particular
ab2-GPI immunoreactivity localized within the cytoplasm, provide
evidence in favour of the presence of endogenousb2-GPI in the
endothelial cells. These results are consistent with previous reports
of the persistence of ab2-GPI immunoreactivity in endotheliocytes
cultured inb2-GPI-deficient medium [33–36].

Since translocation of extracellularb2-GPI within the cyto-
plasm is unknown, the intracellular localization of ab2-GPI
immunoreactivity suggestsb2-GPI synthesis by these cells. The
b2-GPI molecules, synthesized in the cytoplasm, might be succes-
sively carried to the cell surface, as routinely occurs for numerous
molecules expressed on the cell membrane. Thus, the ab2-GPI
immunoreactivity observed on the cell membrane in serum-free
cultured cells, as reported here and in our previous study [32],
might be due, at least in part, to this latter mechanism. Other
authors [31] reported that ab2-GPI binding to endothelial cell
surface, as determined by ELISA, disappears after 5 h of culture
in serum-free conditions and is re-established after addition of
serum purifiedb2-GPI. The lack of ab2-GPI binding in serum-free
cultured endotheliocytes reported by these authors [31] might be
due to the short period of culture in serum-free medium. It is
conceivable that cells require longer than 5 h to synthesize and
carry b2-GPI to the cell surface. However, we foundb2-GPI
mRNA in cells cultured both in the absence and presence of
serum. Moreover, theb2-GPI mRNA amount was similar in both
culture conditions.

These results provide evidence that endothelial cells constitu-
tively expressb2-GPI mRNA, since the absence of serumb2-GPI
does not affect, at least for a 3-day period,b2-GPI mRNA
transcription in the endothelial cells. The same result was obtained
on astrocytes and neurones. The role ofb2-GPI in the growth and
long-term survival of endothelial cells has been demonstrated by
purification and characterization of an endothelial cell viability-
maintaining factor from fetal bovine serum identified asb2-GPI
[46]. Therefore,b2-GPI synthesis by cells in serum-free medium
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Fig. 1. Shown are reverse transcriptase-polymerase chain reaction (RT-
PCR) products of mRNAs forb2-GPI (left lanes) and forb-actin (right
lanes) from HEpGL2 (1), fibroblasts (2), human umbilical vein endothelial
cells (HUVEC) (3), T67 (4), T70 (5), LAN5 (6), and lymphocytes (7). The
RT-PCR of RNAs results in amplification of the expected bands: 262 bp for
b2-GPI, 218 bp forb-actin. M, 50-bp DNA ladder.

Fig. 2. Shown are the fragments obtained by digestion with the Alu I
restriction enzyme of the reverse transcriptase-polymerase chain reaction
(RT-PCR) products ofb2-GPI mRNA from HEpGL2 (a), human umbilical
vein endothelial cells (HUVEC) (b), T67 (c), T70 (d), LAN5 (e), lympho-
cytes (f). M, 50-bp DNA ladder. The two fragments are of the expected
molecular length (101 and 161 bp), confirming the specificity of the primers
used.
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Fig. 3. Shown is the immunoreactivity by the ab2-GPI MoAb 1A4 with endothelial cells (human umbilical vein endothelial cells (HUVEC)) (a)
astrocytoma line T67 (b), glioma line T70 (c), neuroblastoma line LAN5 (d), all cultured in serum-depleted medium for 3 days, and lymphocytes
(e). The ab2-GPI binding was revealed by indirect immunofluorescence using a goat anti-mouse conjugated with FITC (left panels). Control
techniques were performed on each cell type replacing the ab2-GPI with non-immune IgG (right panels). Calibration bar¼ 25mm.



might represent a mechanism of protection from the absence of
extracellularb2-GPI. In other words, the cell synthesis ofb2-GPI
might assure endothelial cell survival even in disadvantageous
conditions.

The demonstration ofb2-GPI synthesis by lymphocytes sug-
gests that cells of the immune system are another potential target of
ab2-GPI. With regard to previous reports that anti-lymphocyte
antibodies detected in serum of SLE patients with neurological
disease cross-react with brain tissue antigens [47,48], theb2-GPI
expression by lymphocytes appears of particular interest.In vitro
studies demonstrated that anti-lymphocyte antibodies are cytotoxic
for neurones and astrocytes [48]. These antibodies, detected also in
cerebrospinal fluid of SLE patients with evidence of intrathecal
synthesis, were shown to correlate with CNS lupus disease activity
[41,49]. The demonstration that astrocytes and neurones synthesize
b2-GPI suggests the direct antigenic function of this molecule
within the CNS and, consequently, the putative role of APS-
associated autoantibodies in the CNS damage. ab2-GPI might
contribute to the CNS pathologies by interaction with brain
cytotypes, besides the interaction with cerebral vessel endothelium
[32].

Further studies are advised on a larger variety of cell types and
tissues in order to check the specificity ofb2-GPI expression.
However, the present results clearly indicate thatb2-GPI is
expressed by different cell types that are supposed to be involved
in immune-mediated tissue lesions in APS.
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