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SUMMARY

Glucocorticoids exert their anti-in¯ammatory activity through multiple pathways which include the

inhibition of cell adhesion events. The glucocorticoid-induced protein lipocortin 1 (LC1) has reported

anti-in¯ammatory properties and has been proposed as a putative mediator of the anti-in¯ammatory

effects of glucocorticoids. The role of LC1 in mediating the glucocorticoid inhibition of lymphocyte

adhesion and cell adhesion molecule (CAM) expression was investigated in vitro using a microag-

gregation assay, ¯ow cytometry and confocal microscopy. Lymphocytes stimulated for 96 h with

plastic-bound OKT3 antibody showed signi®cant increases in LFA-1 and CD2 expression. Dexametha-

sone (DEX; 10ÿ6
M) inhibited this increase but the neutralizing anti-LC1 MoAb 1A (5 mg/ml) failed to

reverse the DEX effect; neither was puri®ed human LC1 (50 ´ 10ÿ9
M) able to inhibit CAM expression.

The biological activity of the LC1 was con®rmed by its ability to suppress monocyte phagocytosis and

respiratory burst in response to bovine serum albumin (BSA)±anti-BSA complexes. OKT3 stimulation

of cultured mononuclear cells resulted in intercellular aggregation, scored microscopically using a

visual index. This aggregation was completely reversed by 10ÿ6
M DEX but unaffected by LC1

(50 ´ 10ÿ9
M). Signi®cant intracellular expression of lymphocyte LC1 was observed using the anti-

LC1 MoAb 1B in saponin-permeabilized cells. Distribution of LC1 had a diffuse, cytoplasmic pattern.

LC1 expression was reduced following 3 h treatment with 10ÿ6
M DEX. These ®ndings indicate that the

DEX effects on lymphocyte adhesion and CAM expression are not mediated by LC1. Thus the reported

in vivo effects of LC1 on leucocyte adhesion and transmigration probably occur through functional/

conformation changes of surface CAM, rather than by alteration in expression.
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INTRODUCTION

An important facet of the potent anti-in¯ammatory activity of the

glucocorticoids (GC) is their signi®cant effect on lymphocyte

adhesion [1±3]. The mechanisms by which GC exert these effects

are complex and to certain extent still unknown. Most of the

published literature focuses on their ability to regulate gene

expression (i.e. their genomic action). However, regulation of

post-transcriptional activities have been described and more

recently there has been a renewed interest in those mechanisms

which act independently of gene regulation (non-genomic mechan-

isms) [4,5]. In addition, some GC effects are likely to be exerted

indirectly through modulation of cytokines or other proteins such

as lipocortins. The lipocortins, also known as annexins, are a

family of at least 13 calcium and phospholipid-binding proteins.

These share a common core structure responsible for the calcium

and phospholipid-binding properties, but considerable N-terminal

heterogeneity confers the range of biological functions that have

been reported within the family [6]. Lipocortin 1 (LC1) has been

reported to have anti-in¯ammatory actions in a variety of animal

models of acute in¯ammation [7,8].
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LC1 levels in circulating leucocytes appear to be under the

control of both endogenous and exogenous glucocorticoid hor-

mones. Several studies have indicated that a single bolus admin-

istration of anti-in¯ammatory steroids to human volunteers or

experimental animals increases LC1 levels associated with circu-

lating leucocytes [9±11]. Conversely, removal of endogenous

corticosterone by means of adrenalectomy or subchronic treatment

with a steroid antagonist, mifepristone (RU 38486), reduces cell-

associated LC1 levels by > 50% [11,12].

A growing weight of evidence now supports a role for endo-

genous LC1 as a mediator of some of the anti-in¯ammatory actions

of glucocorticoid hormones. Glucocorticoid-dependent LC1 exter-

nalization has been demonstrated in monocytes, macrophages and

polymorphonuclear neutrophils (PMN) [10,13,14]. Consistent with

this, treatment of experimental animals with anti-LC1 antibodies

prevented the anti-in¯ammatory effect of dexamethasone (DEX) in

several models of acute in¯ammation [15,16]. Furthermore, LC1

externalization and release from human PMN occurs during the

process of extravasation through the blood vessels, and this is

thought to contribute to the feedback regulation of PMN migratory

responses [17]. Intravital microscopy studies have revealed that

LC1 is capable of inhibiting this transmigratory process [18].

Previous studies have also described an involvement of LC1 in

regulation of the inducible form of nitric oxide [19] but failed to

®nd a role for the protein in suppressing IL-1 production by human

monocytes [20].

Cell±cell interactions are a critical component of any in¯am-

matory response as they not only facilitate leucocyte migration

from the circulation into the surrounding tissues but are also

essential for the many contact-dependent immune functions [21].

It has been reported that LC1 can prevent the adhesion of PMN to

endothelial surfaces and thus prevent extravasation [22]. We have

previously demonstrated that in vitro incubation of lymphocytes

with GC inhibits adhesion to endothelium and intercellular aggre-

gation via the down-modulation of the adhesion molecules LFA-1

and CD2 [3]. This decrease was accompanied by a fall in the

steady-state mRNA level of both genes.

In this current study we investigated in vitro the role of LC1 in

mediating the inhibitory effect of GC on cell adhesion molecule

(CAM) expression and on mononuclear cell (MNC) aggregation.

We used two approaches: ®rst, we blocked the action of endogen-

ous LC1 by using the neutralizing MoAb 1A; second, we tested the

effects of LC1 directly by using puri®ed placental-derived LC1 in

the assays. The results show that, at least in this system, LC1 is not

involved in regulating the expression of LFA-1 and CD2. In

addition, we also show that LC1 was unable to inhibit intercellular

aggregation.

MATERIALS AND METHODS

MNC separation

Peripheral blood from healthy volunteers was collected by vene-

puncture into heparinized (10 ml/ml 1:1000 preservative-free sodium

heparin; Leo Laboratories, Princess Risborough, UK) containers.

MNC were separated from diluted blood with an equal volume of

Hanks' balanced salt solution (HBSS) by density gradient centrifu-

gation (1250 g for 20 min) over Ficoll±Hypaque (Lymphoprep;

Nycomed, Oslo, Norway) at 208C, as described [3]. MNC were

harvested, washed twice with HBSS at 325 g for 10 min to eliminate

platelets and resuspended in tissue culture medium (TCM) consisting

of RPMI 1640 medium (GIBCO, Grand Island, NY) with 10% fetal

calf serum (FCS; Sera-Lab, Crawley Down, UK), 0´05 mM sodium

hydrogen carbonate (GIBCO), 4 mM L-glutamine (GIBCO) and 10 U/ml

penicillin/streptomycin (GIBCO). MNC preparations comprised

> 90% lymphocytes and < 10% monocytes as determined by CD3

and CD14 positivity, respectively. Cell viability was measured in all

experiments by trypan blue exclusion and was > 95%.

Culture conditions and microaggregation assay

MNC were resuspended at 106/ml in TCM and incubated in a moist

chamber for 24 h at 378C, 5% CO2, either in TCM alone, or in TCM

supplemented with water-soluble DEX obtained from Sigma

(Poole, UK) at a range of concentrations (10ÿ9±10ÿ5
M) during

the assessment of dose response. A concentration of 10ÿ6
M was

used in subsequent experiments. Following steroid incubation,

cells were washed with HBSS and cultured at 2 ´ 106 cells/well

in ¯at-bottomed 24-well plates (Costar, Cambridge, MA) in TCM

alone, or TCM and immobilized OKT3 MoAb, in the presence or

absence of the neutralizing anti-LC1 MoAb 1A (®nal concentra-

tion 5 mg/ml) [23], a gift from Dr J. Browning (Biogen, Cambridge,

MA). Controls included the non neutralizing anti-LC1 MoAb 1B

and an irrelevant isotype (IgG1)-matched MoAb P3. In other

experiments, puri®ed placental-derived human LC1 (a generous

gift from Drs E. Solito and F. Russo-Marie) was added in a

concentration range 0´5±50 ´ 10ÿ9
M. A boiled sample to denature

and inactivate the LC1 was used as a negative control.

MNC aggregation was assessed by inverted light microscopy

following 72 h incubation using an arbitrary visual scale as

described by Rothlein & Springer [24]. Brie¯y, scores range

from 0 to 5: 0, no aggregate formation with MNC remaining in

culture as single cells; 1, < 10% of the cells form aggregates; 2,

< 50% of the cells aggregate; 3, up to 80% of the cells are in small

clusters; 4 and 5, 80±100% of the cells are in large or very large

aggregates, respectively. Consistency in visual scoring was

achieved by a single observer counting all samples. Results were

veri®ed by a second `blinded' observer.

Immuno¯uorescence and FACS analysis

MNC cultured as described for the microaggregation assay were

stained using a standard single- or double-labelling technique as

previously described [25]. Brie¯y, resuspended MNC, incubated

with normal human serum (NHS) to block Fc receptor binding

sites, were labelled with MoAbs LFA-1 (CD11a/CD18, ATCC

Hybridoma) and OKT11 (CD2; Imperial Cancer Research Fund,

London, UK). Washed cells were incubated with FITC-conjugated

polyclonal goat anti-mouse immunoglobulin antibody (FITC±

GAM; Becton Dickinson, Oxford, UK). Cells were ®xed with

1% paraformaldehyde and stored at 48C for FACS analysis. When

cells were double-stained, prior to ®xation, they were incubated

with normal mouse serum to block any free non-speci®c binding

sites on the previous antibodies and ®nally stained with a CD3 PE-

conjugated MoAb Leu-4 (CD3; Becton Dickinson). Samples were

washed twice between each step. Isotype controls included anti-

bodies to irrelevant antigens conjugated with either FITC or PE.

Cyto¯uorometric analysis was performed on a ¯ow cytometer

(FACScan; Becton Dickinson). Dead cells and non-lymphoid

cells were excluded by setting appropriate forward and 908 light

scatter gates. Positive cells were determined by setting a 5%

threshold with reference to the relevant negative control. Cell

surface antigens were quanti®ed by measuring the mean ¯uores-

cence intensity (MFI) expressed in computed units (channel

numbers) and compared with reference standard ¯uorescent
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beads (Becton Dickinson). In some experiments, intracellular

antigen expression was determined by permeabilizing the MNC

with saponin prior to staining with antibodies and appropriate

¯uorescein conjugates [26].

Confocal microscopy

FITC-stained cells were ®xed with a equal volume of 2% para-

formaldehyde in PBS and pelleted. Propidium iodide (PI) was

added as a nuclear counterstain and cells were mounted onto glass

slides and sealed with cover slips. A BioRad (Hemel Hempstead,

UK) MRC600 confocal microscope system with 100´ objective

lens, 25-mW argon ion laser with an excitation line of 488 nm and

COMOS analysis software was used to scan the samples and

generate photomicrographs.

Phagocytosis assay

Phagocytic uptake of antigen±antibody complexes by monocytes

was monitored by a real-time ¯ow cytometric assay. The assay

relies upon the intracellular oxidation of an X-rosamine derivative

of dihydrodichloro¯uorescein (XR-DHDCF) (Molecular Probes

Inc., Eugene, OR) which upon excitation at 488 nm emits light at

670 nm, detectable in the FL3 channel of the ¯ow cytometer. The

Fc oxyburst RED reagent consists of XR-DHDCF conjugated to

bovine serum albumin (BSA) which are subsequently reacted with

rabbit polyclonal anti-BSA antibodies to form insoluble complexes

in antibody excess [27]. Upon uptake into phagosomes and

activation of a nicotinamide adenine dinucleotide phosphate

(NAHPH) oxidase, the Fc oxyburst reagent is oxidized to the

¯uorescent form which can be detected in FL3.

Monocytes were separated from peripheral blood as has

already been described. Following washing steps, 250 ml of cells

were resuspended at 1 ´ 106/ml in Kreb's PBS pH 7´4 and incu-

bated for 10 min in a 378C water bath to equilibrate. A volume of

10 ml of the Fc oxyburst reagent at 3 mg/ml was diluted in 115 ml of

Kreb's PBS and equilibrated for 5 min at 378C. After equilibration,

the Fc oxyburst reagent was rapidly added to the cells and

immediately applied to the ¯ow cytometer (Becton Dickinson

FACScan, set to the high ¯ow-through setting). The monocyte

population was acquired and delineated by forward and 908 light

scatter characteristics. Fluorescence data were acquired from FL

channel 3 in linear mode. Phagocytic responses were quanti®ed

using WinMDI software (Dr J. Trotter, Scripps Inst., La Jolla, CA).

Two-dimensional density plots of time versus FL3-H were gated

into 16 equal time slices. Mean FL3-H readings were then plotted

for each time slice.

RESULTS

Expression of LC1 in DEX-treated lymphocytes

A combination of confocal microscopy and ¯ow cytometry was used

to determine the expression of LC1 in peripheral blood lymphocytes

and the effect of 3 h incubation with DEX (1 ´ 10ÿ6
M). Figure 1A

illustrates strong, diffuse cytoplasmic LC1 staining (green) in the

majority of lymphocytes, although some cells (leftmost cell) were

negative for LC1. Treatment of cells with 1 ´ 10ÿ6
M DEX (Fig. 1B)

resulted in a reduction in LC1 expression. This was con®rmed by

¯ow cytometry of saponin-permeabilized cells stained with the anti-

LC1 MoAb 1B, which revealed a fall in MFI from 772 6 107 U in

untreated lymphocytes to 570 6 107 U in cells treated for 3 h with

DEX (three observations).

Effects of LC1 on adhesion molecule expression induced by

OKT3

In order to determine the contribution of LC1 to the DEX inhibition

of CAM expression, MNC were incubated in tissue culture plates

coated with OKT3 for 96 h in the presence or absence of 1 ´ 10ÿ6
M

DEX and the neutralizing anti-LC1 MoAb 1A. In experiments on

MNC from three different donors, OKT3-stimulated MNC showed

signi®cant increases in LFA-1 and CD2 expression. DEX

(1 ´ 10ÿ6
M) inhibited this increase in CAM expression in all

donors investigated, although not completely to TCM levels

(Fig. 2). MoAb 1A, with neutralizing anti-LC1 activities, showed

no signi®cant effect on DEX suppression of LFA-1 or CD2

expression. CAM levels remained similar to those obtained when

cells were incubated in the presence of DEX and either an

irrelevant isotype control MoAb P3 or the anti-LC1 MoAb 1B,

which does not exert neutralizing activity in human cells. In a

series of separate experiments using cells from three further

healthy donors, puri®ed placental-derived human LC1 was used

to determine the direct effect of exogenous human LC1 on CAM

expression. Incubation of MNC for 96 h with LC1 at a range of

concentrations from 0´5 to 50 ´ 10ÿ9
M was unable to reproduce the

inhibition of LFA-1 and CD2 expression such as was observed

with 1 ´ 10ÿ6
M DEX (Fig. 3).

LC1 inhibits monocyte phagocytosis of antigen±antibody

complexes

To con®rm the biological activity of the human LC1 preparation,

human blood MNC which had been preincubated in the presence or

absence of LC1 (50 ´ 10ÿ9
M) for 1 h at 378C were incubated with

Fc oxyburst reagent to stimulate the endocytotic uptake of these

BSA±anti-BSA complexes and activation of NADPH oxidase by

monocytes. Figure 4 shows that LC1 preincubation of MNC caused

a signi®cant reduction in phagocytosis of antigen±antibody com-

plexes by monocytes incubated with TCM alone. LC1-pretreated

MNC which had been in contact with immobilized OKT3 also

exhibited a reduced oxidative burst activity. These effects could be

completely reversed if the LC1 was denatured by boiling prior to

incubation.

Effect of LC1 on the intercellular aggregation of MNC

DEX (1 ´ 10ÿ6
M) profoundly inhibited intercellular aggregation in

four separate experiments. In non-activated cells, this dose of DEX

resulted in a 88% reduction in aggregation score whilst 50 ´ 10ÿ9
M

LC1 had no effect on aggregation under these conditions (Fig. 5a).

Likewise, in OKT3-treated cells, DEX (1 ´ 10ÿ6
M) reduced the

median aggregation score from 4´1 to 1´3 (68%), whereas LC1

failed to alter aggregation scores over the entire concentration

range studied (0´5±50 ´ 10ÿ9
M) (Fig. 5a). A typical aggregation

pro®le for MNC treated with OKT3 in the presence or absence of

DEX and LC1 is shown in Fig. 5b.

DISCUSSION

There is little doubt that some of the most powerful immunosup-

pressive and anti-in¯ammatory effects of GC are delivered through

the inhibition of adhesion-related processes. Evidence for this

comes from in vitro studies examining intercellular adhesion,

adhesion to endothelium and cell migration [1,3,28]. More impor-

tantly, several studies have indicated that this modality of action is

operational in vivo. Two studies of patients receiving pulse gluco-

corticoid therapy have reported a decrease in lymphocyte adhesion.
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Lymphocytes isolated from multiple sclerosis (MS) patients 3 h

following treatment with methylprednisolone showed reduced

adhesion to endothelium [29]. Likewise, rheumatoid arthritis

patients' blood lymphocytes displayed reduced adhesion to gut

lamina propria endothelium 24 h after pulse steroid therapy [30].

Furthermore, direct analysis ex vivo of circulating lymphocytes

4 days post-GC therapy in patients with MS demonstrated a

decreased expression of LFA-1 and CD2 which was not due to

changes in variation of lymphocyte subsets [31]. In addition,

analysis of the rheumatoid synovial membrane 24 h after i.v.

bolus therapy showed a remarkable reduction of E-selectin and

intercellular adhesion molecule-1 (ICAM-1) [32]. A study in

healthy individuals, where no in¯ammation-dependent up-regula-

tion of adhesion molecules would be expected, also revealed

a decrease in L-selectin expression by both lymphocytes and

neutrophils following i.v. infusions of DEX [33]. This study

indicates that the regulation of adhesion molecule expression by

GC is part of a physiologic regulatory mechanism. This concept is

supported by the study of Tarcic et al. who reported that stress-

induced increase in endogenous glucocorticoids causes a decreased

expression of CD44, LFA-1 and VLA-4 by spleen lymphocytes in

BALB/c male mice [34].

The mechanisms by which GC regulate CAM expression/

function, as for many other gene products, is likely to be multi-

factorial. Direct control of gene transcription has been conclusively

demonstrated. The binding of the GC±GC receptor complex to

glucocorticoid-response elements (GRE) would modulate the

interaction of NFAT and AP-1 nuclear proteins with the 50 ¯anking

regions of the relevant genes [35,36]. GC can also act at post-

transcriptional level by regulating translational rates and/or mRNA

stability [37]. Finally, GC can exert their effects indirectly by

interfering with transcription factors involved in mediating the

events which follow cell activation. For example, competition

within the nucleus between GC receptors and NFk-B for binding

to the CREB-binding co-activator CBP is thought to be critical

to the modulation of subsequent in¯ammatory response gene

activation [38].

The purpose of this study was to investigate whether, in vitro,

LC1 could regulate CAM expression as another possible indirect

modality of action of GC. We have clearly demonstrated that

whilst the synthetic glucocorticoid DEX signi®cantly reduced the

expression of both adhesion molecules CD2 and LFA-1, these

effects were not paralleled by preincubating cells with either

neutralizing LC1 antibodies or puri®ed human LC1. Similarly,

the latter could not inhibit the intercellular aggregation of activated

T lymphocytes. The activity of both reagents was checked in other

models, excluding the possibility that these results were due to

biologically inert LC1. The activity of anti-LC1 antibodies in

neutralizing glucocorticoid activities has been reported in vivo

[18] and, in agreement with our ®ndings, had no effect on adhesion

molecule expression in this system. Likewise, whilst puri®ed

human LC1 was shown to be biologically active in the inhibition

of monocyte phagocytosis of antigen±antibody complexes (Fig. 3),

it had no signi®cant effect on lymphocyte adhesion molecule

expression or aggregation.
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Fig. 1. Confocal micrographs of peripheral blood lymphocytes stained for lipocortin 1 (LC1). (A) Untreated cells, illustrating a diffuse

cytoplasmic pattern of intracellular staining. (B) Treatment for 3 h with dexamethasone (DEX; 1 ´ 10ÿ6
M) resulted in a reduction of

expression but no alteration in the staining pattern.
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An important aspect to consider in trying to explain these

results is the expression of the appropriate LC1 receptors by target

cells. It has been proposed that LC1 exerts its pharmacological

effects through speci®c cell surface binding proteins which have

been identi®ed on human blood leucocytes [39]. Earlier studies

reported differential binding of recombinant human LC1 to human

[40] and rodent [41] blood lymphocytes and monocytes, with

monocytes exhibiting 100-fold higher LC1 binding than lympho-

cytes. If indeed LC1 actions are mediated by cell surface binding

sites then these results could explain the apparent lack of effect in

our in vitro system.

However, it is important to point out that these results do not

exclude the involvement of LC1 in regulating leucocyte adhesion

and migration. It has been proven beyond reasonable doubt, both

in vivo and in vitro, that LC1 is capable of inhibiting the transmi-

gration process [18,22]. Although the mechanisms by which LC1

act in this context are still a matter of speculation, we would

propose that LC1 acts by a qualitative (functional modulation)

rather than a quantitative regulation of CAM. It is known that, in

order to prevent random adhesion in the circulation, CAM are

normally expressed on the cell surface in a non-active state (low

binding avidity). However, this can be increased dramatically and

very rapidly in response to a large number of activating signals

including bacterial cell wall components, complement products

and a large number of in¯ammatory mediators [42±45]. Given that

GC can mobilize LC1 very rapidly and also that some of its effects

on adhesion phenomena are extremely fast, it is conceivable that

LC1 may be acting through functional/conformation changes of

380 N. J. Goulding et al.
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surface CAM. There is a precedent for such an activity in that

exogenous LC1 inhibits IgG binding to human leucocyte Fcg

receptors and the formation of erythrocyte±antibody (EA) rosettes,

but does not alter the level of expression as measured by MoAb

binding [46]. Experiments to determine whether a similar mechan-

ism occurs for CAM are currently in progress.
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