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SUMMARY

CD40 and its ligand CD40L are key players in T cell–B cell interaction and T cell–antigen-presenting
cell (APC) interaction. Inhibition of CD40–CD40L interaction leads to severe humoral and cellular
immunodeficiency. In this study we examined the presence of soluble CD40 (sCD40) in the serum of
haemodialysis (HD) patients, CAPD patients, chronic renal failure (CRF) patients and healthy donors in
order to evaluate the possible involvement of CD40 in uraemic immunodeficiency. Soluble CD40 was
detected in the serum of healthy donors (n¼ 41) with a mean of 0·146 0·12 ng/ml and in the urine of
healthy donors with a mean of 1·806 0·74 ng/ml. Soluble CD40 was highly elevated in all patients with
impaired renal function. HD patients (n¼ 22) had up to 100-fold elevated sCD40 levels with a mean
concentration of 8·326 4·11 ng/ml, whereas CAPD patients (n¼ 10) had considerably lower levels of
sCD40 with a mean of 3·586 2·40 ng/ml. A strong correlation between sCD40 and serum creatinine
levels was noted in CRF patients (n¼ 66). The highly elevated levels of sCD40 may point to the
involvement of CD40 and its ligand CD40L in the clinical manifestation of uraemic immunodeficiency.
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INTRODUCTION

Patients with end-stage renal failure are often severely immuno-
compromised [1]. They show a high rate of infections [2,3], low
response to hepatitis B vaccine [4,5], cutaneous anergy [6] and
possibly higher rates of malignant tumours [7] and lower rates of
allograft rejection [8] than healthy persons. Some features of this
cellular immunodeficiency are thought to result from a suppression
of T helper cell type 1 (Th1) cytokines [9] and a defective
costimulation of T cells via the B7–CD28 pathway [10]. Elevated
circulating levels of cytokines and their corresponding receptors
have been reported in the setting of chronic renal failure (CRF)
[11–17], indicating that dysregulations in the cytokine network
may be in part responsible for the development of uraemic
immunodeficiency. In this study we investigated thein vivo
presence of soluble CD40 and its possible changes in haemodia-
lysis patients, CAPD patients and patients with CRF.

The 50-kD transmembrane protein CD40 is primarily
expressed on B cells [18], but has also been detected on
thymic epithelium [19] dendritic cells [20], monocytes [21],

basal epithelium [22], kidney epithelium [23], vascular endothe-
lium [24,25], and some carcinomas including bladder and renal cell
carcinoma [18,22,26,27]. The corresponding ligand CD40L is
transiently expressed on activated T cells [28–31], natural killer
(NK) cells [32], mast cells, basophils [33] and eosinophils [34].
CD40 and CD40L are members of the tumour necrosis factor
(TNF) receptor ligand family [35,36] and key players in T cell–B
cell and T cell–antigen-presenting cell (APC) interaction [37,38].
Activation of CD40 triggers important B cell functions such as
isotype switching and proliferation and rescues germinal centre B
cells from apoptotic cell death [38]. CD40 activation on APC
induces IL-12 secretion and thus promotes the switch from Th0 to
Th1 cells [39]. Furthermore, CD40–CD40L interaction provides
important costimulatory signals for T cells which seem to be
mediated partially by the up-regulation of B7.·1 (CD80) and
B7.2 (CD86) on APC, which in turn stimulate T cells via CD28
[40,41]. The X-linked hyper-IgM syndrome represents a naturally
occurring condition in which CD40–CD40L interaction is
impaired due to mutations in the CD40L gene and leads to
severe defects in humoral and cellular immunity [42]. The block-
ade of CD40–CD40L interaction by anti-CD40L antibodies is
immunosuppressive and has been successfully applied to suppress
autoimmune disease [43,44] and allograft rejection [45,46].

Soluble CD40 might exert immunosuppressive effects in a
similar fashion by interfering with CD40–CD40L interaction.
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Soluble CD40 has been demonstratedin vitro in the supernatants of
B cell lines and bound to CD40L, which was thought to regulate
CD40–CD40L interaction in a negative fashion [47,48]. A dimeric
CD40 fusion protein effectively suppressed IL-12 production by
monocytesin vitro [49]. Thus, sCD40 is a candidate molecule to
explain the development of immunological disturbances seen in
end-stage renal failure.

In this study we investigated thein vivo presence of sCD40 in
the serum of healthy donors and different patient groups with renal
failure in order to determine whether sCD40 may be involved in
the pathogenesis of immunodeficiency in uraemia. High levels of
sCD40 could be detected in all sera of patients with renal
insufficiency, and may suggest an immunosuppressive role of
sCD40 in CRF.

PATIENTS AND METHODS

Patients
Twenty-two patients were receiving intermittent haemodialysis.
Of the 22 patients receiving haemodialysis, six had diabetic
nephropathy, four hypertensive nephropathy, two polycystic
kidneys, two chronic glomerulonephritis, one c-ANCAþ vasculitis
as underlying disease, the remaining seven patients were diagnosed
clinically as having chronic glomerulonephritis. All patients were
long-term haemodialysis patients and were either anuric or had a
residual renal function of< 100 ml/day. Intermittent haemodialysis
was performed three times a week for 4–5 h using a biocompatible
membrane (F60, hollow fibre dialyser, high-flux polysulphone,
1·25 m2; Fresenius, Bad Homburg, Germany). Ten patients were
receiving CAPD consisting of four to six exchanges during the day
using 2l of glucose-based solution (Fresenius). The sera of 66
patients with CRF due to different renal diseases were collected
when the patients visited our out-patient department. Patients
suffering from autoimmune diseases with known B cell activation
(e.g. systemic lupus erythematosus (SLE)) were not included in
this study. Control groups included 20 patients with metastatic
bronchial, colorectal carcinoma or leukaemia, 23 patients with
chronic inflammatory bowel diseases (CIBD) and 41 healthy
volunteers. Each serum sample was additionally measured for
creatinine, blood urea nitrogen and C-reactive protein (CRP) by
the routine laboratory.

Antibodies
The G28-5 hybridoma was obtained from American Type Culture
Collection (ATCC, Rockville, MD). The hybridoma supernatant
was purified over a protein G Sepharose Fast Flow column
(Pharmacia, Freiburg, Germany). For the production of polyclonal
anti-CD40 antibodies, sCD40 was purified from supernatants
of Chinese hamster ovary (CHO) cells transfected with the
extracellular domain of CD40 as previously described [50]. A
rabbit was immunized with 10mg of the soluble extracellular
domain of CD40 four times and boosted twice before bleeding.
Anti-CD40 MoAb Ro1 was purified from hybridoma supernatants
with a protein G column as described previously [50]. Peroxidase-
conjugated goat anti-rabbit IgG (F(ab)2) and FITC-labelled goat
anti-mouse IgG were obtained from Dianova (Hilgen, Germany).

ELISA for detection of soluble CD40
Ninety-six-well plates (Nunc, Wiesbaden, Germany) were coated
for 2 h with MoAb G28-5 at a concentration of 1mg/ml for 2 h and
blocked for 1 h with PBS containing 1% bovine serum albumin

(PBS–BSA). Samples of human serum or urine were diluted in
PBS containing 1% BSA and 0·3M NaCl. These samples were
added for 12 h at 48C. After washing, the plates were incubated
with anti-CD40 rabbit serum at a dilution of 1:500 for 6 h at 48C.
After three further washing steps a peroxidase-linked goat anti-
rabbit antibody was added at a concentration of 1mg/ml for 1 h.
The plates were developed with ABTS (Sigma, Deisenhofen,
Germany) in citrate buffer pH 3·1 and read after 20 min at
405 nm. Concentrations were calculated by comparison with puri-
fied CD40Fc (kindly provided by Dr L. Kurrle and Dr R. Laufer;
Behring Werke, Marburg, Germany). Each serum sample was
measured twice and the mean concentration was calculated. The
detection limit of the ELISA was about 50 pg/ml, the intra-assay
variation and the interassay variation were 10% and 15%, respec-
tively. Since MoAb G28-5 has been shown to bind closely to the
site of CD40–CD40L interaction [50], this ELISA did not detect
CD40–CD40L complexes.

Binding of sCD40 to CD40L
CD40L-transfected baby hamster kidney cells (1×106;
BHKCD40L) [51] were incubated with 200ml serum containing
10 mM EDTA from haemodialysis (HD) patients for 2 h at 48C. The
cells were washed with PBS containing 0·05% Tween and were
incubated for 2 h with anti-CD40 MoAb Ro1 at 5mg/ml, which
detects a CD40 epitope that is not involved in CD40–CD40L
interaction [50]. After washing, the cells were treated with FITC-
conjugated goat anti-mouse immunoglobulin for 1 h. After three
further washing steps the cells were resuspended in PBS containing
3% paraformaldehyde (PFA) and 5000 cells were analysed by
flow cytometry on a FACScan (Becton Dickinson, Heidelberg,
Germany). CD40Fc was used as positive control in a concentration
of 5mg/ml. Additionally, BHKCD40L cells were incubated with
CD40Fc at 5 ng/ml to evaluate a threshold of sCD40 detection by
flow cytometric analysis. BHKwt cells were used as negative control.

Statistical analysis
Statistical analysis was performed using SPSS 5.1 software (SPSS,
Munich, Germany) on a Windows-based computer. Correlations
andP levels were determined by Pearson correlation. Differences
between sCD40 of the different patient groups were calculated by
Mann–WhitneyU-test,P levels# 0·05 were considered significant.

RESULTS

Soluble CD40 in healthy individuals
Constitutively low levels of sCD40 were detected in the serum of
healthy donors with an average concentration of 0·146 0·12 ng/ml
as measured by ELISA (Table 1). None of these donors had a
history of impaired renal function or ongoing infections. Compared
with serum levels, the sCD40 concentrations in the urine of these
donors were about 10-fold higher with a mean concentration
of 1·806 0·74 ng/ml, indicating that sCD40 may possibly be
eliminated via the kidneys.

Soluble CD40 in patients with neoplasia or inflammatory diseases
Patients with neoplastic disease had slightly, but significantly
increased levels of sCD40, with a mean of 0·446 0·22 ng/ml.
These patients had normal kidney function with creatinine
and blood urea nitrogen (BUN) in the upper normal range and a
highly elevated CRP (Table 1). CIBD patients had also slight
elevations of their serum sCD40, with a mean concentration of
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0·296 0·09 ng/ml and elevated levels of CRP (Table 1). It is
conceivable that these weak elevations of sCD40 were caused by
an activation of the immune system in these patients. There were
no significant correlations between sCD40 and creatinine, BUN
and CRP in tumour patients.

Soluble CD40 in haemodialysis and CAPD patients
Patients receiving haemodialysis had the highest sCD40 levels in
this study, with a mean concentration of 8·326 4·11 ng/ml before
the onset of dialysis (Fig. 1). The mean concentration of sCD40
after the dialysis session was only slightly lower with
7·976 4·66 ng/ml. Yet, in some patients an increase of their
serum sCD40 level was observed after the haemodialysis session.
Interestingly, CAPD patients had lower levels of sCD40, with a
mean of 3·586 2·40 ng/ml sCD40, although their creatinine was
higher than in HD patients (8·5 mg/dlversus7·1 mg/dl). Also, their
sCD40 levels correlated well with creatinine, whereas in HD
patients no correlation between these parameters was seen (Fig.
2). CRP levels were elevated in both groups, but did not correlate
significantly with sCD40 levels. Since most patients were anuric or

had a urine production of<100 ml/day a correlation between
residual renal function and sCD40 could not be calculated.

Soluble CD40 in patients with CRF
Patients with CRF had significantly higher sCD40 serum levels
than healthy individuals, with a mean of 2·416 2·53 ng/ml. Serum
sCD40 levels correlated closely with serum creatinine, whereas the
correlation with BUN and CRP was weaker (Fig. 2). None of the
patients with elevated creatinine levels had normal levels of
sCD40.

Binding of serum sCD40 to CD40L-expressing cells
In order to avoid possible modification of sCD40 through purifica-
tion processes, binding of sCD40 to CD40L was studied in
untreated serum using transfected baby hamster kidney cells.
Binding of serum sCD40 to BHKCD40L could not be detected by
flow cytometric analysis (Fig. 3a). Since binding of serum sCD40
to CD40L might have escaped detection simply through the low
concentration of sCD40 in serum, we tested the binding of CD40Fc
to BHKCD40L at an equally low concentration. At 5 ng/ml no binding
of CD40Fc to BHKCD40L could be detected, either (Fig. 3b).

DISCUSSION

In this study the sera of healthy individuals and uraemic patients
were examined for the presence of soluble forms of the B cell
receptor CD40 to evaluate the possible role of CD40 in the immune
system in end-stage renal failure. Compared with the constitutively
low levels of sCD40 in the sera of healthy donors, the levels of
sCD40 were highly increased in sera of uraemic patients. Among
these the highest levels of sCD40 were found in HD patients.
Although sCD40 correlated well with creatinine levels, factors
associated with HD seemed to modulate sCD40 serum levels, since
CAPD patients had much lower sCD40 levels than HD patients
despite higher serum creatinine. Inflammation seemed to influence
sCD40 levels, as demonstrated by the correlation of sCD40 and
CRP in all patient groups and the elevation of sCD40 in
control groups with metastatic tumour disease or CIBD. B cells
represent the most likely source of serum sCD40, since they
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Table 1. Serum levels of sCD40 in healthy individuals and different patient groups

Patients n sCD40† (ng/ml) Creatinine (mg/dl) CRP (mg/dl)

Healthy donors 41 0·146 0·12 1·06 0·1 0·16 0·0
CIBD 23 0·296 0·09 1·06 0·1 2·06 1·7
Tumour 20 0·446 0·22 1·16 0·2 5·26 6·5
CAPD 10 3·586 2·40 8·56 3·5 1·96 3·3
Haemodialysis 22 8·326 4·11* 7·16 1·9 1·76 3·6
Chronic renal failure 66 2·416 2·53 3·46 1·7 4·76 7·4

Dialysis patients and chronic renal failure (CRF) patients had highly elevated levels of sCD40,
whereas tumour and chronic inflammatory bowel disease (CIBD) patients showed only slightly
increased levels of sCD40, although their C-reactive protein (CRP) was markedly elevated. Compared
with haemodialysis (HD) patients, CAPD patients had more than 50% lower levels of sCD40, although
their creatinine and CRP were higher. The differences in sCD40 levels between all groups were
significant according to Mann–WhitneyU-test.

*Levels before haemodialysis. After haemodialysis sCD40 levels were 7·976 4·66 ng/ml.
†The differences in sCD40 levels between each patient group and the respective control group were

significant according to the Mann–WhitneyU-test (P< 0·001).
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Fig. 1. Distribution of serum levels of sCD40 in healthy donors, haemo-
dialysis (HD), CAPD, chronic renal failure (CRF), tumour and chronic
inflammatory bowel disease (CIBD) patients. The sCD40 serum levels of
healthy donors were just above the detection limit, whereas sCD40 serum
levels were highly elevated in all uraemic patients. Tumour and CIBD
patients showed only weak elevations of sCD40.



express high levels of CD40 and have been shown to shed sCD40
in vitro [47].

Urinary sCD40 concentrations were about 10-fold higher than
sCD40 serum levels in healthy donors. Urinary sCD40 may
either be the product of CD40 shedding in the kidney by CD40-
expressing renal cells or it may stem from the same source as
serum sCD40 being concentrated into the urine. Recently, CD40
was detected in the proximal tubulus when human kidneys were
stained with a CD40 MoAb [27]. Since no CD40 mRNA was
detected in these cells it was concluded that this staining possibly
represented sCD40 in the tubulus. Altogether, a renal excretion of
serum sCD40 seems more likely than shedding of sCD40 by renal
parenchymal cells.

The high serum levels of sCD40 in CRF patients may be the
result of an increased expression of CD40, an increased generation
of sCD40 or a decreased elimination of this soluble receptor.
Taking into account that sCD40 correlated significantly with
creatinine levels and was found in high concentrations in normal
human urine, passive accumulation of sCD40 due to a decreased
elimination is the most likely mechanism. The activation of B cells
in the uraemic patient [17] may further contribute to the increased
levels of sCD40 by enhanced expression and shedding of this
receptor. The latter hypothesis is supported by the correlation
between sCD40 and CRP in CRF patients and the elevated
sCD40 levels in patients with high CRP levels and normal
kidney function such as tumour patients and CIBD patients.

The contact with dialysis membranes may lead to contact-
dependent activation of the immune system. Although in our study

the mean level of sCD40 was decreased after the HD session, we
frequently found increased sCD40 after haemodialysis. These
findings were inconsistent and were not attributable always to
the same patients. Therefore sCD40 levels did not correlate with kt/
v-values or with serum creatinine in HD patients, indicating that
multiple factors may influence the shedding of this receptor.

Although the release of sCD40 has been demonstratedin vitro
in cultured B cell lines, the functions that sCD40 exertsin vivo are
not known.In vitro, sCD40 has been shown to bind to CD40L [47].
This may be interpreted as a mechanism that controls CD40–
CD40L interaction in a negative fashion. The application of a
dimeric CD40 fusion protein strongly suppressed IL-12 production
of monocytesin vitro [49]. Supposing that sCD40 has similar
effects on CD40–CD40L interactionin vivo, it might profoundly
influence the immune system. An impaired CD40–CD40L inter-
action leads to humoral and cellular immunodeficiencies, as seen in
patients with mutated CD40L. Likewise, the application of anti-
bodies that block CD40–CD40L interaction is immunosuppressive
and may improve autoimmune disease [44], suppress IL-12
production [43] and prolong allograft survival [45,46]. Similar
clinical features are noted in patients with end-stage renal failure.
In our study no significant binding of serum sCD40 to CD40L
could detected by flow cytometric analysis. This result may be
explained by the low serum concentration of sCD40 and does not
exclude binding of serum sCD40in vivo, since CD40Fc was not
detected on BHKCD40L when applied at a similar concentration. In
view of the finding that sCD40 from cultured B cells bound to
CD40L [47], it is not unlikely that sCD40 may act as a negative
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regulator of CD40–CD40L interactionin vivo. A supposed block-
ade of CD40–CD40L interaction might be held responsible for the
decreased inducibility of Th1 cytokines [9] and the defective
costimulation via CD28 [10] in uraemic patients [10], since
CD40 is a potent up-regulator of IL-12 synthesis [43] and CD28
expression [41]. Since the concentrations of sCD40 in human
serum were too low to show significant binding in our assays, a
profound inhibition of CD40–CD40Lin vivo seems unlikely. Yet,
the constant presence of low amounts of sCD40 in uraemic patients
may alter immune responses and contribute to the immune dys-
regulations in these patients.

In conclusion, this study demonstrates highly elevated levels
of sCD40 in uraemic patients. Although binding of serum sCD40
to CD40L could not be demonstratedin vitro, an involvement of
CD40 in the uraemic immunodeficiency cannot be excluded and
requires further study.
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