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ABSTRACT The equilibrium properties of proteins are
studied by Monte Carlo simulation of two simplified models
of protein-like heteropolymers. These models emphasize the
polymeric entropy of the fluctuating polypeptide chain. Our
calculations suggest a generic phase diagram that contains a
thermodynamically distinct “molten globule” state in addition
to a rigid native state and a nontrivial unfolded state. The
roles of side-chain packing and loop entropy are discussed.

A typical small protein can fold and unfold reversibly in vitro,
undergoing a first-order (i.e., two-state) transition (1)$ be-
tween its unfolded state U and its “native” (i.e., folded) state
N, depending on temperature, pH, denaturant concentration,
etc. (2). Under certain conditions, proteins can also exhibit a
collapsed state with partial order known as the “molten
globule” (MG) that has some native secondary and tertiary
structure but lacks well-packed side chains (3-5). A scaling
analysis of the thermodynamic properties of proteins of various
lengths suggests that the MG is indeed a distinct phase,
separated by first-order transitions from both the folded and
unfolded states (6), although this remains controversial; for
example, the U = MG transition in a-lactalbumin appears to
be continuous [i.e., noncooperative (7, 8)]. The thermody-
namic forces that stabilize the MG relative to N and U remain
unclear.

Herein we address the polymeric properties that govern the
stability of the MG of proteins and, more generally, the global
phase diagram of protein-like heteropolymers. From the per-
spective of polymer physics, proteins may be viewed as a subset
of amore general class of heteropolymers whose sequences are
“designed” to fold reproducibly to a preselected conformation
(the native state) at low enough temperature and denaturant
concentration (9, 10). Random-sequence heteropolymers do
not generically have this property (11, 12). It has been shown
both analytically (V.S.P., A. Y. Grosberg, and T.T., unpub-
lished work) and computationally (14) that designed hetero-
polymers exhibit a discontinuous (i.e., first order) U = N
transition, which corresponds to the cooperative two-state
behavior of proteins. As in many polymer problems (15), such
general conclusions are likely to be independent of specific
details of the underlying chemistry (10) and can, therefore, be
addressed by studying simplified models.

We present Monte Carlo simulations of two models of
protein-like heteropolymers: a lattice model (9, 16-19) and a
new off-lattice model for proteins that includes a caricature of
helical secondary structure but omits side-chain packing ef-
fects. Although neither of these models faithfully represents all
biologically important details of protein structure, both retain
general heteropolymeric features that are critical for a com-
plete physical understanding of protein states. The generality
of our results is emphasized by physical arguments that appeal
to polymeric entropy rather than model-specific details. Our
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approach complements molecular dynamics studies of more
realistic models of specific proteins (20) and phenomenolog-
ical three-state models for U-MG-N stability (21).

Our main results are derived from the free energy land-
scapes shown in Figs. 14 and 2, which exhibit the free energy
minima of both the U and MG phases. The unfolded states of
both of our models contain a significant fraction of native
contacts as seen from the location of the U minima in Figs. 14
and 2. These contact are fluctuating, in the sense that con-
formations with similar Boltzmann weight in the U phase will
generally possess different combinations of native contacts
(22). The MG phase we find is consistent with the recent
picture of the MG (3-5). In comparison to the U state, the MG
phase has more native contacts, but more importantly, many
of these contacts are preserved from conformation to confor-
mation in the MG ensemble.

For well-designed heteropolymers, we find that the U and
MG phases are separated by a free energy barrier, which
results in a first-order U = MG transition. We show that this
barrier is created by the entropy of polymer loops fluctuating
around a rigid core. This transition—and the MG itself—is,
therefore, a generic feature of heteropolymers. The presence
of a barrier between the MG and N states in the lattice model
(Fig. 14) but not in the off-lattice model (Fig. 2) suggests that
side-chain packing is critical for the distinction between these
two states.

Lattice Model

In the lattice model (9, 16-19), a polymer chain of length N is
restricted to pass through adjacent sites of a cubic lattice, which
represent residues. The “internal free energy” of a given
conformation is given by Fin = ;= B(s;, 5;) Cjj, where i and j
are positions along the chain and s; is the species of the ith
residue. Note that this internal free energy includes not only
the intrapolymeric enthalpy but also the free energy of the
solvent in the presence of the given conformation. Thus
hydrophobic interactions appear in our calculations via Fip,.
B(s, s") is the internal free energy of interaction between
residues of species s and s', and Cj; is the “contact map”; i.e.,
Cjj = lifresiduesi andj are in contact (but not neighbors along
the chain) and zero otherwise. [By adopting this simple
pairwise interaction, we are neglecting the variation in the
strength of a contact in different contexts (23). However, this
should not change the qualitative features of our results.]
Monte Carlo sampling of conformations is used to compute
the total free energy G(Q, K) as a function of K = 3;-; Cy;, the
total number of “contacts” (i.e., residues that lie on adjacent
lattice sites but are not consecutive along the chain) and Q =
Zi>j C,']‘C}-Y the total number of native contacts (i.e., contacts

i
that occur in the native state).

Abbreviations: U, unfolded state; N, native state; MG, molten globule.
#To whom reprint requests should be addressed.

§Because proteins are finite they cannot exhibit phase transitions in the
rigorous sense, but they do show sharp crossovers that resemble
first-order transitions whose thermodynamic behavior is well de-
scribed by a two-state model.
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For a given interaction matrix B, a sequence is designed to fold
to a preselected native conformation by simulated annealing in
sequence space (9, 10). We use the independent interaction
model for interactions, in which B is a symmetric Gaussian
random matrix of unit variance (24). We have also used the Go
model (25) and Miyazawa-Jernigan interactions (26); as ex-
pected, our qualitative results are insensitive to the particular
model used.

The free energy G(Q, K) for a lattice 36-mer (Fig. 1A4)
displays three distinct local minima corresponding to the U,
MG, and N states, separated by free energy barriers. Each local
minimum represents a distinct thermodynamic phase (1).8 The
locations and depths of these minima shift with temperature 7
and “design parameter” g.7 The parameter g models perturba-
tions that nonspecifically destabilize the N state, crudely modeling
changes in pH and denaturant concentration. The phase diagram
shown in Fig. 1B is constructed by identifying the global minimum
of G(Q, K) for each region of the (7, g) plane. The three two-phase
coexistence lines meet at a triple point. There also appears to be
a critical endpoint to the MG-U coexistence line, at which these
two minima coalesce as the barrier between them disappears.

Off-Lattice Model

For our off-lattice calculations, we use a coarse model for
proteins (ref. 28, to which our model is similar in spirit) that
represents the polypeptide as a chain of tethered hard spheres
centered on the a-carbon of each residue. The spheres repre-
sent the entire residue, including side chains; they are elasti-
cally coupled to represent the local bending energies of
polypeptides and also interact via amino acid-dependent con-
tact terms.| We have incorporated a new method of simulating

The interaction matrix used for folding Brolq is a weighted sum of the
matrix used for design Bges and a symmetric Gaussian distributed
random matrix Bnoise, 1.€., Biola = (1 — gz)l/ZBdCS + gBnoise- AS g
increases, the degree of design diminishes monotonically (see ref. 27).

IWe model residues by a sphere of diameter 3.7 A at the a-carbon
position. To model polymeric bonds, these spheres are tethered and their
centers must lie between 3.7 A and 4.0 A apart. The rigidity of the
polypeptide backbone is modeled by harmonic potentials for bending
and dihedral angles, with spring constants of 1 kcal per mol per A and
0.3 kcal per mol per radian, respectively. Two residues are in “contact”
if their centers are within 7 A of each other. For the calculations reported
herein, contact free energies of 1 kcal/mol and 0.3 kcal /mol are used for
native and non-native contacts, respectively. Our general results do not
depend strongly on particular choices for these parameters.

FiG. 1. Lattice model results. See T, for simulation details. (4) Free
energy. Free energy G(Q, K) vs. the number of native contacts Q and
the total number of contacts K for a lattice 36-mer near the triple point
(temperature 7" = 0.95 and design parameter g = 0.1), computed by
Monte Carlo sampling. In this experiment, temperature is measured in
units of the average free energy of a native contact (which itself depends
on temperature and denaturant concentration). The free energy surface
exhibits three distinct local minima separated by barriers, corresponding
to the U, MG, and N states. Typical conformations are shown for each.
(B) Phase diagram. Phase diagram of the lattice model vs. temperature
T and design parameter g. The parameter g models perturbations that
nonspecifically destabilize the N state, crudely modeling changes in pH
and denaturant concentration. All transitions are first order. There is a
triple point at 7+ = 0.9 and g = 0.1. For T'> T+ or g < g+, the MG is never
globally stable. Finally, our simulations suggest that the line of first-order
(cooperative) transitions between MG and U ends at a critical point at 7¢
= 0.55 and g. = 0.28. (C) Cooperativity of the U = MG transition. To
study the cooperativity of U from the MG, we calculated the average
number of native contacts Q vs. temperature 7 for several different values
of design parameter g. As g increases (modeling the addition of dena-
turant), the transition becomes less cooperative, while simultaneously
stabilizing the MG. These competing effects of denaturant may reconcile
the disagreement between experimental studies of the U = MG transi-
tion, which report both cooperative (5) and noncooperative (7) transitions
in different proteins under different conditions.
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FiG. 2. Off-lattice model results. (4) Free energy. The free energy G(Nus, Q) at T = 0.6 for an off-lattice model of fragment B of protein A
has two minima (MG/N and U). (Temperature is measured in units of the free energy of a native contact.) As temperature decreases, the MG
minima smoothly shifts toward the N state, N (Q = 72, Nug = 21). Typical conformations from each minima are shown, as well as the N state.
In contrast with the lattice simulation, the absence of side-chain packing in the off-lattice model eliminates the barrier between the N and MG
phases that is found in the lattice model. (B) Temperature dependence. Plot of (Q), (Nug), and {Qcommon) V8. temperature 7. {Qcommon) is the typical
number of native contacts in common between four conformations chosen from an equilibrium ensemble and thus describes the degree to which
the contacts are fluctuating. The small value of (Qcommon)/(Q) in the U state implies large fluctuations—in contrast with the folded state, in
equilibrium the “native” contacts present in U conformations vary greatly from conformation to conformation. In our model, (Nyp) measures

a-helical content, and Qmax —

backbone hydrogen bonds to model a-helical secondary struc-
ture.™* We stress that our goal herein is not to predict structure
but, rather, to capture the interplay between secondary and
tertiary structure formation and polymeric (backbone) en-
tropy. Our model is simple enough that we can easily simulate
the folding and unfolding of a small protein by using Monte
Carlo kinetics. (For a movie of the unfolding of the three-helix
bundle with increasing temperature, see http://hubbell.ber-
keley.edu/UFbprotA.mpg).

Fig. 2 shows a free energy surface corresponding to a small
(43 residues) three-helix bundle T derived from Staphylococcus
aureus protein A (Protein Data Base code 1fc2), computed
with our off-lattice model. [Similar results were obtained for
another three-helix bundle ER-10 (ref. 33%f and data not
shown).] The free energy surface is shown as a function of Q,
the number of native contacts, and Nyg, a measure of the
a-helical content of the conformation. For the off-lattice
model, there are only two free energy minima, corresponding
to unfolded and structured states, respectively. The relative
stability of the two minima varies with temperature, and we
find a first-order transition between U and a partially folded
MG-like state with fluctuating contacts. As temperature is
reduced, the MG-like minimum shifts smoothly toward the
more rigid N state. The smooth MG-N crossover of the

**In an a-helix, the formation of hydrogen bonds between residues i
and i + 4 is determined by the relative orientation and position of
the respective carbonyl and amide groups, which are completely
specified by positions of the a-carbonsi toi + 4. When the simulated
a-carbons are properly located, i.e., within 1 A of the typical
distances obtained from the Brookhaven protein database, we say
that a hydrogen bond has formed, with a free energy of 4 kcal/mol.
The number of such bonds Nyg is content of the conformation. This
method of modeling secondary structure cannot describe B-sheet

_ formation.

TfThe folding of this fragment has been studied previously both
experimentally (29, 30) and theoretically (31, 32).

#1n our calculations, we have not considered the disulfide bonds.

(Q) corresponds crudely to solvent exposure.

off-lattice model differs from the cooperative MG = N
transition of the lattice polymer, as we discuss further below.

Although the U state has less secondary structure than the
MG (or the N state) in our model, it still possesses many native
contacts. Unlike the N state, however, these contacts are
fluctuating (Fig. 2B), in the sense that conformations with
similar Boltzmann weight in the U phase will generally possess
different combinations of native contacts (24).

Because our off-lattice model treats each amino acid residue
as a sphere, it neglects both the stereochemical specificity of
side-chain interactions and the entropy lost as side-chain
degrees of freedom freeze in the process of side-chain pack-
ing.§8 The lattice simulation, however, models packing in the
sense that residues in contact can rigidly lock into place on the
lattice. The two models we consider are, therefore, comple-
mentary with respect to their treatment of packing effects.
Below, we compare and contrast the results of the lattice and
off-lattice calculations to distinguish polymeric effects (com-
mon to both models) from those that depend on rigid packing
(found only in the lattice model).

The U-MG Barrier

One of our principal results is the existence of a first-order U
= MG transition in both models. This result implies that
side-chain packing is not required to establish the free energy
barrier between the U and MG minima (as found experimen-
tally in, e.g., ref. 35); this barrier is a generic property of
designed heteropolymers.

The physical basis of the free energy barrier between MG
and U is demonstrated more directly in Fig. 3, which shows the
entropy for the lattice polymer computed by Monte Carlo

$80ur off-lattice model should also apply to protein-like systems such
as de novo designed proteins, which are unlikely to have well-packed
side chains (for example, see ref. 34).
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Fic. 3. Entropy of lattice model. Mixing (triangles) and loop
(squares) entropies as a function of the number of N contacts Q of the
lattice 36-mer at 7 = 1 and g = 0. The free energy barrier at
intermediate Q and the U free energy minima at nonzero Q are the
result of the interplay of these two entropies, as shown by the respective
entropic minima and maxima in Sioop + Smix

sampling. The total entropy can be divided into three distinct
contributions (V.S.P., A. Y. Grosberg, and T.T., unpublished
work). First, there is a linear term —s,Q that corresponds to
the average entropy lost per contact, where the average
entropy lost per contact is 5o = [Stot(0) — Stot(Omax)]/Omax-

Conformations with Q native contacts can be divided into
groups or “mesostates,” according to the specific native con-
tacts they possess. The “loop entropy” Sioop(Q) represents the
number of conformations in a typical mesostate with Q native
contacts, and the “mixing entropy” Smix(Q) represents the
number of these mesostates. Total (Sior) and mixing (Smix)
entropies are computed directly by Monte Carlo sampling.
Loop entropy Sioop is obtained from the relation Sioq = Smix +
Sloop - SOQ-

Fig. 3 shows that the loop entropy exhibits a deep minimum
for partially folded structures: at small Q, there are few long
loops, and at large Q, there are many small loops; in both of
these limits Sioop is large (compared with intermediate Q) (13).
Conversely, the mixing entropy is peaked at intermediate Q,
where there is the greatest combinatorial choice for residues in
the core. The sum of the loop and mixing entropies generates
an entropic minimum at intermediate Q (Fig. 3). This effect is
independent of the nature of the N state and the details of the
interactions and is, therefore, expected to be a general prop-
erty of designed heteropolymers.

It has been shown (9-12) that the internal free energy Fine
of designed heteropolymers is linear in Q, as is the average
entropy loss —s,Q. Neither of these linear terms can generate
barriers in free energy G(Q). Because we find such a free
energy barrier, it must be caused by the entropy minimum
found in Fig. 3. (Of course, the specific location of the barrier
depends on the linear terms.) We conclude that the free energy
barrier separating the U and MG states is a consequence of
general heteropolymeric entropy considerations rather than
protein-specific details. Recent analytic treatments of hetero-
polymer folding support this conclusion (V.S.P., A. Y. Gros-
berg, and T.T., unpublished work). Although the presence of
hydrogen bonds in the off-lattice model does sharpen the U =
MG transition (which we have tested by changing the hydrogen
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bonding energy in the off-lattice simulation), tertiary rather
than secondary structure formation is the dominant physical
mechanism of this transition.

Barriers to the N State

We find that the MG and N states are not thermodynamically
distinct when side-chain packing effects are omitted, as in our
off-lattice model. This result implies that the first-order MG =
N transition found in the lattice model is a result of cooperative
packing rigidity, in keeping with the analytic theory of Sha-
khnovich and Finkelstein (13). In our lattice calculation, the
barrier between the MG and N states is caused by the scarcity
of low internal free energy conformations in which only a few
residues have fluctuated from their native positions. Because
our off-lattice model has no side-chain packing, the polymer
can continuously swell from its native conformation to a
molten state with increasing temperature and thus there is no
MG-N barrier in this off-lattice model.

Discussion

One might think that the U and MG states could be viewed as
two limiting cases of the same non-native phase. Our simula-
tions show, however, that for designed heteropolymers this is
generally not the case, because both simulations display a
discontinuous, i.e., first-order, U = MG transition. This is in
contrast to the continuous coil-globule transition in homopoly-
mers (15) and random heteropolymers (14). We can under-
stand this striking difference between the behavior of homo-
and heteropolymers by considering the loops that are found in
partially collapsed states (V.S.P., A. Y. Grosberg, and T.T.,
unpublished work).

Consider a polymer that is only slightly collapsed. It will have
a “liquid” core of contacts surrounded by a “gas” of unfolded
flexible loops. As folding conditions are approached, the core
grows as more contacts are made, and the remaining loops
become shorter. For a homopolymer, these contacts form
preferentially where loops enter and exit the nucleus, because
this process maximizes the entropy of the remainder of the
fluctuating loop while gaining the same internal free energy as
any other contact. Loops are therefore smoothly reeled in. This
physical picture describes why the homopolymer coil-globule
transition is continuous.

For proteins and other designed heteropolymers, however,
only specific contacts have favorable internal free energy, and
as folding conditions are approached, these contacts will form
preferentially. As a result, a given loop is much more likely to
be split into two parts by a newly formed contact than to be
smoothly absorbed into the nucleus. This fundamental discon-
tinuity in the formation of the core of the globule is responsible
for the discontinuous U = MG transition for well-designed
heteropolymers.

By contrast, for random heteropolymers the coil-globule
transition is continuous (14) rather than cooperative. We
therefore expect that in the limit of large g, the line of
first-order U = MG transitions should either terminate in a
critical endpoint or be preempted by a glass transition (10-12,
16, 17). From our simulations we find that the U and MG
minima coalesce near 7, = 0.55 and g. = 0.28, which would
represent a critical endpoint. (The possibility of a nearby glass
transition is, however, difficult to rule out based on our
simulations.)

The existence of a critical endpoint to the U-MG coexist-
ence line suggests a unified picture of the U = MG transition
that can explain why some experiments find a first-order
transition (6), whereas others (with different proteins and
under different conditions) observe a continuous crossover
(8): beyond the critical point, the barrier between the U and
MG states disappears, and they are no longer distinct phases,
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in the same way that a vapor and liquid are no longer distinct
past their critical point.

Although the loop entropy is central to the nature of the U
= MG transition, mixing entropy accounts for the very
existence of the MG by stabilizing a partially folded state
whose free energy increases by forming more native contacts.
Although more native contacts would reduce the internal free
energy of the polymer, the increased structure of the nucleus
leads to a more than compensatory reduction in mixing
entropy. In this sense, the MG should be a universal phase of
proteins, because its stability arises from general physical
principles. It follows that the MG phase should appear gener-
ically in protein phase diagrams (Fig. 1B), although the triple
point may in some cases be difficult to access experimentally.

Conclusions

Is the MG a third phase of proteins? On the basis of the
computer simulations and physical arguments detailed above,
we find that the MG is analogous to the liquid state of a bulk
system. The N/U/MG phase diagram of proteins parallels the
solid/vapor/liquid phase diagram of fluids. Each state corre-
sponds to a thermodynamic phase, i.e., a local free energy
minimum. The transition between two distinct phases corre-
sponds to the exchange of stability of the respective minima,
a first-order (i.e., cooperative) transition. Like the vapor—
liquid coexistence line, the U-MG phase boundary appears to
end at a critical point. Beyond this point (which corresponds
to conditions that destabilize native interactions), there is only
a smooth crossover (i.e., noncooperative transformation) from
MG to U state with increasing temperature or denaturant. This
scenario is consistent with experimental evidence (6, 8).

It remains to be seen whether similarly simplified models can
provide useful information regarding the kinetics of protein
folding. In particular, the free energy landscapes of Figs. 1 and
2 exhibit well-defined minima separated by saddle-point bar-
riers. If the coordinates O, Nug, etc., are appropriate reaction
coordinates for folding—which is by no means obvious—then
each saddle point would define the transition state ensemble
of a folding reaction. A more detailed study of these transition
states and the role of the MG in the kinetics of folding is in
progress.
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