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SUMMARY

In the present study, the concentration of TGF-b1 secreted by adherent cells isolated from human

peripheral blood mononuclear cells (PBMC) and either stimulated with PGL-1 or lipopolysaccharide

(LPS) or left unstimulated was determined by ELISA. The cells were isolated from untreated patients

with different clinical forms of leprosy and healthy individuals. The adherent cells exhibited

spontaneous release of TGF-b1 in all clinical forms of leprosy and in healthy individuals; however,

lepromatous leprosy/borderline leprosy (LL/BL) patients presenting erythema nodosum leprosum (ENL)

displayed significantly higher concentrations of TGF-b1 than either the other patients studied or the

controls. These high TGF-b1 levels were consistently observed when LL/BL ENL cells were stimulated

with phenolic glycolipid (PGL-1) or LPS, and even in the absence of a stimulus (P , 0´01). The most

significant differences in TGF-b1 levels were observed when comparing the results in the presence of

PGL-1 from ENL with, in order of significance: tuberculoid leprosy (TT) patients (P , 0´001), LL/BL

patients without ENL (P , 0´01), healthy individuals (P , 0´01) and borderline-borderline/borderline-

tuberculoid (BB/BT) patients with reversal reaction (RR) (P , 0´01). The BB/BT patients produced

equivalent levels of TGF-b1 compared with LL/BL patients without ENL, for all types of stimuli

(P . 0´05). In contrast, TT patients produced the lowest levels of TGF-b1 among all the subjects

studied (both patients and healthy controls), especially following PGL-1 stimulation (P , 0´001, and

P , 0´05, respectively). In conjunction with our previous data regarding TGF-b1 expression in dermal

lesions, it appears that TGF-b1 probably plays different roles in leprosy: (i) to mediate a suppressive

action locally, associated with the presence of PGL-1, and (ii) to induce proinflammatory effects when

secreted systemically by monocytes, thereby acting as a modulatory cytokine in the acute inflammatory

reactions of ENL and associated with the Th2 immune response in multibacillary forms of leprosy.
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INTRODUCTION

Leprosy, caused by the intracellular pathogen Mycobacterium

leprae, provides an extraordinary opportunity to investigate the

human immune regulation of infection, because it presents a

spectrum of clinical manifestations that correlate with the immune

response of the host against the pathogen [1]. At one end of

the clinical spectrum is tuberculoid leprosy (TT) that typifies

the resistant response characterized by restricted growth of the

pathogen. The number of lesions are few but tissue and nerve

damage is frequent. At the opposite end is lepromatous leprosy

(LL), in which the patients are unable to contain the infection and

their lesions are diffusely distributed in the skin resulting in many

viable M. leprae (up to 1010/g of tissue). These clinical

presentations are correlated with the level of cell-mediated

immunity (CMI), which is high in TT patients and in healthy

exposed individuals but is strikingly absent in LL patients, and is

associated with an inverse relationship with the humoral response.

There is a potent antibody response in LL, but not TT, and this

response is therefore not thought to play a role in protection. It has

been demonstrated that there is a clear correlation between the

clinical forms of leprosy and the state of mononuclear phagocyte

activation in the lesions. In TT, the lesions are characterized by a

predominance of CD41 T cells and type-1 cytokines including IL-

2 [2±4], interferon-gamma (IFN-g) [4,5], IL-1b [5], tumour

necrosis factor-alpha (TNF-a ) [5] and IL-12 [6]. By contrast, in

LL the skin lesions are characterized by a predominance of CD81
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T cells and type-2 cytokines including IL-4, IL-5 and IL-10 [4].

Moreover, reactional episodes may occur during the natural

course of the disease, during treatment and even after treatment.

The reversal reaction (RR) seems to be associated with a sudden

increase in CMI against M. leprae antigens and is characterized by

a predominantly type-1 cytokine profile (IL-1b , TNF-a , IL-2 and

IFN-g) in the lesions of the borderline patients. The erythema

nodosum leprosum (ENL) type of reaction, which occurs in

multibacillary leprosy patients, is a more systemic reaction than

the RR and is immunopathologically more complex as well [7]. In

this reaction, it has been shown that there is a selective increase in

IL-6, IL-8 and IL-10 levels, whereas the levels of IL-4 and IL-5

remain unchanged [8].

The presence of large amounts of bacilli in the lesions of

LL demonstrates the inability of macrophages to process these

microorganisms. This may be explained, at least in part, by the

presence of a cytokine that inhibits the microbicidal activity of

macrophages. A cytokine with macrophage-suppressing activity,

such as TGF-b1 [9,10], has been demonstrated in diseases caused

by intracellular parasites [11±14] and in dermal lesions of patients

with borderline leprosy (BL) and LL [15]. TGF-b1 is a product of

activated monocytes [16], among other inflammatory cells, and is

one of the most fascinating cytokines because it has a plethora of

immunoregulatory effects which are described as bifunctional

[17]. This cytokine is a potent proinflammatory and immuno-

suppressive molecule, in addition to its effects on cellular growth

and differentiation [18]. TGF-b1 plays roles in the suppression of

T cell responses, inhibiting both IFN-g [19] and IL-2 expression

[20], and has the ability to inhibit the lytic activity of macrophages

by suppressing the production of intermediate oxygen-reactive

and nitrogen-reactive factors [9,10], leading to the progression of

infection. Recently, we have shown that TGF-b1 is produced by

macrophages in LL and BL skin lesions, probably as part of the M.

leprae evasion mechanism [15]. The role of circulating monocytes

directed against M. leprae and its products, and their relationship

with the production of TGF-b1 by macrophages resident in this

microenvironment is however, unknown.

To investigate the immunoregulatory network at a systemic

level, we determined the concentrations of TGF-b1 secreted by

blood monocytes from patients with different clinical forms of

leprosy and healthy individuals, when these cells were stimulated

in vitro with either phenolic glycolipid (PGL-1) antigen from

M. leprae or bacterial lipopolysaccharide (LPS).

PATIENTS AND METHODS

Patients and healthy individuals

Nineteen untreated patients with the following forms of leprosy

were studied: LL (n � 6); BL (n � 4); borderline-borderline (BB,

n � 2), borderline-tuberculoid (BT, n � 4), and TT (n � 3). Among

the multibacillary patients (LL/BL, n � 10), five presented ENL

(n � 5) or Jopling type-2 leprosy reaction. Among the patients from

the borderline group (BB/BT, n � 6), three presented RR (n � 3) of

Jopling type-1 leprosy reaction. A group of healthy individuals (n � 9)

was studied as a control group. The patients were clinically classified

by the bacilloscopic index (BI) (mean counts of bacilli on heat-fixed

dermal smears obtained from skin lesions and from usually involved

areas, such as ear lobes and elbows, and stained by the method of

Ziehl±Neelsen) [21], by the Mitsuda reaction (intradermal reaction

with a suspension of heat-killed M. leprae containing 6 � 107

bacilli/ml) and by histopathological evaluation, according to

Ridley & Jopling criteria [1].

Monocyte cell culture and stimuli

Peripheral blood mononuclear cells (PBMC) were isolated by

Ficoll±Hypaque and platelets were removed from the monocytes

by washing in Versene buffer and differential centrifugation

as previously described [22,23]. Monocytes were cultured in

RPMI 1640 in the presence of 2´5% heat-inactivated human

AB serum at 378C for 1 h. After removing the non-adherent

cells, the adherent monolayers were then cultured in the presence

of different stimuli, such as PGL-1 (1 mg/ml; Laboratory of

Mycobacterial Research, National Institute for Medical Research,

London, UK) and LPS (10 mg/ml; Sigma Chemical Co., St Louis,

MO), or in serum-free RPMI 1640 (Gibco, Life Technologies,

Paisley, UK) only as a control. The supernatants were harvested

after 48 h culture.

TGF-b1 detection

TGF-b1 concentrations were determined in cell-free supernatants.

TGF-b1 detection was done by enzyme immunoassay (Promega,

Madison, WI) designed for the sensitive and specific detection of

the biologically active molecule in an antibody sandwich format.

Briefly, flat-bottomed 96-well plates were coated with MoAb to

TGF-b1 (at 1:1000 dilution) which binds the soluble molecule

from solution. The captured TGF-b1 was bound by a second

specific polyclonal antibody (at 1:1000 dilution) and, after

washing, the amount of specifically bound secondary antibody

was detected using a species-specific antibody conjugated to

peroxidase as a tertiary reactant. This immunoassay is able to

detect a minimum of 25 pg/ml of TGF-b1 and has # 5% cross-

reactivity with TGF-b2 or TGF-b3 at 10 ng/ml. The Kruskal±

Wallis test for unpaired samples was used for statistical analysis.

RESULTS

Table 1 summarizes the data obtained from patients in terms of

clinical and laboratory information. Initial time-course studies

revealed that optimal TGF-b1 release into the supernatant

occurred after 48 h of culture. The results demonstrate that the

adherent cells exhibited spontaneous release of TGF-b1 in all

clinical forms of leprosy and in healthy individuals. High TGF-b1

levels were detected for the majority of the leprosy patients in

comparison with healthy individuals, except for the TT patients

(Table 2). Generally, these findings occurred independently of

stimulus type in the established conditions for cell culture (Figs 1,

2 and 3).

Adherent cells from patients with LL/BL presenting ENL

displayed significantly higher concentrations of TGF-b1 in the

culture supernatants in the presence of both PGL-1 (Fig. 3) and

LPS (Fig. 2), and without stimulation (Fig. 1) compared with

patients with all other clinical forms of leprosy (P , 0´01) or

healthy individuals (P , 0´001) (Table 2).

On the other hand, the TGF-b1 levels produced by the

adherent cells from TT patients, in the presence of either PGL-1 or

LPS or in unstimulated cultures, were lower than in all other

clinical forms of leprosy (P , 0´001). In addition, these TT TGF-

b1 values were equivalent to the results obtained with PBMC

from healthy individuals either stimulated with LPS or left

unstimulated (P . 0´05) (Table 2). When the cells were stimu-

lated by PGL-1 however, the macrophages from TT patients
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produced TGF-b1 at levels significantly lower than adherent cells

from healthy individuals (P , 0´05) (Fig. 3).

When TGF-b1 production by adherent cells was compared

between BB/BT patients without reaction and BB/BT patients

with RR, no significant differences were observed for all cell

culture conditions (P . 0´05; Table 2; Figs 1, 2 and 3).

Furthermore, macrophage cultures from patients with BB/BT

with type 1 Jopling reaction (RR) produced significantly lower

levels of TGF-b1 when compared with cells from LL/BL patients

with type-2 Jopling reaction (ENL) (P , 0´01, P , 0´001,

P , 0´05, for unstimulated, LPS- and PGL-1-stimulated cells,

respectively).

DISCUSSION

In the present study it was shown that adherent cells from PBMC

exhibited spontaneous release of TGF-b1 in all clinical forms of

leprosy and in healthy individuals. The most significant result was

that patients with ENL showed markedly higher TGF-b1

concentrations than all other patients and controls studied. Since

TGF-b1 primes macrophages to express inflammatory gene

products in response to particulate stimuli [24], these findings

have important implications in ENL where the scavenging

macrophage is most likely to encounter phagocytosable bacilli,

so amplifying the inflammatory response.

After exposure to phagocytic stimuli, macrophages synthesize

and release inflammatory cytokines, such as TNF-a , IL-1b , IL-6

and IL-8, which are greatly increased in ENL patients [8,25,26].

TGF-b1 regulates the production of IL-1, IL-6 and TNF-a
[27±29]. These are important cytokines in the inflammatory

response and may induce macrophage differentiation and acute-

phase protein synthesis [30]. IL-6 is involved in up-regulation

of TGF-b1 [31] and increased concentrations of IL-6 inhibit the

T cell response via induction of TGF-b1 [32]. Continuous

secretion of TGF-b1 by activated inflammatory cells might

result in excessive attraction of these cells into the lesions. As

seen in ENL, this event may lead to tissue injury mediated by

leucocytes, in addition to the induction of prostaglandin E2

(PGE2) [33], with additional immunosuppressive effects on

monocytes, lymphocytes and neutrophils [34].

Furthermore, it was observed in the present study that

monocytes from LL/BL patients without ENL presented similar

levels of TGF-b1 to those found in BB/BT patients with or

without RR. These results indicate that the peripheral levels of this

cytokine might not be associated with the situation in cutaneous

lesions [15]. Probably, this apparent preference of M. leprae for

dermal macrophages and Schwann cells promotes the basis for a

locally induced immune response, leading to immunosuppression

in response to M. leprae antigens. Evidence exists suggesting that

macrophages in LL/BL patients may be efficient at phagocytosis,

but less efficient at other functions, such as antigen presentation

[35].

In BB/BT patients, an immunologically unstable group, the

RR seems to be associated with a sudden increase in CMI,

triggered by the burden of immunologically detected antigen at a

particular site or sites [36]. This phagocytic stimulus may also

lead to production of TGF-b1 in a more endocrine mode of action

[37], as a mechanism of self-regulation of TGF-b1 production by

macrophages [38].

The results obtained in the present study also demonstrate that

TGF-b1 was secreted by adherent cells from TT patients at lower

levels than patients with all other clinical forms of leprosy. In

addition, healthy individuals produced equivalent levels of TGF-

b1 when compared with TT patients. Following PGL-1 stimula-

tion however, TT patients produced lower levels of TGF-b1 than

healthy individuals. These findings are in agreement with our

Table 1. Characteristics of the patients infected by Mycobacterium leprae, according to their clinical forms and laboratory data

Patients Sex

Year/

origin

Age

(years)

Clinical

form Leprosy reaction BI

Mitsuda

test (mm) Histopathology

P1 F 96, UDI 45 BB Type 1 (RR) 0 0 BB Granuloma, AARB 21

P2 M 96, UDI 45 LL Type 2 (ENL) 4´5 0 LL Infiltrate, AARB 51

P3 M 97, UDI 35 LL ± 5´25 0 LL Infiltrate, AARB 51

P4 F 97, UDI 44 LL ± 2´0 0 LL Infiltrate, AARB 41

P5 F 97, UDI 35 LL ± 3´0 0 LL Infiltrate, AARB 41

P6 F 97, UDI 61 BB Type 1 (RR) 0 2 BB Granuloma, AARB 11

P7 F 97, UDI 25 LL ± 5´5 0 LL Infiltrate, AARB 61

P8 M 97, UDI 67 BT ± 0 6 BT Granuloma, AARB2

P9 F 97, RP 46 BL Type 2 (ENL) 3´0 0 BL Infiltrate, AARB 41

P10 M 97, RP 68 TT ± 0 5 TT Granuloma, AARB2

P11 M 97, RP 46 BT ± 0 1 BT Granuloma, AARB 11

P12 M 97, RP 54 LL Type 2 (ENL) 3´75 0 LL Infiltrate, AARB 51

P13 M 97, RP 25 TT ± 0 7 TT Granuloma, AARB2

P14 F 97, RP 45 BL Type 2 (ENL) 3´0 0 LL Infiltrate, AARB 31

P15 M 97, RP 22 BL Type 2 (ENL) 3´0 0 BL Infiltrate, AARB 31

P16 M 98, RP 54 TT ± 0 8 TT Granuloma, AARB2

P17 F 98, RP 57 BL ± 1´5 0 BL Infiltrate, AARB 41

P18 M 98, RP 41 BT Type 1 (RR) 0 5 BT Granuloma, AARB2

P19 M 99, RP 36 BT ± 0 5 BT Granuloma, AARB 11

RR, Reversal reaction; ENL, erythema nodosum leprosum; BI, bacilloscopic index; AARB, alcohol-acid-resistant bacilli; UDI, UberlaÃndia ± MG; RP,

RibeiraÄo Preto ± SP, Brazil.
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previous results for TGF-b1 detection in skin lesions [15], where

this cytokine was not found in TT patients, indicating that the

absence of TGF-b1 is associated with granuloma formation

followed by activation of a cascade of proinflammatory cytokines,

similar to that described in experimental models using mice with a

TGF-b1 gene deletion [39,40].

In conclusion, these data suggest that TGF-b1 appears to play

different roles in leprosy: it presents a proinflammatory effect on

the inflammatory reaction, especially in ENL, stimulating the Th2

response and an immunosuppressive effect in the presence of

PGL-1 or other M. leprae antigens.
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