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The leucine-rich acidic nuclear protein (LANP) belongs to the
INHAT family of corepressors that inhibits histone acetyltrans-
ferases. The mechanism by which LANP restricts its repression to
specific genes is unknown. Here, we report that LANP forms
a complex with transcriptional repressor E4F and modulates
its activity. As LANP interacts with ataxin 1—a protein mutated
in the neurodegenerative disease spinocerebellar ataxia type 1
(SCA1)—we tested whether ataxin 1 can alter the E4F–LANP
interaction. We show that ataxin 1 relieves the transcriptional
repression induced by the LANP–E4F complex by competing with
E4F for LANP. These results provide the first functional link, to our
knowledge, between LANP and ataxin 1, and indicate a potential
mechanism for the transcriptional aberrations observed in SCA1.
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INTRODUCTION
The leucine-rich acidic nuclear protein (LANP; also known as
ANP32a and pp32) is a nucleoplasmic shuttling protein involved
in several processes such as regulation of gene expression, RNA
transport, apoptosis, intracellular signalling and cytoskeletal
dynamics (reviewed by Matilla & Radrizzani, 2005). In the
nucleus, the best-characterized feature of LANP is its ability to
bind to amino-terminal histone tails (Seo et al, 2001; Schneider
et al, 2004). Therefore, LANP masks histones from histone
acetyltransferases (HATs), inhibits histone acetylation and

represses transcription (Kutney et al, 2004). As transcription
itself is highly orchestrated, we reasoned that transcriptional
modulators such as LANP must also be regulated—particularly,
with regard to targeting appropriate genes. Hence, we sought to
identify factors that recruit LANP to specific promoters. Here, we
report one such factor, the transcriptional repressor p120E4F
(henceforth called E4F), a ubiquitously expressed member of
the Gli–Kruppel family (Raychaudhuri et al, 1987). Specifically,
we show that LANP interacts with E4F, potentiates E4F-induced
repression and is required for its full inhibitory capacity.

Finally, we tested the implications of our findings in the context
of the neurodegenerative disorder spinocerebellar ataxia type 1
(SCA1). SCA1 is caused by a glutamine repeat expansion in the
protein ataxin 1, an expansion that increases its tendency to misfold
and accumulate, eventually causing toxicity by a gain-of-function
mechanism (Opal & Zoghbi, 2002). Ataxin 1 binds to LANP
(Matilla et al, 1997); therefore we postulated that the accumulated
ataxin 1 modulates the repression of LANP target genes. This idea
is particularly attractive, given that transcriptional misregulation is
the earliest pathological change identified in SCA1 mice (Lin et al,
2000; Serra et al, 2004). We show that expanded ataxin 1 relieves
E4F-mediated transcriptional repression, providing the first func-
tional link, to our knowledge, between LANP and ataxin 1.

RESULTS AND DISCUSSION
Identification of E4F as an LANP interactor
To understand the targeting of LANP to specific genes, we carried
out a yeast two-hybrid screen to identify LANP interactors. As
described previously (Opal et al, 2003), we identified the
microtubule-associated protein MAP1B as an LANP-binding
protein—this is consistent with the role of LANP as a modulator
of microtubule function (Ulitzur et al, 1997). In addition, we
identified the transcriptional repressor E4F (NM007892; Ray-
chaudhuri et al, 1987; Fernandes & Rooney, 1997) and a few
other proteins that are important in transcriptional repression:
histone deacetylase 2 (HDAC2), Sin3-associated polypeptide
30 kDa (SAP30) and SET-binding protein 1 (SEB1). We focused
on the LANP–E4F interaction because it provides a mechanism by
which LANP can be recruited to the promoters of specific genes.
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We confirmed the E4F–LANP interaction by showing that E4F
does not interact with nonspecific baits (data not shown). Next, by
using truncation mutants, we delimited the interacting regions of
LANP and E4F (Fig 1). A minor deletion in the carboxyl terminus
of E4F (E4F1–614) does not abrogate the interaction. However,
further deletion of the C-terminal domain (E4F1–358), which
truncates the last four zinc-finger motifs, abolishes LANP binding.
We also found that removing the major portions of the two
N-terminal zinc-finger domains (E4F 188-C) did not affect
LANP–E4F binding. It is not clear why deleting some domains of
E4F makes the interaction more robust than that of full-length E4F;
however one possibility is that these domains provide steric
hindrance to binding.

With respect to LANP, it is the C-terminal acidic domain of
LANP that is necessary and sufficient for E4F binding (Fig 1B).
Incidentally, it is this highly conserved acidic tail that interacts
with basic histones to inhibit HAT activity (Seo et al, 2002).

LANP associates with E4F in mammalian cells
To determine whether LANP and E4F associate in mammalian
cells, we tested the colocalization of these proteins by using
confocal microscopy. In HeLa cells, endogenous LANP and
E4F colocalize with overlapping staining patterns (Fig 2A–E).
To confirm the interaction of E4F and LANP, we carried out co-
immunoprecipitation in HeLa cells transfected with Myc-tagged

LANP and S-tagged E4F constructs (Fig 2F,G). It is important to
note that we also precipitated endogenous LANP in N2A cells, a
neuronal cell line with a high concentration of LANP (Fig 2H).
This was accomplished by expressing S-tagged E4F and using
S-beads to precipitate the E4F–LANP complex. Not surprisingly,
we found it difficult to precipitate endogenous E4F, as E4F is
expressed at low levels (Fernandes & Rooney, 1997).

To test whether LANP affects E4F-induced repression, we used
the previously characterized reporter, pGL-E4. This reporter—
generated by placing a firefly luciferase cassette downstream of
the adenovirus E4 promoter—has been important in under-
standing E4F function as a repressor (Fernandes & Rooney,
1997; Sandy et al, 2000; Fajas et al, 2001). Furthermore, because
plasmid-based reporter constructs have been excellent tools for
studying promoter occupancy, we also used this reporter to
describe the mechanistic details of transcriptional repression
(Ishizuka & Lazar, 2003; Lavrrar & Farnham, 2004).

We transfected HeLa cells with pGL-E4 in the presence or
absence of S-tagged E4F and Myc-tagged LANP, and carried out
chromatin immunoprecipitation (ChIP) of E4F or LANP. The E4F
target promoter region was enriched when either LANP or E4F was
precipitated, indicating that both E4F and LANP occupy the E4
promoter (Fig 2I). The ChIP with LANP was quantified by real-time
PCR (Fig 2J). Without exogenous E4F, the amount of LANP
occupying the E4F target promoter was not significantly different
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Fig 1 | Delimiting the interaction between E4F and LANP. (A) Interaction of full-length bait LANP with prey E4F constructs (full-length E4F

(E4F 1–773) or deletion constructs as indicated, with zinc-finger motifs shown as black boxes). (B) Full-length (FL), amino-terminal (DN) and

carboxy-terminal (DC) terminal deletion constructs of LANP were tested as interacting baits against full-length E4F as prey. Interaction was scored on
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by growth on nonselective (2�) media (�Trp/�Leu). LANP, leucine-rich acidic nuclear protein; LRR, leucine-rich-repeat domain.
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from the background (supplementary Fig 1 online), indicating that
LANP recruitment to the E4 promoter is E4F dependent.

E4F and LANP synergistically repress transcription
As expected, the pGL-E4 reporter produces a baseline lumines-
cence that decreases in a dose-related manner on transfection

with E4F in CV-1 fibroblasts (Fig 3A). We also observed repres-
sion when LANP was expressed at higher levels, providing
evidence that LANP can repress the E4 reporter construct
(Fig 3A). To detect a functional synergism between E4F and
LANP, we expressed E4F and LANP at levels (25 ng) at which
they individually cause minimal repression. However, when
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Fig 2 | LANP and E4F interact in mammalian cells. (A–E) Confocal immunofluorescence of HeLa cells showing that endogenous LANP and E4F

colocalize. Stained for (A) E4F, (B) LANP, (C) DAPI (nuclear), and (D) A and B merged. (E) Fluorescence intensity profile over a random cross-

section of the merged image in (D) shows a correlation of intensities of fluorophores used to visualize E4F and LANP. (F,G) Co-precipitation of

S-tagged E4F and Myc-tagged LANP in HeLa cells. Western blots (WB) showing the proteins in the immunoprecipitates. (H) In N2A cells, endogenous

LANP is precipitated with S-beads when S-tagged E4F is expressed. (I) Chromatin immunoprecipitation (IP) showing that LANP–Myc and S-E4F

occupy E4 promoter. (J) Real-time PCR to quantify the amount of pGL-E4 immunoprecipitated with LANP. DAPI, 4,6-diamidino-2-phenylindole;

LANP, leucine-rich acidic nuclear protein.
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combined, the two proteins increased the level of repression
beyond a simple additive effect (Fig 3A, right, the relevant histogram
is marked with an asterisk). This synergism provides functional
evidence of the E4F–LANP interaction. The extent of this synergism
becomes less obvious as the amount of LANP is increased,
indicating that the system can be saturated. We have also found
that depleting endogenous E4F, by using small interfering RNA
(siRNA), significantly relieves LANP-mediated repression of pGL-E4
luciferase activity (supplementary Fig S2 online), providing further
evidence that LANP requires E4F to be recruited.

To control repression on a nonspecific promoter, we mutated
the two E4F-binding sites on pGL-E4mut to generate the mutant
reporter pGL-E4 (Fernandes & Rooney, 1997). When assayed
against pGL-E4mut, E4F and LANP caused significantly lower
repression than observed with the wild-type E4 promoter (Fig 3B,
left side), without a synergistic effect (Fig 3B, right side).

LANP depletion relieves E4F inhibition
To investigate the extent to which LANP is necessary for E4F
activity, we evaluated the contribution of endogenous LANP to
E4F activity. We used two siRNA constructs (#SP1 and #3) that

targeted distinct regions of the LANP message to reduce the levels
of LANP in N2A cells (Fig 4A). The level of LANP depletion and
E4F overexpression is shown by western blots (Fig 4B). It is
important to note that depleting LANP does not affect the levels of
E4F. Repression of pGL-E4 by E4F was significantly relieved when
LANP was depleted (Fig 4A), indicating that endogenous LANP is
required for the inhibitory effect of E4F.

One mechanism by which the depletion of LANP relieves E4F
inhibition could be that LANP promotes the binding of E4F to its
target promoter. To test this hypothesis, we carried out ChIP of E4F
in the presence or absence of LANP. As shown in Fig 4C,D, the
amount of E4F target promoter bound to E4F is reduced when LANP
is depleted (compare histograms 2 and 4 in Fig 4D). These results
indicate that LANP promotes E4F binding to its target promoter.

Mutant ataxin 1 relieves E4F-induced inhibition
SCA1 is characterized by early transcriptional derangements that
presage ataxia. We hypothesized that some of the transcriptional
defects caused by mutant ataxin 1 might result from the
misregulation of LANP. To address this possibility, we tested
whether mutant ataxin 1 modulates the transcriptional repression
of the E4F–LANP complex. Co-transfection of mutant ataxin 1
(ataxin 1-84Q) significantly relieves the E4F-induced repression of
pGL-E4 (Fig 5A; lane 3). This repression of E4F could be restored
by the addition of exogenous LANP (Fig 5A; lane 4), indicating
that ataxin 1 titrates LANP away from E4F. We also found
a substantial relief of E4F repression with wild-type ataxin 1
(data not shown), which is not surprising given that high levels
of wild-type ataxin 1 can induce pathology in animal models
(Fernandez-Funez et al, 2000).

To test whether mutant ataxin 1 and E4F compete for the
available LANP, we carried out co-precipitations of E4F and
LANP in the presence or absence of mutant ataxin 1 (Fig 5B).
The amount of LANP bound to E4F was significantly reduced
when ataxin 1 was present, supporting our finding that ataxin 1
successfully competes with E4F for LANP. This indicates that
the amount of LANP present at the E4F-regulated promoter is
decreased in the presence of mutant ataxin 1. To address this
possibility, we carried out ChIP of LANP in the presence or
absence of mutant ataxin 1 (Fig 5C). We found that the amount of
LANP bound to the E4 promoter was significantly reduced in the
presence of expanded ataxin 1 (Fig 5D, compare lanes 3 and 5).

Together, our findings have important implications. First, our
results indicate a model in which inhibitor of histone acetyltrans-
ferase (INHAT) activity is recruited in a promoter-specific manner
by transcription factors such as E4F. These results are reminiscent
of findings where NIR—a recently described novel INHAT
repressor—is recruited in a sequence-specific manner (by the
tumour suppressor p53; Hublitz et al, 2005). Second, our data
show that LANP is required for the stable binding of E4F to its target
regions, indicating that INHAT corepressors are necessary for the
optimal binding and repression by transcriptional repressors.

Our efforts to explore these issues further in the context of
SCA1 are hampered by the limited knowledge of E4F targets.
Indeed, the only known target of E4F, cyclin A—a regulator of
the cell cycle (Fajas et al, 2001)—is unlikely to have a role in
SCA1, as this disease affects nondividing neurons. Nonetheless,
there is significant evidence that LANP might modulate the
tumorigenic potential of cells by affecting the cyclin A promoter
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(Bai et al, 2001). In the context of tumorigenesis, it is also possible
that LANP might interfere with non-transcriptional functions of
E4F that revolve around cell proliferation such as its interactions
with p14ARF, the retinoblastoma tumour suppressor and p53—
a protein that it also ubiquitinates (Fajas et al, 2000, 2001; Sandy
et al, 2000; Rizos et al, 2003; Le Cam et al, 2006).

Analysis of E4F knockout mice (embryonic lethal at embryonic
day 7.5) indicates that E4F is also involved in mitotic progression
in early embryonic cell cycles by a non-transcriptional role that
influences the mitotic spindle (Le Cam et al, 2004). As LANP-null
mice are viable and fertile (Opal et al, 2004), it seems unlikely that
LANP is important in these early non-transcriptional functions of
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E4F. However, one cannot exclude the possibility that a relative
lack of phenotype in LANP-null mice originates from a redun-
dancy at an organismal level provided by close homologues of
LANP (Matilla & Radrizzani, 2005).

The observation that ataxin 1 modulates repression induced
by LANP has important ramifications for SCA1. In addition to the
effects of ataxin 1 on LANP at the E4 promoter, we have found that
ataxin 1 fused to the Gal4 DNA-binding domain can harness the
repressive functions of LANP to a Gal-4-responsive promoter
(M.C. & P.O., unpublished data). Thus, by relieving repression
on some targets and potentiating repression on others, the mutant
ataxin 1–LANP interaction might cause a mixed picture of
transcriptional aberrations, consistent with the reported up- and
downregulation of specific transcripts in SCA1 mice (Lin et al, 2000;

Serra et al, 2004). Furthermore, such a scenario might explain
why LANP knockout mice do not mirror the SCA1 phenotype
(Opal et al, 2004). Our observations also add to growing evidence
that ataxin 1 has an important role in transcriptional regulation.
For example, ataxin 1 has been shown to interact with the
transcriptional regulators: silencing mediator of retinoid and
thyroid receptor (SMRT)/nuclear receptor corepressor (NcoR),
Histone deacetylase 3 (HDAC3), Growth factor independence 1
(Gfi1), Tat interactive protein, 60 kDa (Tip60)/Retinoid-related
orphan receptor a (ROR-a) and capicua (Tsai et al, 2004; Tsuda
et al, 2005; Lam et al, 2006; Serra et al, 2006). The consequences
of these interactions are likely to be complex with different
transcriptional aberrations integrating to yield the disease
phenotype. This might be another reason why targeting individual
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corepressors in mouse models is not sufficient to mimic SCA1. We
are now initiating studies to link misregulation in gene expression
to specific corepressors and transcription factors using whole-
genome approaches. Such approaches are likely to be crucial in
understanding the pathogenesis of SCA1.

METHODS
Yeast two-hybrid assay. We carried out a yeast two-hybrid screen
using full-length mouse LANP as bait to interrogate a mouse brain
complementary DNA library as described previously (Opal et al,
2003; also see the supplementary information online).
Cells. The human cervical carcinoma HeLa cell line, the African
green monkey CV1 cell line and the mouse neuroblastoma N2A cell
line were cultured at 37 1C in a humidified, 5% (v/v) CO2 atmosphere
in DMEM supplemented with heat-inactivated fetal bovine serum
(10% v/v), 0.1 mM MEM nonessential amino acids, 1 mM sodium
pyruvate, 100 U/ml penicillin G and 100 mg/ml streptomycin.
Protein immunoprecipitations. HeLa cells (2� 106 cells/dish)
were transfected using Effectene (Qiagen, Valencia, CA, USA)
with 2 mg of pCMV-Myc LANP and pCMVs-E4F 2.5K (with empty
vector (pCDNA-3) to keep the total DNA constant at 4 mg). At 36 h
after transfection, cells were lysed and co-precipitation was
carried out with S-beads or Myc antibody linked to protein G
beads (also see the supplementary information online).
Chromatin immunoprecipitations. HeLa cells (4� 106) were
transfected with the indicated constructs. At 24 h after trans-
fection, cells were crosslinked in 1% formaldehyde and lysed.
Chromatin samples were precleared with protein A agarose/
salmon sperm DNA and then subjected to precipitation with the
S-beads or Myc antibody with G-sepharose beads.

After washing and decrosslinking, DNA was extracted with
phenol–chloroform, precipitated with ethanol and the pellet was
resuspended in 30ml Tris–EDTA. A 1ml portion of resuspended DNA
was used for PCR (also see the supplementary information online).
Luciferase assays. Luciferase assays were carried out using the
Dual-Luciferase Reporter Assay System (Promega, Madison, WI,
USA); pRL-CMV (CMV IE promoter-driven Renilla luciferase
reporter construct; Promega) was included in all transfections as
an internal control (also see the supplementary information online).
Supplementary information is available at EMBO reports online
(http://www.emboreports.org).
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