
INTRODUCTION

Dendritic cells (DC) are professional antigen presenting cells
(APC) that possess the exclusive ability to activate naive T cells.
Human DC are usually divided into myeloid (CD11c+), plasma-
cytoid (CD11c–) and Langerhans cells [1]. All three subsets are
capable of inducing primary T cell responses [1,2]. In addition,
plasmacytoid DC can produce large amounts of type I interferons,
potent antiviral and immunomodulatory cytokines [3,4].

The presence of professional APC in the central nervous
system (CNS) has been debated, although certain cell types in the
CNS have long been known to act as non-professional APC and
to support secondary T cell responses [5,6]. Recent studies have
shown that in the normal CNS, DC are located in meninges 
and choroid plexus, but are absent from the brain tissue [7–9]. In
experimental inflammatory diseases of the CNS, DC appear 
in perivascular space and in parenchyma of the brain [7–11]. At
least in mice, brain DC have a myeloid phenotype and are able
to activate naive T cells [9,11].

Multiple sclerosis (MS) is a chronic inflammatory disease of
the CNS associated with autoimmune response against myelin
[12–14]. The reason for chronicity of MS is unknown. If DC 
can migrate to the CNS in MS, take up myelin antigens and
present them to T cells either locally or in regional (e.g. deep 
cervical) lymph nodes, this could contribute to perpetuation of 

the autoimmune process. The ability of DC to induce autoimmu-
nity has been demonstrated both in experimental and in clinical
conditions [15,16]. As yet, the presence of DC in MS plaques has 
not been demonstrated, although CD68+CCR5+ cells found in the
plaques and usually regarded as monocytes/macrophages [17] are
phenotypically compatible with DC as well. We have recently
described myeloid and plasmacytoid DC in human cerebrospinal
fluid (CSF), which mirrors CNS inflammation [18]. While only a
few DC were present in non-inflammatory CSF, there was a sig-
nificant accumulation of myeloid and plasmacytoid DC in CSF
from patients with MS, especially with early MS – acute mono-
symptomatic optic neuritis (ON). Phenotypically, myeloid and
plasmacytoid DC in CSF were similar to corresponding DC
subsets in blood [19,20]: myeloid DC in blood and CSF were
CD4+, CD11c+, CD45RO+, CD83–, CD123dim, CCR5+, HLA-DR++,
while plasmacytoid DC were CD4+, CD11c–, CD45RO–, CD83–,
CD123high, CCR5+, HLA-DR+. Thus, it is likely that blood DC,
similarly to other mononuclear cells (MNC), can enter the CNS,
the process being enhanced in case of inflammation.

Recent studies have identified mechanisms of recruitment 
of immature DC to inflamed tissues. Immature monocyte-
derived DC (moDC), frequently used as prototypic myeloid DC, 
respond chemotactically to a set of inflammatory chemokines,
including monocyte chemotactic protein (MCP)-3, regulated on
activation, normal T cell expressed and secreted (RANTES), and
macrophage inflammatory protein (MIP)-1a/b (ligands of the
chemokine receptors CCR1 and CCR5) [21–23]. Data for primary
blood DC are more limited. Myeloid blood DC express high
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levels of CCR5 and CXCR4 [24], and have been shown to respond
chemotactically to ligands of CCR2 (MCP-1), CCR5 (RANTES)
and CXCR4 (SDF-1) [25]. Plasmacytoid DC express CCR5,
CXCR4 and CXCR3 (a receptor for interferon-g-inducible
protein of 10 kDa [IP-10] and monokine induced by interferon-g
[Mig]) [3], and have been shown to respond to SDF-1 [25]. 
Importantly, ligands of CCR2 (MCP-1–3), CCR5 (RANTES,
MIP-1a/b) and CXCR3 (IP-10, Mig) are expressed in MS plaques
and/or elevated in MS CSF [26–30].

In this study, we attempted to approach the mechanisms
underlying increased recruitment of DC from blood to CSF in MS
and ON. First, we examined expression of CCR5, CXCR3 and
CXCR4 by myeloid and plasmacytoid blood DC in MS, ON, non-
inflammatory neurological diseases (NIND) and healthy donors.
Secondly, we examined the ability of CSF from patients with MS,
ON and NIND to chemoattract immature moDC from a healthy
donor. Correlations of all these variables with numbers of DC in
CSF were analysed.

MATERIALS AND METHODS

Patients and donors
Two groups of patients were included in the study. The first 
group included 18 patients with clinically definite MS (median age
43, range 17–68; 11 females; duration from onset 1–35 years), 13
patients with acute monosymptomatic ON (median age 32, range
22–46; seven females), 15 patients with NIND (median age 43,
range 35–82; eight females) and 15 healthy donors (median 
age 40, range 27–65; 10 females). Venous blood samples (20 ml)
were obtained from this group and used for determination of
chemokine receptors on DC. From 10 MS and 6 ON patients, CSF
samples were obtained at the same time as blood, and numbers
of myeloid and plasmacytoid DC per 1 ml CSF were determined
using flow cytometry.

The second group consisted of 15 patients with clinically 
definite MS (median age 35, range 17–67; 10 females; duration
from onset 1–41 years), 10 with ON (median age 35, range 25–46;
eight females) and 12 with NIND (median age 49, range 21–65;
seven females). Age differences between groups were not signif-
icant. Nine of the MS patients, eight of the ON and none of the
NIND patients had mononuclear CSF pleocytosis (>5 cells 
per 1 ml CSF). Blood and CSF samples (10–20 ml each) were
obtained from all patients. Blood and CSF MNC were isolated
and used for enumeration of myeloid and plasmacytoid DC 
by flow cytometry. CSF supernatants were used for chemotactic
assays.

As far as the whole study is concerned, MS and ON were diag-
nosed according to accepted criteria [31,32]. None of the patients
had ever received immunomodulatory therapy, including corti-
costeroids and interferon-b. All patients with MS and ON had
oligoclonal IgG bands in CSF [33]. As this CSF finding in acute
monosymptomatic ON indicates a 60–70% risk of developing
clinically definite MS [34], we considered our ON patients as
having early MS. Patients with NIND had no clinical evidence for
CNS inflammation and no pleocytosis in CSF (total cell count 
£ 5 cells per 1 ml CSF).

Antibodies, recombinant chemokines and cytokines
Unlabelled anti-CXCR3 MoAb was from R&D Systems (Min-
neapolis, MA, USA). Fluorescein isothiocyanate (FITC)-labelled
lineage cocktail (lin) and anti-CD1a, phycoerythrin (PE)-labelled

anti-CD11c, anti-CD83 and anti-CD123, peridinin chlorophyll
protein (PerCP)-labelled anti-HLA-DR, unlabelled anti-CCR5,
anti-CXCR4, irrelevant IgG1 and IgG2a, streptavidine–
peroxidase conjugate were from Becton Dickinson (Mountain
View, CA, USA). PE-labelled IgG1 was from Dako (Copen-
hagen, Denmark). PE-labelled goat antimouse IgG Ab was from
Serotec (Oxford, UK). Recombinant human IL-4, IP-10, MIP-1b
and RANTES were from R&D Systems, recombinant human
GM-CSF was from Novartis (Basel, Switzerland).

Isolation of blood and CSF MNC
Blood MNC were isolated by centrifugation against Lymphoprep
density gradient (Nycomed, Oslo, Norway), washed twice, resus-
pended and counted. CSF was centrifuged at low speed, super-
natants were collected, and cells gently resuspended in 1%
BSA/PBS. CSF supernatants were stored at –70°C until use.

Detection and enumeration of DC in blood and CSF
Blood or CSF MNC were stained with FITC-lineage cocktail 
(lin), PE-anti-CD11c and PerCP-anti-HLA-DR (15 min, 4°C).
Lineage cocktail (Becton Dickinson) consisted of FITC-labelled
MoAbs against CD3, CD14, CD16, CD19, CD20 and CD56.
Control samples were stained with irrelevant PE-IgG1 instead 
of PE-anti-CD11c. Cells were washed and analysed by FACScan 
flow cytometer and CellQuest software (both from Becton 
Dickinson). At least 5000 events per test in case of CSF were
acquired. Corresponding blood samples served as positive 
controls (50 000 events per test). Myeloid DC were identified 
as lindim/–CD11c+HLA-DR++ MNC, and plasmacytoid DC as
lindim/–CD11c–HLA-DR+ MNC. When anti-CD11c MoAb was
replaced by anti-CD123, myeloid DC stained as CD123dim, 
and plasmacytoid as CD123high. To calculate numbers of DC 
subtypes per 1 ml of CSF, total CSF cell counts were 
multiplied by percentages of DC subtypes determined by flow
cytometry.

Detection of chemokine receptors on blood DC
Blood MNC were first incubated with unlabelled antichemokine
receptor mAbs or isotype controls, then with secondary PE-
labelled goat antimouse antibody, and finally with FITC-lineage
cocktail and PerCP-anti-HLA-DR, each step followed by a wash.
A total of 100 000 events per test were acquired by FACScan/
CellQuest, in order to have ≥100 DC of each subset in a sample.
Myeloid DC were identified as lindim/–HLA-DR++ and plasmacy-
toid DC as lindim/–HLA-DR+ MNC (Fig. 1) with light scatter char-
acteristics in between those of lymphocytes and monocytes. Thus,
only two fluorescence channels (FITC and PerCP) were used for
the discrimination between DC subsets [18,20], while the third
one (PE) was used for detection of chemokine receptors. Levels
of chemokine receptors on DC subsets were expressed as mean
fluorescence intensity (MFI). In each case, background MFI was
determined by staining with isotype-matched control MoAbs and
subtracted from MFI values obtained with specific antichemokine
receptor MoAbs.

Generation of moDC
Immature moDC were generated from adherent blood MNC of
a healthy donor by culture for 7 days in RPMI medium supple-
mented with 2 mM L-glutamine, 50 U/ml penicillin, 50 mg/ml strep-
tomycin, 10% fetal calf serum (all from Life Technologies, Paisley,
UK), 800 U/ml GM-CSF and 500 U/ml IL-4. By flow cytometry,
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immature moDC on day 7 contained <10% lin+, >70% CD1a+ and
<2% CD83+ cells.

Transwell chemotaxis assays
MoDC. CSF- and chemokine-induced chemotaxis of ‘indicator’
immature moDC from a healthy donor was assessed using 24-well
transwell plates with porous (5 mm) inserts (Corning Costar Cor-
poration, Cambridge, MA, USA), essentially as described for DC
[23] and for CSF [35]. moDC were washed, resuspended in RPMI
with 1% FCS and placed into upper chambers of transwells (5 ¥
104/100 ml/well), while lower chambers contained 600 ml of either
medium or CSF supernatants diluted 1/2 (v/v) in the same
medium. Recombinant RANTES (50 ng/ml) was used as a posi-
tive control. After a 90-min incubation at 37°C, inserts were lifted,
washed on their upper surface with PBS, and Giemsa-stained on
their lower surface, so as to visualize migrated DC. Migrated cells
in 10 consecutive high-power (¥250) fields along diameter of 
each insert were counted. Assays were performed in duplicate.
Chemotactic effects of chemokines or CSF supernatants were
expressed as chemotactic factors (CF):

Blood DC. Blood DC were enriched by centrifugation of
blood MNC over a discontinuous (34%: 47·5%: 60%) gradient 
of Percoll (Pharmacia, Uppsala, Sweden). Low density MNC 
containing DC and monocytes, and depleted of lymphocytes 
were collected from the 34%: 47·5% interphase, resuspended in
medium (RPMI with 2% human AB serum), and placed in upper
chambers of transwells in triplicate (3 ¥ 105/100 ml/well). Lower
chambers contained 600 ml of medium or diluted chemokines.
After a 2-h incubation at 37°C, inserts were lifted, and cells

CF

Number of moDC migrated in response
to a chemokine or CSF
Number of moDC migrated in response
to medium alone

moDC =

migrated to their lower surface were washed off into lower
chamber by 2 ml cold PBS, collected (triplicate wells were
pooled), spun down, resuspended in 100 ml PBS, and counted.
Initial and migrated cell populations were stained with FITC-lin,
PE-anti-CD123 and PerCP-anti-HLA-DR. Percentages of
myeloid (lindim/–CD123dimHLA-DR++) and plasmacytoid
(lindim/–CD123highHLA-DR+/++) DC among initial and migrated
cells were determined by flow cytometry, and absolute numbers
of myeloid and plasmacytoid DC among initial and migrated pop-
ulations were calculated. Results of the assay were presented 
as (1) chemotactic factors (calculated as for moDC); and (2) 
percentages of migrated DC in relation to input.

Mixed leucocyte reaction (MLR)
To evaluate the functional importance of DC in CSF, irradiated
(30 Gy) blood or CSF MNC from six MS patients (5 ¥ 104/well)
were co-cultured for 72 h in triplicate with 5 ¥ 104 allogeneic 
T cells (this would give a DC : T ratio in the order of 1 : 100). 
T cells were isolated from blood MNC of a healthy donor using
nylon wool columns. Co-cultures were pulsed with 0·5 mCi/well 
of [3H]thymidine for another 18 h. [3H]thymidine uptake was
analysed by a b-counter. As the degree of HLA mismatch
between stimulators and responders was unknown, the following
correction procedure was used. First, the degree of HLA mis-
match was estimated for each patient as a ratio between cpm of
the T cell/blood MNC co-culture and cpm of T cells alone (stim-
ulation index). Then, cpm of the T cell/CSF MNC co-cultures
were divided by this stimulation index, and these corrected cpm
values were used for analysis.

Statistics
Several groups were compared by non-parametric ANOVA

(Kruskal–Wallis test). If P < 0·05 was obtained, differences
between pairs of groups were further tested by Mann–Whitney
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Fig. 1. Detection of CCR5 and CXCR4 on myeloid and plasmacytoid blood DC (three-colour flow cytometry). Blood MNC are distin-
guished from debris by light scatter properties (R1, not shown). (a) lindim/-HLA-DR++ cells (myeloid DC) and lindim/-HLA-DR+ cells (plas-
macytoid DC) are gated by R2 and R3, respectively. (b) 80% of lindim/-HLA-DR++ express CD11c. (e) In contrast, most of lindim/-HLA-DR+

cells do not express CD11c. Based on this staining pattern, gates R2 and R3 were adjusted and kept through all tests from a given patient.
Both myeloid and plasmacytoid DC express CCR5 (c,f) and CXCR4 (d,g). In c, d, f and g, empty histograms represent staining with
antichemokine receptor MoAbs, and filled histograms represent staining with irrelevant IgG2a.
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U-test. Correlations between two variables were tested by Spear-
man rank correlation test.

RESULTS

CCR5 is elevated on myeloid blood DC in MS and ON
In the first part of the study, expression of CCR5, CXCR3 and
CXCR4 by blood DC in MS, ON, NIND and healthy donors was
examined by flow cytometry. The principle of chemokine recep-
tor detection on blood DC subsets is shown in Fig. 1. Expression
of CCR5 by myeloid blood DC was increased in patients with MS
and ON, compared to patients with NIND or healthy donors (Fig.
2a). In contrast, there was no difference between healthy donors
and patients with NIND. A slight increase of CCR5 on plasma-
cytoid blood DC was observed only in patients with ON, com-
pared to patients with NIND and healthy donors (Fig. 2b). There
was no correlation between duration of MS and expression of
CCR5 by plasmacytoid and myeloid DC. Levels of CXCR4 on
myeloid or plasmacytoid blood DC did not differ between the
groups (Fig. 2c,d). We could not detect any significant expression
of CXCR3 by blood DC subsets.

Myeloid blood DC responds to RANTES and MIP-1b
To test whether CCR5 on blood DC subsets is functional, we
studied chemotactic responses of myeloid and plasmacytoid blood
DC to two CCR5 ligands, RANTES and MIP-1b (see Materials
and methods). DC were enriched from blood of nine MS patients.
Both RANTES and MIP-1b induced chemotaxis of myeloid DC,
but had little effect on plasmacytoid DC (Fig. 3). IP-10 was
chemotactically inactive towards both DC subsets (Fig. 3).

Expression of CCR5 by myeloid DC in blood correlates with
their numbers in CSF
Although expression of CCR5 by myeloid DC was elevated in 
MS and in ON – early MS (Fig. 2a), it nevertheless varied between
patients, which could influence the responsiveness of DC 
to ligands of CCR5 (RANTES and MIP-1a/b) expressed in MS
brain [26,28,30] and, hence, recruitment of myeloid DC to the
CNS. We therefore analysed correlation between expression 
of CCR5 by myeloid DC in blood and numbers of myeloid DC 
in CSF. Such data were available in 10 patients with MS (eight 
of them had CSF pleocytosis and thus active MS) and six 
with acute ON (all with CSF pleocytosis). Numbers of myeloid
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Fig. 2. Expression of CCR5 and CXCR4 by myeloid (a,c) and plasmacytoid (b,d) blood DC in multiple sclerosis (MS), acute monosymp-
tomatic optic neuritis (ON), non-inflammatory neurological diseases (NIND) and in healthy controls (HC), as determined by flow cytom-
etry. Myeloid and plasmacytoid DC were identified as described in Materials and methods and Fig. 1. Levels of CCR5 and CXCR4 
on myeloid and plasmacytoid DC are presented as mean fluorescence intensity (MFI) of entire cell populations. *P < 0·05; **P < 0·01. 
Horizontal bars are medians.
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DC in CSF of these 16 patients varied between 5 and 520 per 
1 ml (a CSF picture from an ON patient with high numbers 
of CSF DC is shown in Fig. 4) and correlated strongly with 
MFI of CCR5 on myeloid DC in corresponding blood samples 
(r = 0·61, P = 0·01, Fig. 5a). In contrast, no such correlation was
observed for plasmacytoid DC (r = –0·1, P = 0·7, Fig. 5b). Numbers
of myeloid or plasmacytoid DC in CSF did not correlate with
expression of CXCR4 by corresponding DC subsets in blood
(data not shown).

To evaluate functional significance of DC in CSF, we exam-
ined the ability of CSF MNC to induce allogeneic MLR. Four of
six CSF MNC samples induced a higher proliferation of allo-
geneic T cells than did blood MNC from the same patients. MLR
values obtained with CSF MNC and corrected for HLA mismatch
correlated with percentages of myeloid DC (r = 0·89, P < 0·05, 
n = 6), but not with percentages of plasmacytoid DC, all lin– cells,
all HLA-DR+ cells, or lin+CD11c+ cells. Given low total numbers
of DC in CSF samples, we could not sort these cells and study
their allostimulatory capacity directly.

Chemotactic activity of the CSF for DC is not 
increased in MS and ON
In the second part of the study, we analysed whether factors
present in the CSF itself could contribute to increased recruit-
ment of myeloid and plasmacytoid DC to CSF in MS and ON.
CSF was obtained from 15 patients with MS, 10 with ON and 12
with NIND, and CSF DC were quantified by flow cytometry
(Table 1). Compared to NIND, numbers of myeloid and plasma-
cytoid DC were significantly elevated in ON, and to a lesser extent
in clinically definite MS. We next directly evaluated the ability of
CSF supernatants from these patients to induce chemotaxis of
‘indicator’ immature moDC from a healthy donor. MoDC were
used instead of blood DC, as it was technically difficult to obtain
blood DC at necessary amounts. In transwell assays, practically
all CSF supernatants induced chemotaxis of immature moDC
(Table 1). The responses of moDC were truly chemotactic but not
chemokinetic, since placing CSF supernatants into both chambers 
of transwells completely abolished transmembrane migration
(not shown). However, chemotactic activity (CFmoDC) of CSF from
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Fig. 3. Chemotactic responses of myeloid and plasmacytoid blood DC to recombinant RANTES, MIP-1b and IP-10, studied by transwell
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patients with MS and ON was not increased compared to that 
of patients with NIND (Table 1). It also did not correlate with
numbers of DC in CSF, when analysed separately in MS, ON and
NIND (by Spearman rank correlation test).

DISCUSSION

Recent studies in animal models have shown that DC, being
absent from normal brain, appear in this organ during inflamma-
tion [8–11,36]. This is an important change within the immuno-
logical environment of the brain, since unlike other brain APC,
DC are able to activate naive T cells and, potentially, to migrate
from the CNS to deep cervical lymph nodes [37] and present anti-
gens outside the CNS. Perivascular localization of DC in experi-
mental allergic encephalomyelitis and toxoplasmic encephalitis
[8–11,36] indicates that these cells may arise from blood precur-
sors, although development from a CNS-resident precursor has
also been suggested [9,38]. The two DC subsets observed by us in
human CSF are phenotypically similar to myeloid and plasmacy-
toid DC in blood [18]. Therefore, we propose that myeloid and
plasmacytoid DC in the CSF are recruited from the circulating
DC. It has been reported that myeloid DC can pass through
endothelium regardless of its activation state, and plasmacytoid
DC can pass through activated endothelium [39]. Circulating
myeloid DC are able to home to the sites of inflammation [40].
Thus, both cell types may cross the blood–brain or blood–CSF
barrier, the process being enhanced in MS and ON.

Although nearly all CSF supernatants induced chemotaxis of
moDC in vitro, this phenomenon appeared not to account for
increased recruitment of DC in MS and ON (Table 1). Chemo-
tactic activity of the CSF may contribute to basal recruitment of
DC that may occur independently of inflammation [41] and give
rise to the small numbers of DC seen in non-inflammatory CSF
(Table 1). In additional experiments with neutralization of
chemokines in CSF (not shown), we could not attribute this
chemotactic activity to the presence of IP-10, MCP-1, MIP-1b,
RANTES or SDF-1a. Increased numbers of CSF DC observed in
MS and ON are probably due to shedding of DC from plaques
located close to the CSF space (e.g. in periventricular white
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Fig. 5. (a) Correlation between expression of CCR5 by myeloid DC in
blood and numbers of myeloid DC in CSF. (b) Absence of such correla-
tion for plasmacytoid DC.
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matter, optic nerves and corpus callosum), or from meningeal
infiltrates, which are characteristic for active MS and probably
represent the same inflammatory process as in MS lesions [42].
Thus, the numbers of DC in CSF may reflect DC infiltration in
inflammatory lesions, and may therefore depend on the levels of
chemokines within the plaques and on expression of cognate
chemokine receptors by DC in blood.

The role of chemokines and chemokine receptors in MS has
been investigated extensively. In particular, expression of CCR5
ligands (RANTES and MIP-1a/b) and presence of CCR5+ cells
has been demonstrated in MS plaques [26,28–30]. In the present
study, we found that myeloid blood DC in MS and MS-type ON
express increased levels of CCR5, compared to NIND and
healthy controls (Fig. 2a). Myeloid DC show a clear chemotactic
response to RANTES and MIP-1b (Fig. 3), and the expression of
CCR5 by myeloid DC in blood in MS and ON correlates with
numbers of these cells in CSF (Fig. 5a). This suggests that the
higher the expression of CCR5 by myeloid blood DC, the more
actively do they respond to RANTES and MIP-1a/b present in
MS brain. It is unclear whether elevated expression of CCR5 by
myeloid blood DC is a primary abnormality in MS, or is induced
by inflammatory mediators released from demyelinating lesions.
Overexpression of CCR5 by T cells in MS has already been
reported [43]. Thus, similar mechanisms may contribute to
recruitment of both T cells and DC to MS lesions, resulting in
enhancement of inflammation. Our data do not exclude that other
chemokines expressed in MS plaques also participate in recruit-
ment of myeloid DC to CSF.

Plasmacytoid DC marginally responded to RANTES and
MIP-1b (Fig. 3), and expression of CCR5 by these cells in blood
did not correlate with their numbers in CSF (Fig. 5b), suggesting
that recruitment of plasmacytoid DC is CCR5 independent. We
have observed previously that numbers of plasmacytoid DC in
CSF are very high in Lyme meningoencephalitis and Behçet syn-
drome [18]. CSF of these patients contains high levels of SDF-1a,
while blood plasmacytoid DC show a strong chemotaxis towards
recombinant SDF-1a [44]. Although CSF levels of this chemokine
in MS and ON are not changed compared to non-inflammatory
controls (our unpublished observation), SDF-1a may be pro-
duced locally in MS plaques, contributing to plasmacytoid DC
recruitment via the CXCR4 receptor. In addition, recruitment of
plasmacytoid DC may depend on expression of certain molecules
by activated brain endothelium, particularly on L-selectin ligands.
L-selectin is highly expressed by plasmacytoid DC in blood [3],

and a recent paper reported that accumulation of plasmacytoid
DC in allergic nasal mucosa correlates with increased expression
of peripheral lymph node addressin (PNAd), a ligand for L-
selectin, by nasal endothelium [45]. Immunohistochemical studies
of these molecules in MS plaques will be required to understand
better plasmacytoid DC recruitment.

The roles of DC in the CNS, and particularly in the CSF,
remain to be established both in normal and inflammatory con-
ditions. A strong correlation between percentages of myeloid DC
among CSF MNC and the ability of CSF MNC to induce allo-
geneic MLR (r = 0·89, P < 0·05) indicates that myeloid DC may
be a major type of APC in the CSF. Accumulation of DC in CSF
in ON – early MS (Table 1) suggests a role for CSF DC in early
events of MS pathogenesis. An intriguing possibility is a recently
described migration of mature DC from CSF to deep cervical
lymph nodes [37]. Presentation of myelin antigens by such DC in
the lymph nodes may restimulate the autoimmune response at
early stages of MS, resulting in a chronic disease.

In conclusion, expression of CCR5 by myeloid blood DC is
elevated in MS and its early form, acute monosymptomatic optic
neuritis, which may contribute to recruitment of myeloid DC to
CNS/CSF. Recruitment of plasmacytoid DC appears to be CCR5-
independent.
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