
INTRODUCTION

Nitric oxide (NO) plays diverse roles in biological systems: it is a
mediator of vasodilatation, platelet aggregation and neurotrans-
mission, and regulates function, death and survival of various cell
types including many of those involved in immunity and inflam-
mation [1–3]. In the immune system NO probably evolved as a
toxic molecule in innate defence, but, in mammals at least, its role
extends to immune regulation [1–3]. In the last 10 years there has
been a steep rise in research directed at understanding the role
and mechanisms of action of NO in immunity and inflammation.
This article will introduce NO as a biologically active molecule,
and then focus on NO as a regulator of mast cell activation and
mast cell-dependent inflammatory processes.

NITRIC OXIDE – CHEMICAL AND 
BIOLOGICAL PROPERTIES

The multiple biological actions of NO are dictated by its physico-
chemical properties. NO is a small (30 Da) uncharged molecule
that carries an unpaired electron, thus defining it as a radical.
Because of its size and absence of charge, NO diffuses unimpeded
into and out of cells, and between cellular compartments. Its 

solubility and diffusion properties resemble closely those of
oxygen, and like oxygen it is a gas under atmospheric conditions
but a solute in biological systems. For a radical NO is relatively
stable – it does not react with itself and has a physiological half-
life of several seconds to minutes depending on its concentration
and physico-chemical environment [4–6].

In response to physiological stimulation, for example in
endothelial cells and neurones, NO is generated rapidly and tran-
siently at low (picomolar) concentrations. NO so generated pro-
duces fast and transient responses in target cells such as smooth
muscle cells, neurones and platelets [1,2]. In these systems NO
acts directly on guanylyl cyclase to induce the second messenger
cyclic guanosine monophosphate (cGMP). By contrast, in
immune and inflammatory responses, cytokines and/or bacterial
lipopolysaccharide induce expression of the inducible form of 
NO synthase (NOS-2) leading to relatively slow, sustained and
high level production of NO [1–3]. Here, the actions of NO are
largely indirect, being mediated by reactive nitrogen oxide species
(RNOS) of formula NOx that are generated in the presence of
molecular oxygen. RNOS are unstable and rapidly S-nitrosate
cellular thiols including proteins, cysteine and glutathione that
represent key targets in cell regulation [4–6]. These S-nitrothiols
provide a slow-release storage depot for NO, hence considerably
extending its biological half-life. In cells and tissues complex equi-
libria are set up in which NO dissociates and re-associates with
thiols, at the same time freeing up NO or RNOS. This process of
shunting of NO from one thiol to another, known as transnitro-
sation, is important in NO transport, for example from cytoplasm
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SUMMARY

Nitric oxide (NO) plays diverse roles in physiological and pathological processes. During immune and
inflammatory responses, for example in asthma, NO is generated at relatively high and sustained levels
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is harder to define. However, although there are conflicting data, the balance of evidence favours a 
predominantly protective role for NO. Mimicking or targeting NO dependent pathways may prove to
be a valuable therapeutic approach to mast cell mediated diseases.
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to nucleus [7]. Under combined nitrosative and oxidative 
stress, NO interacts with superoxide anion (O2

-) to generate the
toxic and highly reactive peroxynitrite anion (ONOO-) [4,5]. The
induction and regulation of NO synthesis in the immune system,
and the subsequent reactions of NO are summarized in Fig. 1. In
biological systems N2O3 is the major RNOS formed from NO, and
this and other RNOS are ultimately hydrolysed and excreted as
nitrite (NO2

-) or nitrate (NO3
-) [5]. The oxidative, nonenzymatic

chemical reactions of NO, including RNOS, superoxide and per-
oxynitrite generation, are summarized in Fig. 2.

SYNTHESIS OF NITRIC OXIDE IN IMMUNE CELLS

Many cell types involved directly or indirectly in immunity and
inflammation synthesize NO. These include fibroblasts, endo-
thelial and epithelial cells, keratinocytes and chondrocytes 
[8,9], monocytes/macrophages [10–12], antigen presenting cells
[13], natural killer (NK) cells [14], eosinophils [15] and mast 
cells [16,17]. Whether T lymphocytes [13,18–21], or neutrophils
[22] produce biologically significant NO is still subject to some
debate.

In living systems NO is synthesized from L-arginine and 
molecular oxygen by a process utilizing electrons donated by
NADPH. The reaction is catalysed by the nitric oxide synthase
(NOS) family of enzymes that convert L-arginine to NO and 
l-citrulline via the intermediate N-hydroxy-L-arginine [23]. One
molecule of L-arginine produces one molecule of NO, the nitro-
gen atom of the latter deriving from the guanidino group of the
arginine side chain. There are three members of the NOS family
– these enzymes comprise large and complex polypeptide homod-
imers, and uniquely among mammalian enzymes incorporate 
an electron-generating reductase domain as well as an electron-
receiving oxidative domain [23,24]. Two NOS are constitutively
expressed (NOS-1 or neuronal NOS and NOS-3 or endothelial

NOS) while the other (NOS-2 or inducible NOS) is expressed
only upon cell activation. It is NOS-2, originally described in
mouse macrophages [10,11], that is the major enzyme for NO 
synthesis in immunity and inflammation [1,2,8,9]. Unlike NOS-1 
and -3, NOS-2 is not present in resting cells but is expressed 
following cell activation. The NOS-2 gene, which is under control
of the transcription actor NFkB, is induced by bacterial poly-
saccharide or classical pro-inflammatory cytokines such as IL-1,
tumour necrosis factor (TNF) and IFN-g, often acting in synergy
(Fig. 1). Hence expression of NOS-2 and NO production are asso-
ciated with inflammatory conditions in which these cytokines 
are produced, or during bacterial infection [1,2,8,9]. There is a 
lag phase of several hours between cell activation and NO 
production, reflecting the time taken for mRNA and protein 
synthesis [23,24]. Expression of NOS-2 is inhibited by the anti-
inflammatory cytokines IL-4 and IL-13, and by glucocorticoids
(Fig. 1) [25].

NOS-2 is unique among the NOS family in that it is not 
activated by a calcium signal but is continuously active once
expressed. It incorporates a calmodulin binding site to which the
calmodulin is tightly bound independently of a calcium signal –
this is thought to be responsible for the continuous activity of 
the enzyme [23,24]. Other factors, such as substrate and cofactor
availability may influence NOS-2 activity. In contrast to NOS-1
and NOS-3, NOS-2 generates high concentrations of NO
(nanomolar rather than picomolar) and this level of synthesis is
sustained for hours or days or longer, depending on how long the
enzyme is present in the cells or tissue.

MAST CELLS IN ALLERGY AND INFLAMMATION

Mast cells are highly specialized secretory cells distributed widely
throughout the tissues, particularly in proximity to blood vessels,
nerves and epithelial surfaces. As reviewed elsewhere [26–28]
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Fig. 1. NO synthesis and reactions in immune and inflammatory cells. In response to inflammatory cytokines or bacterial lipopolysaccharide
(LPS), the enzyme NOS-2 is expressed in many cell types to produce a sustained and high level production of NO. The NO is oxidized to
RNOS of generic formula NOx. These nitrosate the thiol group in glutathione to produce S-nitrosoglutathione (GS-NO) or thiol groups
in proteins to generate protein-S-NO. Under oxidative stress, NO interacts with superoxide (O2

-) to produce the toxic peroxynitrite anion
(OONO-).
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they play important roles in specific and innate immunity, and
IgE-mediated allergy and inflammation. Mast cells are primed or
‘sensitised’ to respond to allergen by acquisition of IgE that binds
tightly to Fc receptors. Thus, in contrast to lymphocytes, mast cells
are responsive to multiple antigens, their spectrum of specificity
being dictated by the repertoire of the IgE response. In IgE-
mediated responses mast cells are the first cell to respond to 
allergen.

The cytoplasm of mast cells is packed throughout with dense
granules that act as high-concentration storage sites for histamine,
heparin and proteases. Within seconds or minutes of exposure 
to allergen, which cross-links cell surface specific IgE, mast cells
expel their cytoplasmic granules and contents by exocytosis. 
Histamine, alone or in synergy with other mediators, contributes
to the core features of inflammation, namely blood vessel 
dilatation and permeation, tissue swelling, raised temperature,
pain and irritancy [26–28].

In addition to preformed mediators, mast cells synthesize 
and release certain prostaglandins and leukotrienes that in
concert contribute to the immediate inflammatory response. As a
consequence of mast cell activation other inflammatory cells are
recruited and activated, and a cascade of inflammatory mediator
production and release is set in motion. The cysteinyl leukotrienes
formed through the lipoxygenase pathway of arachidonic acid
oxidation are potent bronchoconstrictors and inducers of mucus
secretion and contribute substantially to airway narrowing in
asthma [29].

Additionally, mast cells are a rich source of diverse cytokines
that are synthesized de novo upon cell activation, or also, as is 
the case for TNF, stored ‘ready-to-go’ in the secretory granules
[30–32]. In fact mast cells are the major cell type to store 
TNF and are thus primed to trigger most rapidly TNF mediated
inflammatory responses [33]. The list of cytokines and
chemokines released from mast cells upon IgE dependent and
IgE independent activation is extensive, but those that have
received most attention include TNF, IL-4 and IL-6. Mast cell-
derived cytokines have been implicated as the missing link
between the acute and chronic stages of IgE-mediated inflam-
mation [32]. For example, mast cell TNF is a prime candidate for
promoting the later phases of inflammation by recruiting other
inflammatory cell types [33].
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Fig. 2. The oxidative reactions and fate of NO.

EFFECTS OF NITRIC OXIDE ON MAST CELL
ACTIVATION

Just over 10 years ago Vane and colleagues first reported an
inhibitory action of NO on histamine release from rat peritoneal
mast cells [34,35]. They showed that the NO donor sodium nitro-
prusside (NaNP) inhibited degranulation in response to the mast
cell chemical activators calcium ionophore A23187 and com-
pound 48/80 [34], and that a NOS inhibitor enhanced LPS-
induced histamine release [35]. Subsequently NaNP was shown 
to inhibit anti-IgE-induced histamine and tryptase release from
human skin mast cells [36] and anti-IgE- and calcium iono-
phore-induced histamine release from human basophils and rat
peritoneal mast cells [37]. In another study, inhibition of NOS
increased allergen-induced histamine release from isolated
guinea pig heart, and this was associated with exacerbated cardiac
anaphylaxis seen as decreased coronary blood flow and induction
of arrhythmias [38]. Furthermore, NaNP reduced histamine
release and the severity of cardiac anaphylaxis. Thus, in this 
heart model, NO exerts a protective effect on allergen-induced
anaphylaxis, presumably through stabilization of mast cells [38].

For some years it has been known that IFN-a/b and -g inhibit
whereas IL-4 enhances IgE/antigen-induced degranulation and
mediator release from mouse and rat mast cells, and ionomycin-
induced cytokine mRNA induction in human HMC-1 mast cells
[39–44]. The IFN-g effect is far stronger in mixed peritoneal cells
compared to purified mast cell preparations, suggesting an indi-
rect effect of the cytokine [45]. Further experiments revealed 
that the active intermediate is nitric oxide – the IFN-g effect 
was blocked by NOS inhibition and mimicked by NaNP and S-
nitrosoglutathione (GS-NO) [45]. The IFN-g effect was confirmed
as indirect since it was seen only when the accessory cells but not
the mast cells in mixed populations expressed the IFN-g receptor
[46]. Consistent with a role for NO, the enhancing effect of IL-4
on mast cells in mixed peritoneal populations correlates to inhi-
bition of NO synthesis [47]. The NO effect on mast cells is direct
since it is seen equally in mixed and purified populations of mast
cells [45,47].

Some workers have claimed that NO is without regula-
tory activity on mast cells [48,49] but their studies have used 
inappropriate conditions, particularly incubation times with
sources of NO. NO production or NOS expression by rat peri-
toneal or mouse bone marrow-derived cultured mast cells have
been reported, indicating an auto-regulatory role for NO
[16,17,35,50–52]. However, we have found that removal of mast
cells from mixed rat and mouse peritoneal cell populations 
dramatically depletes NO production, and that residual NO pro-
duction can be fully accounted for by the low numbers (1–2%) 
of contaminating nonmast cells [45,47]. Furthermore, NOS
inhibitors enhance antigen-induced degranulation of mast cells in
IFN-g stimulated mixed but not purified mast cell populations,
suggesting that, even if NO is produced at low levels by mast cells
in response to IFN-g, it has no functional autocrine activity in this
setting [45,47]. However, in other circumstances, such as stimula-
tion by antigen [50] or adhesion [51] mast cells may produce 
significant NO.

Given the interest in mast cells a source of functionally impor-
tant cytokines [30–32], we have recently turned our attention to
the role of NO in regulation of mast cell cytokine expression.
Using the rat RBL-2H3 mast cell line as model, we have found
that a panel of NO donors, of varying chemical type and half-life,
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each produced a time-dependent, and in some cases reversible,
inhibition of IgE/antigen-induced expression of mRNA for TNF,
IL-4 and IL-6 [Davis et al. submitted for publication]. As can 
be seen from Fig. 3, GS-NO completely blocked the induced
cytokine mRNA response after preincubation times of 2–4 h
before antigen challenge. We had shown previously that NO
donors inhibit release of serotonin (a marker of degranulation)
from rat and mouse peritoneal mast cells only after prolonged
incubation times of up to 24 h before antigen challenge [45,47].
This ‘slow’ responsiveness of cultured as well as primary mast
cells to NO is consistent with sustained NO generation by NOS-
2 rather than transient NO generation by constitutive NOS. 
Furthermore, it suggests that signalling is not through cGMP that
is normally associated with rapid signalling in target cells. Pre-
vious reports have claimed that NO elevates cGMP in mast cells
[34,35,53] but we have found that the effect of natural cell-derived
NO on mast cell degranulation is not blocked by pharmacologi-
cal inhibition of guanylyl cyclase (the enzyme that generates
cGMP) and is not mimicked by 8-bromo-cGMP, a cell-permeant
analogue of cGMP [47]. These results, in combination with the
observed slow effect of NO, lead us to believe that NO does not
act through cGMP to regulate mast cell degranulation, but more
likely interacts chemically with protein targets to produce pro-
longed changes in responsiveness. This does not exclude the pos-
sibility that NO-induced cGMP may play roles in other aspects of
mast cell behaviour.

NO exerts several effects on mast cells in addition to sup-
pressing mediator production and release. For example, NO
mediates the inhibitory effect of IFN-g on adhesion of rat RBL-
2H3 mast cells to fibronectin [51]; it inhibits generation of reac-
tive oxygen species by rat peritoneal mast cells [54] and on these
cells also up-regulates CD8 [55], the latter evidently through
cGMP. Fibroblast-derived NO is cytostatic for cultured mouse
mast cells [56] and NO is apoptotic towards a mouse mastocytoma
cell line [57]. The effects of NO on apoptosis/cell survival is an
active research area [58–60], and it would certainly be of interest
if NO were to induce apoptosis of mast cells in vivo thereby influ-
encing inflammation.

IL-4

IL-6

TNF

0  0.5   1     2    4    8   24

Time with GS-NO (h)

Fig. 3. Effects of GS-NO on antigen-induced cytokine mRNA expression
in RBL-2H3 mast cells. The cells were incubated with the NO donor for
different time periods, challenged with antigen, and the RNA extracted 2
h later for analysis by RNase protection assay. Experiment performed by
R.D. Koranteng.

EFFECTS OF NITRIC OXIDE ON MAST CELL
ACTIVATION AND MAST CELL-DEPENDENT

INFLAMMATION IN VIVO

Evidence from animal studies supports an inhibitory action of NO
on mast cell activation and mast cell-dependent inflammatory
processes in vivo. Two groups have shown that treatment of rats
with a NOS inhibitor induced mesenteric perivascular mast cell
degranulation, and this was associated with enhanced mast cell-
dependent leucocyte adhesion to the vascular endothelium and
increased gut epithelial permeability [61,62]. Consistent with this,
administration of a chemical NO donor to rats inhibited in vivo
mast cell degranulation, and mast cell-dependent granulocyte
endothelial adhesion and rolling, and microvascular leakage of
albumin [63]. Further studies revealed that NO inhibits mast cell-
dependent leucocyte adhesion by interacting with superoxide
derived from the endothelium [64,65]. A recent study, again
employing mast cell stabilizing drugs and a NOS inhibitor,
showed that vascular permeability and associated pulmonary
oedema in isolated rabbit lungs are inhibited by the suppressive
actions of NO on mast cells [66]. In another model, inhibition of
NOS enhanced allergen-induced histamine release by pig lungs 
in vivo [67]. In rats, injection of a protease-activated receptor-1
agonist into the hindpaw enhanced vascular permeability and
induced paw oedema through a mast cell-dependent process. This
response was enhanced by NOS inhibitors and suppressed by NO
donors [68]. Overall, it appears from these studies, employing
several in vivo models, that NO is an effective inhibitor of mast
cell-dependent inflammatory events. The effects of NO on mast
cell mediator release and mast cell dependent vascular changes
are summarized in Fig. 4.

Nitric oxide in human asthma and animal models of asthma
NO is generated during human inflammatory diseases, the best
documented example being asthma [12,69,70]. NO gas can readily
be detected in the exhaled breath of asthmatics [71], and all three
isoforms of NOS are present in the lung [69]. NO so generated
may exert a combination of beneficial and harmful effects in 
relation to asthma [12,69,70]. For example, NOS-1 derived 
NO inhibits acetylcholine-mediated bronchoconstriction in
human airways and NOS inhibitors increase bronchoconstrictor
responses in animal models, suggesting a protective role for NOS-
1 derived NO in asthma (reviewed in [69,70]). On the other hand,
NO is a vasodilator and thus may promote plasma exudation and
oedema, and facilitate cell recruitment to the tissue (pro-inflam-
matory effects).

The major cellular sources of high level NO production in the
lung include NOS-2 expressing epithelial cells [72], macrophages,
monocytes [12] and eosinophils [73]. A combination of cytokines
(TNF, IL-1b and IFN-g) induces NOS-2 expression in human
primary epithelial cell cultures and epithelial cell lines [72] and
this response is inhibited by glucocorticoids, IL-4 and IL-13 [25].
Primary cultured human epithelial cells from asthma patients gen-
erated less nitrite – a marker of NO production – than those from
healthy subjects, and this was not related to drug therapy [74].
Human monocytes/macrophages are not so rich a source of NO
as their rodent counterparts, and NO synthesis is activated by dif-
ferent stimuli, but nevertheless alveolar macrophages do repre-
sent a biologically significant source of human lung NO [12].
Human alveolar macrophages are also a target for regulation by
NO – their production of inflammatory cytokines and associated
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activation of the transcription factor NFkB are inhibited by 
chemical NO donors [75,76]. Furthermore, levels of NFkB were
reduced in bronchoalveolar lavage cells from asthmatic compared
to healthy lungs, and this was related to increased NO production
[75]. Because NFkB is a key component of the signalling pathway
leading to expression of pro-inflammatory cytokines, these
authors proposed that NO down-regulates cytokine production in
the lung and is therefore protective in asthma [75,76]. Another
recent study, which monitored the dynamics of generation of NO
and its products in the lungs of atopic asthmatics challenged with
allergen, suggested that NO exerts protective effects during the
immediate asthmatic response by consuming reactive oxygen
species [77]. Overall, such studies indicate an anti-inflammatory
role for NO in human lungs.

Based on mouse gene knockout and in vitro T cell studies it
has been claimed that NOS-2 derived NO may exacerbate asthma
by inhibiting helper T lymphocyte (Th)1 and enhancing Th2
responses [18–20]. Although NO is certainly antiproliferative
towards T lymphocytes, subsequent studies have failed to confirm
a selective effect of NO on Th1 versus Th2 cells [13,78,79], casting
doubt on the hypothesis of NO-driven asthma [20].

A study by Xiong  et al. [80] revealed that genetic deletion
of NOS-2 in mice led to a significant reduction in aeroallergen-
induced appearance of eosinophils in bronchoalveolar lavage
fluid (by up to 50%). Allergen-induced microvascular leakage,
pulmonary oedema and airway occlusion were also less severe,
while airway hyper-reactivity to methacholine (a defining feature
of asthma) was unaltered compared to wild type mice [80]. De
Sanctis  et al. [81] confirmed that genetic deletion of NOS-2 in
mice was without effect on allergen-induced airway hyper-
responsiveness, but in contradiction to the Xiong study, genetic
deletion of each of the three isoforms of NOS including NOS-2
had no effect on allergen-induced recruitment of eosinophils,
granulocytes or mononuclear cells [81]. Deletion of NOS-1 or
double deletion of NOS-1/NOS-3 reduced airway responsiveness,

suggesting a contributory role of NOS-1 derived NO towards
bronchial relaxation, but this was not linked any aspect of inflam-
mation [81]. In wild type A/J mice, in which intranasal allergen
challenge led to induction of NOS-2 dependent NO and recruit-
ment of eosinophils to the lung, a selective NOS-2 inhibitor
reduced eosinophil numbers in bronchoaleolar lavage fluid by
approximately 60% [15]. Clearly then, there are conflicting mes-
sages from mouse studies of the role of NO in allergen-induced
lung inflammation.

In allergen-sensitized pigs, NOS inhibition enhanced dra-
matically (by 16 times) allergen-induced lung histamine release
into bronchoalveolar lavage fluid, and enhanced allergen-induced
airway resistance [67]. The NOS inhibitor had no effect on hista-
mine-induced airway resistance, thus demonstrating a protective
effect of NO on pulmonary obstruction via inhibition of histamine
release in vivo [67]. Likewise, in guinea pigs, NOS inhibitors
revealed a protective effect of endogenous NO on airway reac-
tivity [82]. Thus, in the pig and guinea pig, NO exerts beneficial
effects on airway function.

CONCLUSIONS

A combination of in vitro and in vivo studies reveal inhibitory
actions of NO on mast cell degranulation and mediator release,
and mast cell-dependent inflammatory events including vasodi-
latation, vasopermeation and leucocyte-endothelial cell adhesion
(Fig. 4). In inflammatory diseases, such as asthma, human and
animal studies reveal possible pro-inflammatory as well as pro-
tective roles for NO, but overall the weight of evidence indicates
a beneficial role for NO. Certainly the actions of NO in inflam-
mation are complex and varied, not least because the radical
targets multiple cell types including vascular smooth muscle cells,
neurones and immune and inflammatory cells. Future research
directions in inflammation and asthma are likely to cover the reg-
ulatory and signalling effects of NO on mast cells, T cells and
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NO.   / RNOS

-ve

-ve

Fig. 4. Inhibitory effects of NO on mast cell activation, mediator release and mast cell dependent vascular inflammatory events.
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other key cells, and the effects of NO donors and NOS inhibitors
on disease progression.
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