
INTRODUCTION

Primary biliary cirrhosis (PBC) is a chronic liver disease with
autoimmune features, characterised by destruction of the biliary
epithelial cells (BEC) lining small intrahepatic bile ducts, and the
progressive development of fibrotic chronic liver disease culmi-
nating in biliary cirrhosis [1]. It is a relatively common condition
affecting up to 1 in 700 women over the age of 40 in the UK (the
most commonly affected demographic group) [2]. A decade ago
PBC was described as representing both a paradox and a para-
digm for autoimmunity [3]. Over the last decade, significant
progress has been made in our understanding and characteriza-
tion of the autoimmune responses seen in PBC. Important ques-
tions remain, however, regarding the mechanism of tolerance
breakdown and the link between the resulting autoreactive
responses and target cell damage. In this review we will outline
recent progress in our understanding of the immunological basis
of PBC, and examine whether the equivocal description of
10 years ago holds up to modern scrutiny. We will also propose a
unifying hypothesis for disease aetiology which goes some way to
reconciling the current, apparently contradictory, experimental
data and disease pathogenesis models. It is our contention that
whilst it may not yet be the beginning of the end for PBC, we may
at least have reached the end of the beginning.

HUMORAL IMMUNE RESPONSES IN PBC

It has long been established that PBC is characterised by the pre-
sence of autoantibodies that are reactive with both mitochondr-
ial and nuclear antigens. Anti-mitochondrial autoantibodies
(AMA) reactive with the E2 components of the 2-oxo acid dehy-
drogenase complexes (in particular pyruvate dehydrogenase
complex (PDC)), which are present in the serum of in excess of
95% of PBC patients and which represent a key diagnostic
finding, have been extensively characterised in recent years. The
characterization of the anti-E2 responses in PBC has been exten-
sively reviewed elsewhere [4–6]. More recent studies have helped
to clarify some of the outstanding issues regarding antibody
responses to the non-PDC-E2 mitochondrial antigens implicated
in PBC.

A significant proportion (>50%) of patients sera contain
AMA that are reactive with the E1a component of PDC [7].
Although the antibody titres seen are an order of magnitude
lower than those directed towards PDC-E2, it is perhaps surpris-
ing that little work has, to date, addressed the possible role of
these autoantibodies in the immuno-pathogenesis of PBC. The
over-expression of full length recombinant human E1a and
several truncated internal polypeptides, and their use in epitope
mapping studies using PBC sera, has revealed that reactivity is
directed to the C-terminus of the molecule [8]. This is intriguing
as the C-terminus contains the active site of the enzyme and 
anti-E1a antibodies have been shown to be inhibitory of PDC
activity [9], a situation which is analogous to that seen with 
PDC-E2 [10]. These observations are consistent with findings
from several other autoimmune diseases where autoantibodies
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have been shown to be specific for the functional sites of key
enzymes [11]. Further work is required to study the binding 
of antibodies to epitopes around the active site, including the 
regulatory phosphorylation sites and cofactor binding motifs.

Antibodies reactive with branched chain 2-oxo acid dehydro-
genase complex (BCOADC) E1a have recently been identified
using highly purified human BCOADC as the antigen source [12].
The inhibitory capacity of this antibody appears not to have been
tested as yet. It will be of interest to see if the auto-epitope of this
enzyme also proves to be located in the catalytic domain, which
also contains regulatory phosphorylation sites. The lack of
detectable autoantibody reactivity to the E1 subunit of the 
2-oxoglutarate dehydrogenase complex (OGDC) may be a 
consequence of this enzyme not being regulated by reversible
phosphorylation [13].

Secretory IgA anti-PDC is present in saliva [14–16], bile [17]
and urine [18] mimicking the distribution of tissue damage in 
PBC and suggesting at least some mucosal targeting of the
autoantibody response. These antibodies retain the PDC
inhibitory activity characteristic of serum anti-PDC [10,19–21].

Anti-nuclear autoantibodies (ANA) are seen at a lower fre-
quency (only being present in about a third of PBC patients) and
are seen more frequently and at much higher titres in the small
subgroup anti-PDC negative PBC patients [22–24]. Autoanti-
bodies specific for the proteins of the nuclear pore complex
(gp210, p62) may be associated with more active or severe disease
[25]. This may also be true for the autoantibodies that react with
proteins (Sp100 and PML) forming the antigenic targets that
produce the multiple nuclear dot (MND) pattern revealed 
by direct immunofluorescence [23,26]. Another subset of auto
antibodies previously reported to be reactive with carbonic 
anhydrase II [27] have more recently been described as a non-
specific marker of autoimmunity rather than being associated
with AMA-negative PBC [28].

CELLULAR IMMUNE RESPONSES IN PBC

BEC damage in PBC is seen in the context of a mixed portal tract
inflammatory response. T-cells predominate, with CD8+ cells 
particularly prominent in the peri-ductular areas [29,30]. The 
cellular infiltrate includes significant numbers of eosinophils
(especially in early disease), with RANTES expression by 
biliary epithelium being implicated in their accumulation [31].
Heterogeneous expression of ‘Th1’ and ‘Th2’ cytokine patterns is
reported in liver [32–35]. Limited studies have described
increased serum IL-18 levels particularly in advanced PBC and
declining numbers of peripheral blood IL-4 producing CD4 cells
[36,37].

CD4+ and CD8+ T-cells reactive with PDC are present in the
peripheral blood and liver infiltrating T-cell populations in the
majority of PBC patients and absent from controls [34,38–41].
Such responses are seen against native human PDC derived from
heart muscle [42] confirming that T-cell responses to PDC in PBC
are truly autoreactive in nature [43]. PDC reactivity is universal
in PBC patient derived peripheral blood T-cells (and absent from
controls) when cocultured with PDC pulsed autologous dendritic
cells [44] suggesting that apparent absence of response to PDC 
in primary peripheral blood mononuclear cell (PBMC) culture 
in some PBC patients simply reflects culture artefact. T-cell
responses appear to be principally directed against PDC-E2
[34,40,45] although studies of T-cell responses to the other 

component subunits of PDC have, to date, been limited [46]. An
HLA DRB4*0101 restricted epitope spanning PDC-E2163–176
(the lipoic acid binding site in the inner lipoyl domain) has been
identified [45] and extensively characterised [47]. Whether this
epitope is unique, or even, for that matter, dominant, is at present
unclear [48]. Recent work has characterised peripheral blood
derived HLA-A2 restricted CD8+ T-cell lines reactive with PDC-
E2159–167 [49]. At present no data regarding the antigen speci-
ficity of liver infiltrating CD8+ cells and the cytotoxic activity of
the PBMC derived lines are available.

TARGET CELL BIOLOGY IN PBC

Both in situ and in vitro studies of human BEC, the target cell in
PBC, have demonstrated expression of a number of important T
cell ligands. On resting cells these include class I MHC antigens
and adhesion receptors such as ICAM-1 [50]. Additionally, these
epithelial cells express E-cadherin and potentially interact with
the aEb 7-integrin (CD103) on T cells with an intraepithelial phe-
notype; such T cells have been observed in the liver [5]. Follow-
ing stimulation by pro-inflammatory cytokines such as IFN-g
the cells also express high levels of class II MHC antigens [51].
Despite expression of these ligands, studies have failed to iden-
tify expression of the costimulatory ligands B7-1 (CD80) or B7-2
(CD86) on resting or activated cells [52]; this is consistent with
the failure of BEC to present antigen to and directly activate
resting T cells [53].

The capacity for cytokine-stimulated human BEC to form
high-affinity adhesive bonds with T lymphocytes has been demon-
strated by application of a sensitive flow cytometric assay [54].
Combination of this system with antibody blockade of specific
adhesion molecules has allowed demonstration of the major con-
tributions made by ICAM-1 and, to a lesser extent, LFA-3 to the
adhesion of T cells to cultured BEC. These adhesive interactions
are essential for effective induction of BEC cytolysis by activated
lymphocytes [54].

The PBC autoantigen PDC is located on the inner surface of
the inner mitochondrial membrane and is therefore normally 
separated from the extra-cellular immune system by three mem-
branes. However, it has been reported that PDC-like epitopes are
present on the surface of BEC within or freshly cultured from
PBC liver samples [55]. Clearly this observation has significance
for the aetiology of PBC. It is known that several apoptogenic
proteins, including cytochrome c, are released from the mito-
chondrial intermembrane space at an early stage during the
induction of apoptosis [56]. Studies from our group have shown
that PDC is released from apoptotic mitochondria to the cyto-
plasm within 6 h of the induction of apoptosis, and that autore-
active epitopes are present on the still-intact cell surface at later
time points [57]. It has been argued that BEC are particularly 
susceptible to this process, as other cell types efficiently 
‘delete’ cytoplasmic PDC by glutathiolation, which eliminates the 
autoreactive epitope [58].

OUTSTANDING QUESTIONS

Key questions remain to be answered, however, if we are to 
fully understand the immuno-pathogenesis of PBC. Recent 
observations have allowed us to at least attempt to answer these
questions.
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What is the role (if any) of anti-PDC immune responses in
BEC damage?
Until recently there have been few data to directly implicate PDC
specific autoreactive immune responses in target cell damage. The
available data suggest that anti-PDC antibody responses play
little if any role in target cell damage. IgG anti-PDC responses
are seen in patients with some bacterial infections in the appar-
ent absence of the clinical features of PBC [59,60]. Moreover, the
induction of high titre anti-PDC responses in mice by sensitiza-
tion [61,62], and passive transfer of anti-PDC into naïve mice [63]
are not associated, in isolation, with disease induction. The
intriguing hypothesis that the secretory IgA anti-PDC identified
in the secretions of PBC patients [15,16] causes BEC damage as
a result of intra–cellular interaction with PDC [64] during tran-
scytosis [5,65] appears not to have been born out [66].

In the absence of direct studies of BEC-directed cytotoxicity
all data regarding the role played by autoreactive T-cells in BEC
damage remain circumstantial. The body of such evidence is,
however, strong. CD4+ and CD8+ T-cells reactive with self-PDC
are present in peripheral blood. Affected portal tracts contain
both CD4+ and CD8+ cells, the former showing specificity for self-
PDC (the specificity of the latter not having been addressed yet),
with a higher precursor frequency than for PBMC [41]. Apopto-
sis of the BEC in affected portal tracts is seen [67–69] in the
context of localised Granzyme B transcription [70]. Recent 
observations suggesting that the induction of autoreactive T-cell
responses to PDC is temporally associated with the development
of bile duct lesions in an SJL/J mouse model is the strongest 
evidence to date to implicate self-PDC specific T-cell responses 
in bile duct damage [71,72] (although the precise relationship of
such damage to that seen in humans in PBC remains unclear and
is the source of some debate [73]).

What is the mechanism of breakdown of T-cell tolerance 
to PDC, a highly conserved and ubiquitously distributed 
self-antigen?
Evidence from murine modelling studies suggests that breakdown
of tolerance to self-PDC at the B-cell level is relatively easy to
achieve but is not, in isolation, associated with development of
pathology [61]. This mirrors the observations made in human
infectious disease models. Tolerance breakdown in such models
results, we would suggest, entirely from cross-reactivity at the B-
cell level. The development of breakdown of T-cell self-tolerance
to PDC is, in contrast, a much more highly restricted phenome-
non and, we further suggest, the key step in disease pathogene-
sis. Several models have been proposed for how such breakdown
in T-cell tolerance to self-PDC might occurs in humans.

(i) The molecular mimicry model. Several studies have
demonstrated cross-reactivity, at both the B-cell [74,75] and T-cell
[76] level, between PDC and polypeptides derived from the
sequences of potential pathogens. It is suggested that molecular
mimicry between pathogen and self-antigen results in tolerance
breakdown. Three conceptual problems arise with such models.
The first is that the most prevalent ‘mimic’ of self-PDC is 
obviously bacterial PDC which is immunogenic but not, it 
would appear, pathogenic. The second problem is that, although
studies demonstrating reactivity with epitopes derived from
pathogen genetic sequences are tantalising they fail to show
whether such potentially cross-reactive epitopes are generated in
vivo during natural infection. Finally, a recent study addressing
changes in specificity of human anti-PDC antibodies during 

affinity maturation argues directly against such molecular
mimicry models [77].

Despite the lack of evidence to support simple molecular
mimicry models, several findings do suggest some role for bacte-
rial infection, with increased prevalence of bacterial infection 
in PBC patients [78,79], serological evidence of specific previous
infection [80] and bacterial products being present in the
mononuclear cells surrounding damaged interlobular bile ducts
[81]. Features of the host-response seen in PBC such as the pres-
ence of MCP-2 and MCP-3 expressing mononuclear cells in the
portal tract infiltrate and around the periphery of the archetypal
epithelioid granulomata have also been interpreted as suggesting
a role for localised bacterial infection [82]. Intriguingly, a role for
bacterial DNA (rich in CpG dinucleotide repeats which are
ligands for TLR9) in the induction of autoimmune responses has
been proposed in both PBC and other autoimmune disease
[83–85].

(ii) The ‘altered-self’ model. An alternative suggestion for 
the mechanism of breakdown of tolerance to self-PDC in PBC is
that reactivity arises in response to a modified form of self, 
with subsequent reactivity to intact self-PDC. Two scenarios 
have been suggested. In the first, reactivity arises to self-PDC in
the BEC following modification by xenobiotics excreted in the
bile. This model is supported by the observation that AMA 
from PBC patients show greater reactivity to some synthetic
structures designed to mimic xenobiotically modified lipoyl
haptens than to native lipoylated PDC [86]. The second scenario
is that PDC-E2 undergoes modification within cells undergoing
apoptosis, generating novel or cryptic epitopes, leading to 
cross-priming of autoreactive T-cells by dendritic cells (DC) [57] 
and tolerance breakdown through epitope spreading. There is 
certainly evidence to suggest that BEC apoptosis occurs in 
PBC although this has to date been interpreted as representing
the consequences of effector cell function [67–69,87]. As outlined
above, BEC, in contra-distinction to other cell types, have 
been demonstrated to retain immunogenic PDC-E2 whilst 
undergoing apoptosis [58]. Caspase cleavage of PDC-E2 in vitro 
has been shown to generate potentially immunogenic protein
fragments [88]. In this model, a primary aetiological factor 
would induce apoptosis of BEC, triggering tolerance breakdown
through the liberation (during cleavage of PDC by caspases 
and other apoptotic mediators) of cryptic epitopes. As BEC
killing would be, to a significant degree, mediated through 
the medium of apoptosis a cycle of ongoing damage would be
established. A strength of this model is that it might help to
explain the surface expression of PDC derived epitopes on BEC
as cells undergoing apoptosis have previously been demonstrated
to express other highly conserved autoantigens [89]. DC presen-
tation of epitopes derived from phagocytosed apoptotic cells, 
generating productive immunity, has been demonstrated [90]. The
outcome of such presentation is conventionally believed to be tol-
erance (and, indeed to be an important mechanism of induction
and maintenance of peripheral tolerance). We would have to
hypothesise therefore that for auto-reactivity to be induced, pre-
sentation of apoptotic BEC derived cryptic PDC derived epitopes
would have to occur in an inflammatory (and therefore DC acti-
vating) environment. Perhaps this is another role for the mucosal
bacterial infections identified to occur at increased frequency in
PBC patients?

(iii) The endogenous retrovirus model. A study, to date pub-
lished in abstract form only, has described the isolation of retro-
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viral sequences from the BEC of PBC patients [91]. This has led
to the suggestion that PBC is triggered through the actions of an
endogenous retrovirus [92]. The potential for such an agent to
generate the apoptosis necessary for altered-self models of toler-
ance breakdown is clear. The question of the role of endogenous
retroviruses in the aetiology of autoimmunity is, however, deeply
controversial [93] and further work is badly needed in this area
in PBC.

How does breakdown of tolerance to self-pdc, a ubiquitous
protein complex, result in target cell damage with such a
restricted distribution?
There is a growing consensus that the specificity of tissue damage
in PBC is a result of the unique microenvironment of the biliary
tree. BEC are exposed to a highly unusual and potentially toxic
environment containing both agents excreted in the bile (e.g.
xenobiotics able to modify PDC-E2 or heavy metals able induce
apoptosis [94]) and ascending infectious agents (bacterial cofac-
tors or, conceivably, retroviral agents).

A UNIFYING HYPOTHESIS FOR THE
PATHOGENESIS OF PBC

Emerging data from murine modelling studies allow us to recon-
cile these conflicting models. SJL/J mice are unresponsive to sen-
sitization with self-PDC. Sensitization with foreign-PDC induces,
over the short-term, antibody cross-reactive with self-PDC but no
breakdown of T-cell self-tolerance [72]. Co-sensitization with self
and foreign-PDC, in contrast, induces rapid breakdown of T-cell
tolerance to self-PDC in the context of autoreactive antibodies
(the immunological motif of PBC). The induction of B-cell

responses cross-reactive with self-PDC does not, in isolation
therefore lead to T-cell tolerance breakdown but acts as a cofac-
tor for such tolerance breakdown if it occurs in the context of
immunological exposure to self-PDC (in this context, antigen in
the presence of adjuvant). Possible mechanisms whereby antiself
antibody responses might promote T-cell tolerance breakdown
are through presentation of self-PDC by activated cross-reactive
B-cells [95–98] or uptake, processing and presentation of 
complexes of self-PDC and anti-PDC by dendritic cells [99]. In
our murine model, foreign PDC (of bovine origin) shows a 
sufficient sequence difference to mouse PDC to allow a signifi-
cant immune response, but sufficient similarity for the resulting
immune response to be cross-reactive at the B-cell level (Fig. 1a).
In a human model, either foreign but cross-reactive PDC of 
bacterial origin, cleaved self-PDC from apoptotic cells, or xeno-
biotic altered self-PDC could act to induce B-cell responses cross-
reactive with native self-PDC and similarly able to promote T-cell 
tolerance breakdown in the correct immunogenetically suscep-
tible individual and inflammatory context (Fig. 1b). The impli-
cation of this model, if correct, is that all the suggested
aetiological pathways would converge in a final common pathway
of cross-reactive B-cell promoted tolerance breakdown in an
inflammatory environment containing self-PDC released from
damaged cells.

This model may help us to understand some of the unusual,
and as yet unexplained, features of PBC. These include the 
apparent restriction of the disease to the biliary tree (and, to a
lesser extent the salivary gland) despite the universal expression
of the autoantigen PDC, the apparent restriction of the disease to
adults, and the recurrence of the disease following liver trans-
plantation. One of the key aspects of the model is the prominent

© 2002 Blackwell Science Ltd, Clinical and Experimental Immunology, 129:191–197

(a) Murine
Immunogentically Susceptible Strain (SJL/J)

Non-Self PDC (Bovine)                      Inflammatory 
Environment

(adjuvant)

T-Cell Response to Non-Self Epitope Non Reactive With Self-Epitopes

B-Cell Response to Non-Self Epitope Cross-Reactive With Self-Epitopes

B-Cell Presentation of DC Presentation of Anti-PDC/
Cross-Reactive Self-PDC Self-PDC Immune Complexes

Breakdown of T-Cell Self-Tolerance to PDC and T-Cell Mediated BEC Damage

(b) Human Immunogentically Susceptible Individual 

Bacterial PDC

Xenobiotically Modified Self-PDC Environment

Caspase Cleaved Self-PDC (local infection)

T-Cell Response to Non-Self Epitope Non Reactive With Self-Epitopes

B-Cell Response to Non-Self Epitope Cross-Reactive With Self-Epitopes

B-Cell Presentation of DC Presentation of Anti-PDC/
Cross-Reactive Self-PDC Self-PDC Immune Complexes

Breakdown of T-Cell Self-Tolerance to PDC and T-Cell Mediated BEC Damage

Inflammatory 

Fig. 1. Suggested model for the breakdown of self-tolerance in (a) a murine model and (b) humans with PBC. In both cases the model
hinges on the initial development of an immune response to a nonself form of PDC (bovine in the mouse model, bacterial or xenobioti-
cally modified or caspase cleaved self in the suggested human model). Sufficient sequence diversity exists in each case between nonself and
the equivalent self-PDC to allow the development, in the correct inflammatory environment (adjuvant driven in the murine model, 
secondary to local infection in the human model) of non-cross-reactive T-cell responses. There is, in each case, however, sufficient simi-
larity between the priming nonself-PDC and self-PDC to allow full B-cell cross-reactivity. Cross-reactive B-cell responses then promote
epitope spreading within the priming nonself-PDC variant from nonconserved to conserved epitopes resulting in the breakdown of T-cell
tolerance to self-PDC characteristic of both the murine model and human PBC. Alternative suggested mechanisms for this B-cell effect
are direct presentation of self-PDC by cross-reactive activated B-cells and uptake of complexes of self-PDC and cross-reactive antinon-
self-PDC by professional antigen presenting cells. Self-PDC is present in the murine model as a result of deliberate cosensitization. It would
be suggested to be present in the local microenvironment in the human model as a result of release by necrotic PDC rich cells.
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role played by environmental factors in the early disease stages.
The tissue tropism of the disease could result from restricted
exposure to the environmental trigger (through biliary excretion
of PDC modifying xenobiotics or agents such as heavy metals able
to induce apoptosis or, in the case of pathogens, agents ascending
from the GI tract). Similarly, age related exposure patterns (e.g.
the encountering of bioactive compounds such as drugs not typi-
cally given to children or work-place toxins) or cumulative expo-
sure resulting in toxic levels being achieved only after many years
might explain the age of onset of PBC. The prominent role played
by apoptosis in the model may explain disease recurrence in MHC
mismatched liver transplant recipients (a simple recurrence of
autoreactivity being likely in MHC matched recipients). In this
regard it is intriguing to note the increased rate of disease recur-
rence reported in patients receiving primary immuno-suppressive
therapy in the form of tacrolimus compared with patients receiv-
ing cyclosporin [100]. Cyclosporin has the additonal property, 
not shared with tacrolimus of blocking the mitochondrial perme-
ability transition (MPT) rendering cells, to some extent at least,
resistant to apoptosis [101].
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