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Wolbachia, an endosymbiotic bacterium found in most species of filarial parasites, is thought to play a significant role in inducing
innate inflammatory responses in lymphatic filariasis patients. However, the Wolbachia-derived molecules that are recognized by
the innate immune system have not yet been identified. In this study, we exposed the murine macrophage cell line RAW 264.7 to
a recombinant form of the major Wolbachia surface protein (rWSP) to determine if WSP is capable of innately inducing cytokine
transcription. Interleukin (IL)-1β, IL-6, and tumor necrosis factor (TNF) mRNAs were all upregulated by the rWSP stimulation
in a dose-dependant manner. TNF transcription peaked at 3 hours, whereas IL-1β and IL-6 transcription peaked at 6 hours post-
rWSP exposure. The levels of innate cytokine expression induced by a high-dose (9.0 μg/mL) rWSP in the RAW 264.7 cells were
comparable to the levels induced by 0.1 μg/mL E. coli-derived lipopolysaccharides. Pretreatment of the rWSP with proteinase-K
drastically reduced IL-1β, IL-6, and TNF transcription. However, the proinflammatory response was not inhibited by polymyxin
B treatment. These results strongly suggest that the major Wolbachia surface protein molecule WSP is an important inducer of
innate immune responses during filarial infections.

Copyright © 2007 Chantima Porksakorn et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

1. INTRODUCTION

Lymphatic filariasis remains a major debilitating and dis-
figuring disease that affects approximately 120 million peo-
ple worldwide [1]. Wuchereria bancrofti is the major filar-
ial species in most endemic areas, including Thailand [2–
7]. The remaining cases of lymphatic filariasis are caused
by Brugia malayi and B. timori. Host immune responses are
thought to be a major factor contributing to disease pro-
gression in lymphatic filariasis, which manifests as either
acute or chronic inflammation [8–10]. The adverse reac-
tions associated with chemotherapeutic treatment are also
thought to be due to inflammatory responses directly in-
duced by molecules liberated from drug-damaged microfi-
lariae [1, 11]. The drug-induced adverse reactions are as-
sociated with the increased post-treatment concentrations
of proinflammatory cytokines and immune modulators, in-
cluding tumor necrosis factor (TNF), interleukin (IL)-6,
IL-10, lipopolysaccharide-binding protein (LBP), and solu-
ble TNF receptors (sTNF-Rs) [12–14]. Although it is be-

lieved that innate immune responses play a major role in
this immune-mediated pathology, the nature of the parasite-
derived molecules that mediate this pathogenesis has not
been defined.

A majority of filarial nematode species harbor an en-
dosymbiotic bacterium from the genus Wolbachia. The re-
sults of genome sequence analysis [15, 16] and studies where
the bacterium is cleared with antibacterial treatment suggests
that the Wolbachia and the worm have established a mutual-
istic relationship in which Wolbachia appears to make major
contributions to the developmental and reproductive biol-
ogy of the nematode host [17, 18]. In addition, the Wolbachia
from various filarial parasites have been implicated in the im-
munopathogenesis of filarial diseases [19–21]. In patients in-
fected with B. malayi, the presence of Wolbachia following
DEC treatment of parasites is strongly associated with severe
systemic inflammatory reactions [22]. Initial studies to iden-
tify the molecular basis for bacteria-mediated inflammation
suggested that Wolbachia-derived lipopolysaccharide (LPS)
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played a major role in inducing inflammatory responses [23].
However, a role for an LPS is unlikely since the Wolbachia
genome does not contain the genes encoding for the enzymes
required for the biosynthesis of LPS [15]. Therefore, other
Wolbachia-derived molecules are responsible for LPS-like ac-
tivity in worm extracts and these molecules might be impor-
tant for the induction of adverse reactions associated with
parasite death.

The purified recombinant form of the Wolbachia surface
protein (rWSP) from Wolbachia of the dog heartworm Diro-
filaria immitis elicits the secretion of IL-1β, IL-6, IL-8, and
TNF from peripheral blood mononuclear cells (PBMC) of
healthy people [24]. However, roles of WSP from Wolbachia
from the human pathogen B. malayi in activating the innate
immune system have not been characterized. The B. malayi
Wolbachia WSP, a major component of the proteome [25],
shares conserved regions with that of Wolbachia from other
filarial parasites, and with outer membrane proteins of the
closely related bacteria. In this study, we report that a recom-
binant form of the WSP from the B. malayi Wolbachia is a
potent elicitor of the transcription of proinflammatory cy-
tokines in murine macrophage cell line RAW 264.7.

2. MATERIALS AND METHODS

2.1. Cell culture

The murine macrophage cell line RAW 264.7 was purchased
from the American Type Culture Collection (ATCC) and
cultured in Dulbecco’s modified Eagle’s medium (DMEM;
Gibco-BRL, Gaithersburg, Md, USA) containing 10% heat-
inactivated fetal bovine serum in a humidified atmosphere
of 5% CO2 and 95% air.

2.2. Cloning, expression, and purification of rWSP

The entire sequence of the gene encoding the Wolbachia sur-
face protein minus the predicted N-terminal signal sequence
was directionally cloned from genomic DNA extracted from
B. malayi by polymerase chain reaction (PCR). The forward
and reverse primers were 5′CACCATGGATCCTGTTGGT-
CCAATAGC3′ and 5′TTAGAAATTAAACGCTATTCCAG-
C3′, respectively. The gene was cloned into the pET100/D-
TOPO expression vector (Invitrogen, Carlsbad, Calif, USA)
and transformed into one-shot TOP10 cells (Invitrogen).
Plasmids containing inserts were selected by amplicilin resis-
tance and sequenced to confirm that the WSP gene was intact
and in the correct orientation.

For expression, the WSP plasmid was transformed into E.
coli BL21 (DE3) cells (Invitrogen). The rWSP-tagged fusion
protein was then induced to express at 37◦C with 1 mM iso-
propyl β-D-thiogalactopyranoside (IPTG) (Invitrogen). The
rWSP was first purified by treatment of lysozyme and B-PER
bacteria protein extraction reagent, according to the manu-
facturer’s instructions (Pierce, Rockford, Ill, USA), and then
affinity-purified by chromatography with Ni-NTA resin (Qi-
agen Inc., Valencia, Calif, USA). The purified rWSP pro-
tein was refolded upon dialysis. Protein concentration was

determined by a bicinchoninic acid (BCA) protein assay
(Pierce). The purity of the rWSP preparation, as determined
by matrix-assisted laser desorption/ionization time of flight
mass spectrometry analysis, was >90%. The rWSP prepa-
ration contained 0.17 EU/mL of endotoxin as determined
by the Limulus Amebocyte Lysate test (BioWhittaker Inc.,
Walkersville, Md, USA; limit of detection of the assay was
0.06 EU/mL).

2.3. Treatments of murine macrophage
RAW 264.7 cells with rWSP

1 × 105 RAW 264.7 cells were plated into individual wells of
6-well plate and grown to ∼75% confluence at 37◦C. The
cells were exposed to concentrations of the rWSP that ranged
from 9 to 0.1 μg/mL. The macrophage cells were also stimu-
lated with 0.1 μg/mL E. coli LPS B026:B6 (Sigma, St. Louis,
Mo, USA). For proteinase K-treatment, 100 μg of the rWSP
was treated with 1 mg of proteinase K at 55◦C overnight, and
inactivated at 95◦C for 10 minutes. Cell cultures were treated
with 10 μg (80.7 U)/mL polymyxin B sulfate (Sigma). Im-
munoblotting with anti-rWSP antibodies was used to con-
firm the complete digestion of the rWSP. The cells were in-
cubated with each treatment at 37◦C for 3 hours, except for
the time-course experiment.

2.4. Relative quantification of proinflammatory
cytokine mRNAs by real-time RT-PCR

The RAW 264.7 cells were extracted for total RNA by us-
ing RNeasy mini kit (Qiagen Inc.), according to the man-
ufacturer’s instructions. Total RNA (1–5 μg) was used for
first-stand cDNA synthesis in a 20 μl-reaction using 0.5 μg
of oligo (dT)12–18 (Invitrogen), 0.5 mM dNTP mix, 50 mM
Tris-HCl (pH 8.3), 75 mM KCl, 3 mM MgCl2, 10 mM DTT,
40 units RNaseOUT recombinant ribonuclease inhibitor (In-
vitrogen), and 200 units of superscript II RNase H− RT (In-
vitrogen).

PCR primers for murine IL-1β, IL-6, TNF, and β-actin
genes have been described previously [26]. A 50 μl PCR re-
action containing 1X-SYBR Green PCR master mix (Applied
Biosystems, Foster City, Calif, USA), 50 nM of each forward
and reverse primers, and 2 μl of the cDNA sample. Thermal
cycling and data analysis were done on the ABI-prism 7700
sequence detector (Applied Biosystems). Dissociation proto-
col was included in the final step. The copy number of cy-
tokine transcripts was estimated from a standard curve and
the mean of cytokine mRNA levels was normalized utilizing
the β-actin mRNA levels from each sample. The data were
represented as geometric mean of fold change relative to un-
treated control cell cultured under identical conditions.

2.5. Statistic analysis

Statistical analysis was performed using the unpaired Student
t test, two-tailed. Log transformations were performed as ap-
propriate before the statistical analyses. Differences were con-
sidered statistically significant with P < .05.
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Figure 1: Dose response of rWSP-induced IL-1β, IL-6, and TNF
mRNAs production in murine macrophage RAW 264.7 cells. The
macrophage cells were incubated with various concentrations of
rWSP for 3 hours. The data represent mean values and standard
deviations of fold increase of cytokine transcripts relative to nega-
tive control in log scale. Significant differences to untreated controls
(∗P < .01 for IL-1β mRNA levels and P < .05 for IL-6 and TNF
mRNA levels) and to rWSP-stimulated cells at 9 μg/mL (∗∗P < .05)
are indicated.

3. RESULTS

3.1. Dose-dependent cytokine responses to
rWSP in RAW 264.7 cells

At three hours postexposure, expression of IL-1β and IL-
6 in RAW 264.7 cells in response to the rWSP was dose-
dependent (Figure 1). TNF transcription appeared to be less
responsive to different concentrations of rWSP used in this
study. In the RAW 264.7 cells, the rWSP appeared to prefer-
entially induce IL-1β over the 3-hour exposure period which
ranged from a 4-fold increase at 0.3 μg/mL to a ∼300-fold in-
crease in transcription at the 9.0 μg/mL. Although lower, IL-
6 was also significantly elevated by the rWSP stimulation at
3 μg/mL (6-fold) and 9 μg/mL (82-fold). Although the tran-
scription levels of IL-6 appeared to drop below that of the
untreated controls at the two lowest concentrations of rWSP,
these changes were not statistically significant. In contrast,
during the 3 hours of stimulation, the change in TNF tran-
scription, while significantly elevated compared to untreated
controls, remained under 10 folds for all of the concentra-
tions of rWSP tested.

3.2. Early induction of IL-1β mRNA expression,
followed by expression of TNF and
IL-6 mRNAs

The kinetics of IL-1β, IL-6, and TNF gene expressions in
RAW 264.7 cells was determined using the 9.0 μg/mL level of

rWSP at various time points (Figure 2). The rWSP induced
significant increases in the transcription of all three cytokines
as early as 1.5 hours postexposure with IL-1β showing the
most robust response with over a 2500-fold increase com-
pared to unstimulated cells. The increases at the early time
point for IL-6 and TNF were more modest at 5-fold and 20-
fold, respectively. The rWSP-induced transcription of IL-1β
and IL-6 peaked between 6 and 9 hours postexposure, while
the peak in TNF expression appeared to be between 3 and
6 hours. This earlier peak in TNF expression could in part
explain the relatively flat responses to the different concen-
trations rWSP seen in Figure 1. The transcription levels of
IL-6 that appeared to increase again at 24 hours postexposure
were not statistically significant whereas TNF expression had
dropped to near the levels of seen in the untreated control
by this time. The magnitude and kinetics of the cytokine re-
sponses to 9.0 μg/mL rWSP paralleled those observed in con-
trol RAW 264.7 cells exposed to 0.1 μg/mL of E. coli-derived
LPS (Figure 2).

3.3. The cytokine responses to rWSP were
not due to LPS contamination

Because the rWSP used in these studies was derived from
an E. coli extract, it was possible that all or part of the re-
sponse was due to the trace contamination of bacterial LPS
(0.17 EU/mL). To test this possibility, an aliquot of the rWSP
preparation was pretreatment with proteinase K prior to in-
cubation with the RAW 264.7 cells. The protease treatment
of the rWSP preparation drastically abrogated the transcrip-
tion of IL-1β, IL-6, and TNF cytokines in macrophage RAW
264.7 cells (Figure 3). The same treatment had no effect on
the activity of LPS. To further test for a possible role of
LPS in the rWSP response, polymyxin B, an LPS-neutralizing
agent, inhibited LPS-induced TNF mRNA expression by al-
most 90% (reduced from 84 folds to 12 folds; P < .01) in the
macrophage cells, but this treatment had no demonstrable
effect on either low- or high-dose rWSP-induced TNF tran-
scriptions (Figure 4). Taken together, the results of the pro-
tease digestion and polymyxin B experiments strongly indi-
cate that the trace LPS contamination of the rWSP prepa-
ration did not significantly contribute to the ability of the
rWSP preparation to induce innate cytokine transcription
from RAW 264.7 cells.

4. DISCUSSION

The pathology of drug-induced adverse reactions in lym-
phatic filariasis is characterized by the increased post-
treatment concentrations of proinflammatory cytokines, and
inflammatory mediators [12–14]. Traditionally, these ad-
verse reactions have been blamed on IgE-mediated responses
triggered by mass release of parasite antigens—presumably
from dead and dying parasites [27]. However, there are little
data to support this mechanism [11]. In a murine model, sig-
nificant levels of TNF and detectable adverse reactions were
induced after antifilarial chemotherapy of naı̈ve mice trans-
fused with B. malayi microfilariae [23]. These results from
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Figure 2: Time-course analysis of rWSP-induced IL-1â (a), IL-6 (b), and TNF (c) mRNAs expression in murine macrophage RAW 264.7
cells. Incubation of the macrophage cells with 9.0 μg/mL rWSP (black symbols) or 0.1 μg/mL E. coli LPS (white symbols) were performed
at various time-points. The data represent mean values and standard deviations of fold increase of cytokine transcripts relative to negative
control in log scale. Significant differences to untreated controls are indicated as ∗P < .05. ∗∗ Significant differences were found between
rWSP-stimulated cells at 1.5 hours and 3 hours postexposure as well as between rWSP-stimulated cells at 3 hours and 6 hours postexposure
(for TNF mRNA levels; P < .05), while ∗∗∗ significant differences were found between rWSP-stimulated cells at 3 hours and 6 hours
postexposure as well as between rWSP-stimulated cells at 6 hours and 9 hours postexposure (for IL-1β and IL-6 mRNA levels; P < .01).

animals that did not have time to produce an adaptive im-
mune response suggests that at least some component of the
pathology of drug-induced adverse reactions are due to in-
nate immune responses rather than the adaptive immune re-
sponse. The innate immune response can play an important
role in the pathogenesis of lymphatic filariasis, since infec-
tion of immunodeficient mice with B. pahangi results in the
development of T cell-independent lymphedema [28]. In ad-
dition, the pathology in T cell-deficient animals is associated
with the accumulation of macrophages, and the local secre-
tion of inflammatory cytokines, including IL-1â, IL-6, TNF,
and GM-CSF in parasitized lymphatic vessels [28, 29].

Wolbachia are a key determinant to the induction of in-
nate inflammatory responses in vitro and in vivo studies, and
have been implicated to play an important role in the patho-
genesis of human lymphatic filariasis [19, 20, 23, 30, 31]. The

TNF production of mouse macrophages and neutrophils in-
duced by B. malayi extracts is dependent on the presence of
Wolbachia [19, 31]. While initial studies using the Wolbachia
from B. malayi indicated that LPS-like molecules were major
mediators of Wolbachia-mediated inflammatory responses, it
is now clear from the results of genome sequencing that the
B. malayi Wolbachia does not encode the enzymes required
for LPS synthesis [15] implying that other Wolbachia-derived
molecules are mediators of these powerful innate immune
responses.

In this study, purified rWSP derived from B. malayi Wol-
bachia proved to be a potent activator of the innate immune
system, as determined by the pronounced expression of
proinflammatory cytokine genes in the murine macrophage
RAW 264.7 cells. A role for WSP as an inducer of innate re-
sponses is support by the findings that a recombinant form
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Figure 3: Effect of proteinase K treatment in rWSP-induced IL-1â (a), IL-6 (b), and TNF (c) mRNAs expression in macrophage RAW 264.7
cells. The macrophage cells were incubated with 9 μg/mL rWSP (WSP), 9 μg/mL rWSP pretreated with proteinase K (WSPPK), 0.1 μg/mL
LPS (LPS), and 0.1 μg/mL LPS pretreated with proteinase K (LPSPK) for 3 hours. The data represent mean values and standard deviations of
fold increase of cytokine transcripts relative to negative control. Significant differences were found between WSP- and WSPPK-treated cells
(P < .05; indicated by ∗∗).

of the WSP found on the surface of the Wolbachia har-
bored by the filarial species Dirofilaria immitis was capable of
inducing a rapid secreting of cytokines from human PBMC
[24]. Hence, WSPs from different filarial nematode hosts
have a common ability to elicit proinflammatory responses
in cells of innate immune system. However, it is of inter-
est to determine whether different WSP species exhibit the
same characteristic of innate inflammatory response. It is
generally agreed that adverse reactions are more severe in
Brugia-infected individuals compared to those infected with
W. bancrofti [11]. Additional studies are necessary to deter-
mine if these differences in clinical outcome are due specifi-
cally to WSP-host cell interactions or other bacterial-derived
molecules.

The transcription of proinflammatory cytokines in re-
sponse to the rWSP was dose-dependent and IL-1β was the
dominant transcription response in RAW 264.7 cells. The re-
sponse to rWSP was rapid with significantly elevated IL-1β,
IL-6, and TNF after only 1.5 hours of exposure. It will be in-
teresting to determine if the magnitude and kinetics of the

innate response documented here for murine-derived cells is
recapitulated in human cells.

Studies have been conducted to determine the innate
receptors that important for host interactions with Wol-
bachia-derived molecules. Activation of innate inflamma-
tory responses by the D. immitis Wolbachia WSP could be
affected by signaling through both TLR-2 and TLR-4 [24].
In contrast, the innate inflammatory pathways activated by
extracts containing the Wolbachia from B. malayi or On-
chocerca volvulus were shown to be dependent only on TLR2–
TLR6 interactions and dependent on the adaptor molecules
MyD88 and TIRAP/Mal [32]. It is likely that the rWSP used
in this study also signaled through TLR2–TLR6. At this time,
it is unclear what the structural relationship between the
WSP from the B. malayi Wolbachia and the known TLR2–
TLR6 ligands such as lipoproteins, peptidoglycans, lipoara-
binomannans [33].

Although the role of Wolbachia in the pathogenesis of
adverse antifilarial drug reactions has not been definitively
established, the results of a recent study provide evidence
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Figure 4: Effect of polymyxin B treatment in rWSP-induced
TNF mRNA expression in macrophage RAW 264.7 cells. The
macrophage cells were incubated with rWSP (WSP; 1 and 9 μg/mL),
polymyxin B-treated rWSP (WSPPB), LPS (LPS; 0.1 μg/mL), and
polymyxin B-treated LPS (LPSPB) for 3 hours. The data represent
mean values and standard deviations of fold increase of cytokine
transcripts relative to negative control. Significant differences were
found between LPS- and LPSPB-treated cells (P < .01; indicated
by ∗∗).

to support this hypothesis. In the results of clinical studies,
prior treatment of patients infected with W. bancrofti with a
3-week course of doxycycline to deplete Wolbachia prevented
adverse reactions during subsequent albendazole and iver-
mectin treatment that resulted in worm killing. Importantly,
for individuals in the group that did not receive doxycycline
the levels of Wolbachia released into plasma were related to
the incidence of adverse reactions and to the levels of plasma
proinflammatory cytokines [34].

In conclusion, the WSP from the B. malayi Wolbachia
elicited murine macrophages to rapidly upregulate the tran-
scription of the proinflammatory cytokines IL-1β, IL-6, and
TNF. Therefore, Wolbachia, through their WSP, could play a
role in the initiation of inflammatory responses in human
patients that are associated with antifilarial drug treatment.
The characteristics and mechanisms of rWSP-induced IL-1β,
IL-6, and TNF responses would be valuable knowledge for al-
ternative prevention and treatment of the drug-induced ad-
verse reactions.
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