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Melanocytic dysplastic nevi were first described in
both patients and their relatives who had one or sev-
eral cutaneous malignant melanomas. Most of these
dysplastic lesions are biologically stable, but some of
them have severe histological atypia and can progress
further to melanomas. Although several studies have
suggested the etiological importance of dysplastic
nevi in the development of melanomas, comprehen-
sive reviews of the molecular changes in these dys-
plastic lesions are still scarce. To remedy this issue,
this article analyzes the available molecular informa-
tion about dysplastic nevi and provides the current
state of knowledge regarding the karyotypic abnor-
malities of the melanoma/dysplastic nevus trait and
the involvement of allelic loss, tumor suppressor
genes, mismatch repair proteins, microsatellite insta-
bility, oncogenes, extracellular matrix proteins, and
growth factors in the genesis of these lesions. These
studies suggest that although some of these lesions
represent “genetic dead-ends,” others represent inter-
mediate lesional steps in the melanoma tumorigene-
sis pathway. (J Mol Diagn 2002, 4:71–80)

Although the concept of the melanocytic dysplastic ne-
vus as a risk factor for cutaneous malignant melanomas
(CMMs) was introduced only recently, these lesions were
observed long ago1 (Figure 1). In 1978, Clark et al2

published the first report to advance melanocytic
dysplastic nevi (MDN) as a separate pathological entity.
In 1980, Greene and colleagues3–5 applied the term
“dysplastic nevus,” as the lesions have clinically, archi-
tecturally, and cytologically atypical features. These
moles are categorized into sporadic and familial dysplas-
tic nevi.6,7 The presence of MDN is associated with al-
most 100% and 60% of familial and sporadic CMMs,
respectively.8–11

Over the last decade, most of the relevant molecular
analyses have focused on CMMs rather than on MDN.

The underlying reasons include the relatively large size of
CMMs, their direct lethal outcome and the feasibility of
propagating and establishing corresponding CMM cell
lines. In contrast, due to their relatively small size, vari-
able criteria for histological diagnosis, controversial ter-
minology, and difficulty in establishing in vitro cultures,
MDN have hardly been studied. The limited studies on
these lesions reported some genetic changes and sug-
gested that evolution of some MDN may result in CMMs.
Although genetic changes in CMMs have been analyzed
in several review articles, reviews about these changes in
MDN have remained scarce. To remedy this gap in the
literature, this review seeks to examine genetic alterations
in MDN.

Genetic Alterations in MDN

The genesis of MDN seems to be a complex process that
involves poorly understood phenotypic and genotypic
alterations. These alterations include loss of tumor sup-
pressor genes (TSGs) and alterations of oncogenes,
housekeeping genes, growth factors, and extracellular
matrix proteins. Two models are currently proposed to
explain the genesis of MDN. The first one considers that
MDN arise by inactivation of one allele of melanoma
suppressor genes, while the subsequent loss of the sec-
ond allele leads to malignant transformation of the dys-
plastic nevic cells.12 The second model relies on the
presence of at least two genes working independently.
Therefore, alterations of one of them cause dysplasia in
the melanocytes while the other results in malignant
transformation.13 Both models rely on the “two-hit” hy-
pothesis, suggesting that two genetic events are required
for inactivation of TSGs. In familial forms of cancer, one
mutation is believed to be germline and the other so-
matic, whereas in sporadic cancers, both mutations are
somatic.14

Genetic alterations accompany and drive the evolution
of neoplasms and their subsequent progression to more
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malignant phenotypes. These alterations may either pro-
vide new potential for aggressive behavior of the tumor
cells, such as by activation of oncogenes and alterations
of housekeeping genes, or may release the tumor cells
from regulatory effects through the loss of TSGs. We
subdivided these genetic alterations into: karyotypic
changes in CMM/MDN trait; allelic loss; alterations of
tumor suppressor genes; alterations of mismatch repair
protein expression; microsatellite instability; alterations of
oncogenes; alterations of the extracellular proteins; and
alterations of cytokines and growth factors.

Karyotypic Alterations

Chromosome 1p and CMM/MDN Trait

Linkage analysis studies mapped a susceptibility lo-
cus for CMM/MDN to chromosome 1p near the rhesus
blood group locus (Rh). Subsequent linkage analysis
studies supported a role for 1p but also excluded many
candidate regions around this locus.15,16 In 1989, a
CMM/MDN locus was mapped to chromosome 1p36 by
Bale et al.17 To determine the site of this locus, Bale and
colleagues evaluated 99 relatives and 26 spouses in six
families with CMM/MDN predisposition using 26 polymor-
phic markers on the 1p region. They analyzed the co-
segregation of the CMM/MDN trait and mapped the trait
susceptibility locus to be between an anonymous DNA
marker (D1S47) and the gene locus for pronatrodilatin
(PND) at the 1p36 region.17 The failure of subsequent
studies from 1989 to 199112,18 to confirm linkage be-
tween a CMM/MDN locus and the 1p region may have
been due to diagnostic, clinical, and genetic heteroge-
neity.19,20.

In 1992, Goldstein et al12,18,19,21–23 incorporated the
previous linkage analyses and performed three linkage
analyses to examine the relationship between CMM/MDN
and D1S47, PND, and D1S160 markers in several fami-
lies. They demonstrated that the CMM/MDN susceptibility
locus is located at 1p36 and linked to the D1S47 mark-
er.19 They also showed strong evidence for genetic het-
erogeneity in these lesions. In 1996, Goldstein and col-
leagues20 simultaneously examined the 1p36 and 9p21

regions using two-trait-locus, two-marker-locus linkage
analysis. Their work suggested the presence of two sus-
ceptibility loci at these regions, with the 1p locus contrib-
uting to both CMM and CMM/MDN and a 9p locus con-
tributing mostly to CMM alone.

Chromosome 9p and CMM/MDN Trait

In 1991, Fountain et al and Petty et al24,25 presented
papers at the eighth International Congress of Human
Genetics proposing chromosome 9p as a possible loca-
tion of melanoma susceptibility genes. In 1992, further
support for this proposal came from the work of Nancar-
row et al,21 who carried out genetic linkage analysis in
Australian kindreds with CMMs. This group found two
major gaps in the exclusion map, located at 9p22 cen
and 9q12-q32, as well as smaller regions at each telo-
mere. Simultaneously, Cannon-Albright et al26 examined
eleven extended kindreds with 82 cases of CMMs using
genetic markers for the 9p22–21 region. They assigned
the susceptibility locus to 9p13-p22 and addressed the
possibility that the locus functions as a tumor suppressor
gene.27 In 1993, Nancarrow et al28 confirmed these find-
ings by examining linkage analysis in 26 Australian
CMMs families for IFNA and D9S126 markers in the 9p
region. Subsequently, Goldstein et al29 performed link-
age analysis on 13 families previously investigated for
linkage to chromosome 1p.16,21,22,28 They used IFNA/
D9S126 markers and reported significant evidence for
linkage to IFNA. In contrast, they found no evidence for
linkage between CMM alone or CMM/MDN and D9S126.

Chromosome 1p and 9p Involvement in
CMM/MDN Trait

Despite their contributions, these studies failed to an-
swer a challenging question: is there a single CMM/MDN
locus or are there two tightly linked loci, one for CMM and
the other for MDN? To address this question, Goldstein
and colleagues20 conducted two-trait-locus, two-marker-
locus linkage analysis on 19 CMM/MDN kindreds (previ-
ously genotyped for one or more markers on the 9p and

Figure 1. Histological appearance of melanocytic dysplastic nevus (A) and cutaneous malignant melanoma (B).
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1p regions) in 1996. This study suggested that two loci
act separately in production of CMM or CMM/MDN, with
substantially stronger evidence of CMM linkage to a 9p
than to a 1p region. In contrast, another study presented
comparable evidence for CMM/MDN linkage to both re-
gions. Nevertheless, it is still possible that the 1p locus
contributes to both CMM and CMM/MDN, whereas a 9p
locus contributes more to CMM alone.30

To summarize, most genetic analysis studies have
suggested that CMMs and MDN may be pleiotropic man-
ifestations of alterations of the same susceptibility
gene.31 A subset of kindreds showed evidence of linkage
to a 1p region, another subset to a 9p region, and others
to both 1p and 9p regions. Furthermore, the assignment
of the locus for CMM/MDN to regions (1p and 9p) in the
human genome that are usually involved with karyotypic
abnormalities in CMMs raised the possibility that chromo-
somal deletions represent an important event in the evo-
lution of the CMM/MDN trait.32,33

Allelic Loss at the 1p, 9p, and 17p Regions

The concept of TSGs implies that every living cell is
potentially cancerous, but as long as it has functioning
TSGs, it is somehow prevented from fulfilling its malignant
potential. The evidence for the presence of tumor sup-
pressor genes can be obtained from loss of heterozygos-
ity (LOH) studies. Loss of heterozygosity can result from
chromosomal deletion, mitotic recombination, non-dis-
junction, or unbalanced translocation.34,35

In MDN, few studies have examined the presence of
LOH at the 1p, 9p, and 17p regions using polymerase
chain reaction-based microsatellite assays (Figures 2
and 3).36–38 Previous studies indicated a close link be-
tween the sites of LOH and the location of TSGs.39,40

Interestingly, the TSGs at these chromosomal regions are
commonly involved in a wide variety of tumors.41–46 It is
unknown if these TSGs belong to the class of general
TSGs that can be inactivated by various mechanisms in a

variety of tumors.45,47 Although the allelic loss in MDN
was much lower than that in CMMs, it was still similar in
pattern. Therefore, it is conceivable that LOH at these
(1p36 and 9p22–21) regions does play an early role in
CMMs tumorigenesis. These observations may support
the existence of a biological continuum between some
MDN and CMMs48,49 and reinforce the need to follow up
these dysplastic lesions.

Loss of Tumor Suppressor Genes

TSGs are genes which, when deleted, inactivated, or
expressed at a reduced level contribute to carcinogene-
sis. So far, three TSGs have been examined in MDN,
including p16/CDKN2A, TP53, and Melastatin genes.

p16/CDKN2A Gene (Cyclin Dependent Kinase
Inhibitor 2A)

p16 (MTS1/multiple tumor suppressor 1) is a putative
TSG50,51 located at 9p21 region and encoding for a
p16INK4a protein or INK4a (inhibitor for kinase 4a).52–54

This protein inhibits the activity of the cyclin D1-CDK4
complex. This complex phosphorylates the retinoblas-
toma (Rb) protein and therefore allows progression of the
cells through the G1 cell cycle checkpoint. Therefore,
p16 protein works as a TSG by exerting negative regu-
lation of cell growth.52 p16 is commonly deleted and
mutated in a variety of neoplasms, such as bladder tu-
mors, esophageal cancer44–46 and CMMs, and in lym-
phoblastoid cell lines derived from patients with dysplas-
tic nevus syndrome.45

In MDN, mutational analysis of p16 revealed contrast-
ing results. Therefore, while some groups asserted the
absence of these mutations,55 others acknowledged the
presence of point mutations in these dysplastic lesions.36

p16 mutations were not of the type commonly involved in
CMMs, raising the possibility that they could represent
artifacts of polymerase chain reaction.54

On the immunohistochemical level, p16 protein was
expressed in nearly all MDN at levels similar to those in
benign nevi.56–58 Keller-Melchior et al58 reported a uni-
form labeling pattern in almost 86% and 59% of the cells
of MDN and CMMs, respectively. Whether p16/INK4a

Figure 2. The reported frequency of microsatellite instability (MSI) and loss
of heterozygosity (LOH) on several chromosomal arms in melanocytic dys-
plastic nevi. The bars compare the frequency of these genetic changes
among the different studies.36,37,111,112

Figure 3. Genetic changes in melanocytic dysplastic nevi. Left: Microsatellite
instability (MSI), with the arrowhead indicating the appearance of a novel
band in the tumor (T) DNA as compared to DNA from the normal tissues (N).
Right: Loss of heterozygosity (LOH) in the tumor DNA, with the arrowhead
indicating loss of upper allele in the tumor.
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alterations play an important role in the evolution of MDN
and development of CMMs is still unclear.

TP53 gene

TP53 is a stress response gene, located at the 17p13.1
region, that encodes a 53-kd oncosuppressive nuclear
protein with an Mr of 53,000.59–66 Its main functions
include maintenance of genomic stability and induction
of apoptosis in response to DNA damage.67–69 Loss of
these functions leads to increased genomic instability
and gene amplification and change in DNA ploidy.70,71 A
combination of these alterations is associated with trans-
formation in vitro and development of neoplasms in
vivo.72,73 This critical role of p53 in tumorigenesis is evi-
denced by the fact that TP53 is involved in more than
50% of human malignancies.72,74,75

Several methods have been used to detect p53 gene
alterations in MDN, including single stranded conforma-
tion polymorphism of exons 5 through 8 (the hot spots for
mutations).76 In MDN, the frequency of TP53 gene muta-
tions is much lower (�0% to 18%) than that in CMMs.
These mutations include the presence of C:G to T:A
transition-type mutations related to UV irradiation36 and
silent mutations.77,78 Of note, most TP53 mutation-posi-
tive nevi were found in patients who previously had cu-
taneous moles and a family and/or personal history of
CMMs.78 It is still unclear whether the presence of these
mutations in MDN implies that TP53 gene mutations play
a role early in the evolution of CMMs.36

In MDN, immunohistochemistry has been used to de-
tect alterations in p53 protein expression. This method
can detect the altered p53 protein with an increased
half-life.76 Accumulation of p53 protein in MDN has been
reported by a few groups.79–82 However, in most of these
reports, the overall frequency of p53 immunoreactivity
was much lower (�5% to 15%) when compared to
CMMs.83 Similarly, the p53 staining in these lesions was
heterogeneous, with a considerably reduced percentage
of positively stained cells (less than 1%) when compared
to CMMs.83,84 These observations raise two notions: the
difference in p53 protein expression between MDN and
CMMs might be related to the differences in their biolog-
ical behavior and the rare p53 positivity in MDN may
merely reflect cell cycle fluctuations of p53 protein at the
checkpoints, not underlying TP53 gene defects.79,85–87

Melastatin

Located at 15q13-q14 regions, Melastatin is a novel sup-
pressor of metastasis gene identified in murine and hu-
man CMMs cells. The expression of this melanocyte-
specific gene is down-regulated with CMM progression
and is inversely related to tumor thickness. In MDN, in situ
hybridization revealed diffuse Melastatin mRNA expres-
sion, although the exact role of this molecule is still un-
known.88–90

Alterations of Mismatch Repair Protein
Expression

The mismatch repair (MMR) system is responsible for the
repair of mismatched bases during DNA replication.91 In
humans, its enzymatic components include hMSH2
(MutS homolog 2), hMLH1 (MutL homolog 1), hPMS1 and
hPMS2 (human postmeiotic segregation 1 and 2), and
GTBP (GT binding protein).92–94 These genes are located
on 2p16, 3p21–23, 2q31–33, 7p22, and 2p16 chromo-
somal regions, respectively95,96 and function similarly to
TSGs.97 Therefore, loss of both alleles causes rapid ac-
cumulation of mutations, altered expression of the corre-
sponding MMR proteins, and microsatellite instability. In
some tumors, such as those of the urinary bladder and
lung, these alterations have diagnostic and prognostic
ramifications.98–102 In MDN, examination of the expres-
sion patterns of the repair proteins using immunoperoxi-
dase-staining methods revealed that the vast majority of
MDN had strong immunopositivity (Figure 4).103 Interest-
ingly, the repair protein expression values in MDN were
intermediate between those of benign melanocytic nevi
and CMMs. In this respect, these findings are consistent
with the hypothesis of Clark et al48,103 that MDN repre-
sent intermediate lesions in the evolution of CMMs.

Microsatellite Instability

Microsatellites are sequences made up of single se-
quence motifs no more than six bases long that are
arranged in a head-to-tail manner. These sequences are
repetitively scattered throughout the human genome with
the most common class being in the form of (CA)n.104 The
variation in microsatellite pattern length between tumor-
ous and matching non-tumorous tissues is referred to as
microsatellite instability (MSI), and the tumors demon-
strating this phenomenon are labeled as tumors with MSI
(Figure 2).104–106 According to the level of instability,
tumors with MSI were categorized into two groups: MSI-H
and MSI-L (for high and low instability). The group with
instability at �30% of tested markers (ie, MSI-H pattern),
such as human non-polyposis colorectal cancer
(HNPCC),107 was found to have mutations in MMR
genes.92,108,109 The other group of tumors, with instability
at �30% of tested markers (ie, MSI-L pattern), arises
through unknown mechanisms.107,110

In MDN, MSI-L pattern was found at the 1p and 9p
regions (Figures 2 and 3).111,112 These chromosomal
regions are well known for their karyotypic abnormalities
in CMMs and harbor significant cancer genes such as
p16 (9p22–21), p73, and p58 (1p36).113 The incidence of
MSI was statistically significant in MDN as compared to
benign melanocytic nevi, and there was a statistically
significant difference in the prevalence of MSI between
both MDN with severe and moderate atypia when com-
pared to those with mild atypia. The finding of MSI-L
pattern in MDN suggests that MSI is acquired early dur-
ing CMMs development and supports the notion that
some MDN represent an early stage of this process. The
presence of MSI-L in these lesions may be explained by:
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the variable expression of MMR genes with weakly pen-
etrant mutations and attenuated phenotype;114 inherent
intrinsic instability of these loci; and the inactivation of
non-MMR genes or additional MMR genes other than
those encountered in HNPCC, such as the hMSH6
gene.111,115,116

Oncogenes

Proto-oncogenes have critical roles in the regulation of
both cell growth and differentiation and after alteration
can confer a malignant potential and become onco-
genes.117 So far, few studies have examined the role of
oncogenes, such as ras and myc, in the pathogenesis of
MDN. The ras family of proto-oncogenes encodes small
GTP-binding proteins involved in intracellular signal
transduction of mitogenic signals arising from activation
of growth factor receptors.54 Although mutations of ras
genes are relatively common (5% to 24%) in CMMs,118,119

they are only occasionally found in MDN. It is still unclear if
the infrequent ras mutations in MDN indicate involvement of
this gene in the initiation or progression of these atypical
lesions.120

The myc oncogene is a cellular proto-oncogene that
codes for a nuclear phosphoprotein. Its functions include
regulation of G0/G1 cell cycle transition and control of
cellular differentiation. myc overexpression has been re-
ported in a variety of tumors.121–123 In CMMs, high c-myc
expression has been found in primary and metastatic
tumors.122 Using interphase fluorescence in situ hybrid-
ization, Kraehn et al reported c-myc gain in relation to the

centromere 8-copy number in advanced CMMs and the
absence of a similar gain in nevi.123

Alterations of the Extracellular Proteins

The extracellular matrix (ECM) represents a network of
proteins that can interact with tumor cells and thereby
modulate their proliferation and migration.124 In CMMs,
the expression of these molecules gradually increases
with the progression of the tumor. Morphologically, MDN
are characterized by the presence of peculiar stromal
reactions, ie, fibroplasia.5 On the molecular level, altered
expression of ECM proteins (interstitial collagens type I,
III, and VI, tenascin, and fibronectin) was found in the
stroma surrounding dysplastic nevic cells, suggesting
that alteration of these molecules may create a suitable
microenvironment for the progression of these le-
sions.125–130

Alterations of Cytokines and Growth Factors

Cytokines are a group of polypeptides that has modula-
tory actions on the growth and proliferation of cells. Over
the last decade, several lines of evidence have sug-
gested that these substances are critical for the uncon-
trolled growth of tumor cells in vitro and potentially have
the same effect in vivo.131,132 In vitro experiments have
established the role of these peptides in the abnormal
growth of CMMs.133 Basic fibroblast growth factor (bFGF)
is a 17.5-kd-polypeptide autocrine growth factor. It is

Figure 4. Immunohistochemical staining of MMR proteins in melanocytic dysplastic nevi (MDN). A: hMLH1 expression in the normal epidermis. Note the
nuclear expression pattern (arrow): B: hMSH2 expression in MDN. Positively (arrow) and negatively (arrowhead) stained cells are observed in both MDN
and CMM.
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produced by several tissues and is involved in angiogen-
esis and mutagenesis.134,135 In vitro, it is produced by
CMMs cell lines136 but not by normal melanocytes.137 In
MDN, bFGF was found to be differentially expressed;
however, its exact role in these dysplastic lesions is still
unknown.132

Conclusions

In the multi-step melanoma tumorigenesis pathway that
culminates with the metastatic phase, early steps appear
to involve mutations of the melanocytes of the MDN. A
review of the changes involved in the pathogenesis of
MDN (Table 1) reveals four key points: the molecular
changes in MDN are complex and involve allelic loss,
MSI, and alterations of TSGs, MMR proteins, oncogenes,
ECM proteins, and some growth factors; some of these
genetic alterations are shared between MDN and CMMs,
suggesting that some MDN represent intermediate steps
or sequential phases in CMM tumorigenesis; the associ-
ation of some MDN with CMMs may reflect pleiotropic
and divergent manifestations of these genetic changes
rather than sequential phases in multi-step melanoma
tumorigenesis; and although significant information is ac-
cumulating about molecular changes in CMMs, little is
available about MDN. Therefore, our understanding of
the genetic changes in MDN is limited, and much work is
needed to expand it. Finally, the sense of confidence
afforded by histological evaluation of the melanocytic
lesions and especially CMMs, “the fully developed tumor
among the melanocytic lesions,” is short-lived, and con-
clusively predicting their biology is beyond the scope of
light microscopy and immunohistochemical or molecular
markers available to date. In the face of these inadequa-
cies, unfolding studies regarding gene expression profil-
ing in CMMs, a strategy that can establish the expression

of thousands of individual genes in the tissue sample,
seem to have promising investigative, diagnostic, and
prognostic ramifications. In this sense, expression profil-
ing in CMMs can separate these tumors into distinct
subsets and relate these subsets to definitive stages in
the course of melanocytic transformation.138–140
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