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High-throughput cDNA microarray technology allows
for the simultaneous analysis of gene expression lev-
els for thousands of genes and as such, rapid, rela-
tively simple methods are needed to store, analyze,
and cross-compare basic microarray data. The appli-
cation of a classical method of data normalization,
Z score transformation, provides a way of standard-
izing data across a wide range of experiments and
allows the comparison of microarray data indepen-
dent of the original hybridization intensities. Data
normalized by Z score transformation can be used
directly in the calculation of significant changes in
gene expression between different samples and con-
ditions. We used Z scores to compare several different
methods for predicting significant changes in gene
expression including fold changes, Z ratios, Z and t
statistical tests. We conclude that the Z score transfor-
mation normalization method accompanied by either
Z ratios or Z tests for significance estimates offers a
useful method for the basic analysis of microarray
data. The results provided by these methods can be as
rigorous and are no more arbitrary than other test
methods, and, in addition, they have the advantage
that they can be easily adapted to standard spread-
sheet programs. (J Mol Diagn 2003, 5:73–81)

cDNA microarray technologies are rapidly being applied
in biology and medicine.1 It is hoped that mining of
microarray datasets will lead to the discovery of path-
ways of common and unique gene expression among
different cells, tissues, and disease states.2 The use of
cDNA arrays among individual investigators, between
laboratories, and across disciplines has necessitated the
reporting of expression data that can be rapidly com-
pared and can be easily archived.

Before comparing the microarray results from multiple
experiments the results from individual experiments must
somehow be normalized with respect to each other to
account for experimental variation in RNA amounts, spe-
cific activity of cDNA labels, and standard handling er-
rors. Failure to properly normalize data used in microar-
ray comparisons runs a high risk of skewing comparison
results and reduces the credibility of individual gene
change measurements. One of the most common ways in
which microarray data are normalized is to assume that
the majority of gene expression is relatively constant
between experiments and that this constant population
can serve as the basis for a general approach to normal-
ization. Empirical observation, in almost all cases, con-
tinues to support this underlying assumption used in
population normalizations. Occasionally the use of pop-
ulation normalization may be contraindicated when, for
example, a highly restricted subset of genes is used to
measure a highly dynamic biological condition (eg, a
small focused array used to study embryonic develop-
ment). In this case an alternative normalization method
such as spiking of internal references3 should be consid-
ered. Clearly, the experimental design must be carefully
evaluated before the selection of an appropriate normal-
ization technique.

One basic method of population normalization is
global normalization,4 which calculates the mean or me-
dian of the signal intensities of each individual experi-
mental dataset and then calculates the mean of the
means (or grand mean) for all of the included experi-
ments. Each individual data set is then mathematically
adjusted such that the mean of that dataset equals the
calculated grand mean. This method is conceptually sim-
ple, but when working with datasets having large differ-
ences in signal intensity, the data can be inordinately
influenced by the presence of outlier data distortions. In
addition, and equally as problematic from a high through-
put standpoint, each time another experiment is added to
the experimental comparisons, the collective or grand
mean must be recalculated, and all of the experimental
datasets readjusted.
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Here we describe the normalization and standardization
of cDNA microarray intensity values within datasets by Z
score transformation and the subsequent use of the trans-
formed data to compare multiple experiments. The Z score
transformation procedure for normalizing data is a familiar
statistical method in both neuroimaging5 and psychological
studies,6,7 among others. Recently, Z score transformation
statistics have been used in comparing experimental and
control group gene expression8–10 differences by microar-
ray. Z score transformation methods have also been incor-
porated into the latest version of the public access MAEx-
plorer (supplied by Peter Lemkin of the National Cancer
Institute) microarray bioinformatics tool.11

The Z score transformation approach for microarrays
corrects data internally within a single hybridization and
hybridization values for individual genes are expressed
as a unit of SD from the normalized mean of zero. Cor-
rection is done before sample-to-sample comparison,
and is therefore comparison-independent. Comparisons
across samples or across experiments are then per-
formed on equivalently transformed data, and changes in
gene expression are expressed as differences between
Z scores (Z ratios) or by using a statistical test such as
the two-sample-for-means Z test.12 Using this approach,
gene expression data derived from different microarray
studies becomes comparable across experiments and
across laboratories.

In this paper we have compared differences in gene
expression using the traditional fold-ratios (arrived at by
global normalization) and Z ratios (calculated from Z
scores). In addition, we compared significance levels
derived from several different statistical methods includ-
ing Z ratios, Z tests, and t-tests, combined with permu-
tation analysis using Significance Analysis of Microarrays
(SAM) software from Stanford University labs13. We have
chosen a dataset that is relatively simple to reduce the
number of parameters to be considered in making the
comparisons between global and Z score transforma-
tions, as well as the comparisons between statistical
tests. The Z score transformation process is easily ex-
tended to more complex datasets.

Materials and Methods

Cells and Tissue Cultures

Freshly purified human peripheral blood T (PBT) cells ob-
tained from three different donors were greater than 95%
CD3� cells. Human PBT cells as well as Jurkat human T
cells were cultured in RPMI 1640 with 10% fetal bovine
serum, 100 U/ml penicillin, 100 �g/ml streptomycin and 2
mmol/L glutamine. The PBTs were allowed to stabilize over-
night before testing. PMA was used at 10 ng/ml, ionomycin
at 1 �g/ml, and anti-CD28 monoclonal antibody (kindly
provided by Dr. Carl H. June) at 100 ng/ml.

RNA Purification

Total cellular RNA was extracted after 2 hours of stimu-
lation directly from T cells in three conditions: control T

cells (Ct), T cells following stimulation by phorbol myris-
tate plus ionomycin (PMA�I), and T cells following phor-
bol myristate plus anti-CD28 antibody (PMA � 28). The
total RNA was extracted in the flasks using a one-step
guanidine thiocyanate/phenol method14 followed by se-
quential ethanol precipitations. The concentration and
quality of the RNA were assessed by spectrophotometry
and by agarose gel electrophoreses. RNA samples were
stored at �80°C until used.

RNA Labeling

RNA samples were radiolabeled and hybridized accord-
ing to protocols described in http://www.grc.nia.nih.gov/
branches/rrb/dna.htm. For probe preparation (radiolabel-
ing of total RNA with [33P]dCTP), 5 �g of total RNA for
each sample was radiolabeled in a reverse-transcription
(RT) reaction. RNA was annealed, in 16 �l H2O, with 1 �g
of 24-mer poly(dT) primer (Research Genetics, Hunts-
ville, AL), by heating at 65°C for 10 minutes and cooling
on ice for 2 minutes. The RT reaction was performed by
adding 8 �l of 5X first-strand RT buffer (Life Technolo-
gies, Rockville, MD), 4 �l of 20 mmol/L dNTPs minus
dCTP) (Pharmacia, Piscataway, NJ), 4 �l of 0.1 mol/L
DTT, 40 U of RNAseOUT (Life Technologies), 6 �l of 3000
Ci/mmol �[33P]dCTP (ICN Biomedicals, Costa Mesa, CA)
to the RNA/primer mixture to a final volume of 40 �l. Two
�l (400 U) of Superscript II reverse transcriptase (Life
Technologies) was then added, and the sample was
incubated for 30 minutes at 42°C followed by additional 2
�l of Superscript II reverse transcriptase and another 30
minutes of incubation. The reaction was stopped by the
addition of 5 �l of 0.5 mol/L EDTA. The samples were
incubated at 65°C for 30 minutes after addition of 10 �l of
0.1 mol/L NaOH to hydrolyze and remove RNA. The
samples were pH-neutralized by the addition of 45 �l of
0.5 mol/L Tris (pH 8.0) and purified using Bio-Rad 6
purification columns (Bio-Rad, Hercules, CA).

Microarray Construction and Use

Microarray construction and hybridization were per-
formed as previously described.15 Briefly, NIA-Immuno-
arrays, which consist of 1132 genes printed on Nytran �
Supercharge nylon membranes (Schleicher & Schuell) in
duplicate, were hybridized with �[33P]dCTP-labeled
cDNA probes overnight at 50°C in 4 ml of hybridization
solution. Hybridized arrays were rinsed in 50 ml of 2X
SSC and 1% SDS twice at 55°C followed by 1–2 times of
washing in 2X SSC and 0.1% SDS at 55°C for 15 minutes
each. The microarrays were exposed to phosphorimager
screens for 1 to 3 days. The screens were then scanned
in a Molecular Dynamics STORM PhosphorImager (Mo-
lecular Dynamics, Sunnyvale, CA) at 50 �m resolution.
ImageQuant software (Molecular Dynamics) was used to
convert the hybridization signals on the image into raw
intensity values, and the data thus generated was trans-
ferred into Microsoft Excel spreadsheets, pre-designed to
associate the ImageQuant data format to the correct gene
identities.
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Global Normalization

Raw intensity data for each experiment was normalized
by first calculating the average intensity for each individ-
ual dataset, and then calculating the average of the av-
erages. This grand average was used as the basis for the
computation of normalization factors that were subse-
quently applied to each experiment. The average of all
normalized data thereafter equaled the grand average.

Z Score Transformation

Raw intensity data for each experiment is log10 trans-
formed and then used for the calculation of Z scores. Z
scores are calculated by subtracting the overall average
gene intensity (within a single experiment) from the raw
intensity data for each gene, and dividing that result by
the SD of all of the measured intensities, according to the
formula:

Z score � (intensityG � mean intensityG1. . .Gn)/SDG1. . .Gn

where G is any gene on the microarray and G1. . . Gn
represent the aggregate measure of all of the genes.

Estimate of Significant Changes in Gene
Expression

Traditional Ratio

Traditional ratio calculations of significant changes in
gene expression derived from globally normalized data
are performed by simply computing the ratio of the aver-
age of all of the measurements from one condition or
sample to another.4 Significance is customarily assigned
to genes whose ratio is greater or equal to 2.0 or less than
or equal to 0.5.

Z Ratios

Z score values are used as the data basis in all calcu-
lations of changes in gene expression including Z ratios,
Z tests, and SAM analysis. Z ratios are calculated by
taking the difference between the averages of the ob-
served gene Z scores and dividing by the SD of all of the
differences for that particular comparison:

Z ratio �
[(Z score G1ave)Exp�(Z scoreG1ave)Con]/

SD of Z score differencesG1. . .Gn

where G1 represents the average Z score for any partic-
ular gene being tested under multiple experimental con-
ditions (in this case, experimental versus control) and
G1. . . Gn represents the aggregate measure of all of the
genes. Calculated Z ratios have the advantage that they
can be used in multiple comparisons without further ref-
erence to the individual conditional standard deviations
by which they were derived. A Z ratio of � 1.96 is inferred
as significant (P � 0.05), although empirical observation

has shown consistent results with Z ratio values of � 1.50
or greater.

Z Test

An alternative method for calculating significant
changes in gene expression, which maximizes the power
of replicates and takes into account variation between
replicates on a gene by gene basis, is the two-sample-
for-means Z test.12 The formula for this statistical test is
as follows:

Z test � [(Z scoreG1ave)Exp � (Z scoreG1ave)Con]/��2

n1
�

�2

n2

where G1 represents the average Z score for any partic-
ular gene being tested under multiple experimental con-
ditions (in this case, experimental versus control). The
mean difference is corrected by the SE for the difference
between means where �2 is the SD of repeated hybrid-
ization intensity measurements (expressed as Z scores)
for either condition 1 or condition 2, and n equals the
number of repeated measurements for either condition 1

Figure 1. A portion of the hybridization images of three NIA-Immunoarray
filters hybridized to radiolabeled total RNA from three different biological
conditions (untreated T cells, control; PMA plus ionomycin, PMA�I; and
PMA plus anti-CD28, PMA � 28). The grid used for quantitation is shown
superimposed on each image. The increase in gene expression of interfer-
on-� (IFNgamma) is shown.
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or condition 2. P values can be assigned to the calcu-
lated Z test value by consulting the critical Z value for a
two-tailed test in a standard normal distribution table.

SAM

SAM (Significance Analysis of Microarrays; software
from Stanford University labs13) analysis was performed
on Z score data for two class-unpaired data using the
default settings. The samples chosen for analysis came
from Donor 1 and included three labeling replicates for
control RNA, and two labeling replicates each for the
PMA�I and PMA � 28 samples. The SAM procedure
combines the calculation of a t-test statistic value for
each gene with subsequent permutation analysis and the
calculation of a false discovery rate (FDR). Significant
gene changes were arbitrarily selected at SAM (d) score
values greater than or equal to � 1.46 (this value yielded
the best balance between absolute number of significant
calls and the lowest predicted false discovery rate (FDR)
for the dataset tested).

Cluster Analysis

Hierarchical clustering of experimental variation in gene
expression was determined using software programs de-
veloped at Stanford University.16 The cluster algorithm
was set to complete linkage clustering using the uncen-
tered Pearson correlation.

Results

We have tested the use of the Z score transformation
method for the normalization of microarray data across a

wide range of hybridization results.9,17–19 The sample
dataset for this report is taken from a study of the gene
expression differences (unpublished data) between two
alternative pathways of T-cell stimulation: phorbol myris-
tate plus ionomycin (PMA�I) or phorbol myristate plus
anti-CD28 antibody (PMA � 28) following 2 hours of
stimulation. The two conditions were compared to con-
trols using either global normalization or Z score trans-
formation and the results were used to compare several
different downstream analytical techniques for estimating
significant changes in gene expression. The complete data-
set is available at http://www.grc.nia.nih.gov/branches/
rrb/dna/dnapubs.htm.

Figure 1 shows a typical hybridization result from these
experiments using NIA-Immunoarray filters. Dramatic in-
creases in gene expression between control and stimu-
lated T-cells are illustrated by, for example, the obvious

Figure 2. Scatter plot showing the linear relationship between measure-
ments of changes in gene expression using either globally normalized data
(fold change) or Z transformed data (Z ratio) on a lognormal scale. The r2

value of the linear regression � 0.961.

Table 1. Comparison of Data Types: Original, Normalized, and Z-Transformation

Gene

Original data Normalized data
Fold

change Log data Z score data Z differences Z ratios

Ct Pl P28 Ct Pl P28 Pl/Ct
P28/
Ct Ct Pl P28 Ct Pl P28 Pl-Ct

P28-
Ct

Pl-
Ct

P28-
Ct

IFNG 433 5964 2733 401 6692 2654 16.69 6.62 2.63 3.78 3.42 0.13 3.33 2.41 3.20 2.28 6.63 4.46
SCYA4 186 1563 1633 172 1754 1586 10.19 9.22 2.26 3.17 3.18 �0.87 1.80 1.57 2.67 2.44 5.53 4.78
MYC 286 2339 1912 265 2625 1856 9.90 7.00 2.45 3.37 3.28 �0.35 2.29 1.92 2.65 2.27 5.48 4.45
VIM 1423 7563 8731 1319 8486 8478 6.43 6.43 3.12 3.88 3.94 1.48 3.59 4.16 2.11 2.69 4.38 5.26
HIF1A 360 1789 1472 334 2007 1430 6.01 4.28 2.56 3.25 3.16 �0.08 2.01 1.52 2.08 1.59 4.32 3.12
JUNB 1028 215 691 953 241 671 0.25 0.70 3.01 2.33 2.83 1.16 �0.32 0.41 �1.48 �0.75 �3.07 �1.47
ATFA 1536 324 766 1424 364 744 0.26 0.52 3.17 2.50 2.88 1.60 0.10 0.57 �1.50 �1.03 �3.10 �2.01
GRO3 1596 304 447 1479 341 434 0.23 0.29 3.19 2.47 2.65 1.66 0.03 �0.21 �1.62 �1.87 �3.36 �3.66
SUPT3H 1266 208 439 1173 234 426 0.20 0.36 3.08 2.32 2.64 1.32 �0.35 �0.23 �1.68 �1.56 �3.48 �3.05
CCND1 1849 320 762 1713 360 740 0.21 0.43 3.26 2.50 2.88 1.85 0.11 0.58 �1.73 �1.27 �3.59 �2.48
Average 886 732 846 821 821 821 1.02 1.54 2.58 2.46 2.71 0.00 0.00 0.00 0.00 0.00 0.00 0.00
standev 3574 3030 2429 3313 3400 2358 0.86 0.73 0.36 0.38 0.28 0.98 0.97 0.95 0.48 0.51 1.00 1.00
Norm factor 0.93 1.12 0.97
Grand average 821

Comparison of two types of data normalization: global normalization and Z score transformation. Raw intensity data for three separate experimental
conditions are shown under the heading Original data (Ct, control; PI, PMA � I; P28, PMA � 28). Global normalization of the corresponding raw
intensity data is featured in the columns under the heading Normalized data. Changes in gene expression as calculated for globally normalized data
are featured in the columns under the heading Fold change. Data in the columns under the heading Log data correspond to the log10 transformation
of the original raw intensity data in preparation for Z score transformation, the results of which are reported in the columns under the heading: Z
transformed data. Changes in gene expression between different Z transformed datasets are first calculated as simple differences between the
corresponding Z scores (and reported in the columns under the heading Z diffs) and then divided by the standard deviation of each Z difference
dataset and reported in the columns under the heading: Z ratios. The data shown here is a subset of the entire 1132 genes featured on the NIA-
Immunoarray, selected for genes that exhibited significant increase or decrease across the experimental parameters. The data is sorted in descending
order on the PI-Ct column under the Z ratios heading.
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increase in the hybridization signal for interferon-� (IFN-
gamma). While it is clear from visual inspection that both
forms of T-cell activation result in an up-regulation of
IFNg, it would also appear from the comparative signal
strengths that PMA�I exerts a stronger effect on IFNg
gene expression than does PMA � 28. However, it is not
possible to reach this conclusion quantitatively without
performing some form of normalization procedure before
comparing the intensity values derived from the two hy-
bridizations.

Table 1 demonstrates the process for deriving normal-
ized data values using either mean-adjusted (global) nor-
malization or Z score transformation. The data shown
here are a subset of the total number of 1132 genes on
the NIA Immunoarray, selected for genes that exhibited

the most significant increases or decreases between ex-
perimental and control samples (the data are sorted in
descending order on the PI-Ct column under the Z ratios
heading). The first three columns following the gene
names contain the raw intensity data before any adjust-
ment and provide the basis for both types of normaliza-
tion procedures.

Estimates of significant changes in gene expression
using globally normalized data were calculated by tradi-
tional fold-ratio methods and are shown for each com-
parison (Table 1). Z ratio calculations were also deter-
mined for the same genes following Z score
transformation. There is a close but not exact correspon-
dence in rank order between the most highly up- or
down-regulated genes calculated by either method (see,

Figure 3. A–C: Scatter plots of treated PMA plus ionomycin, PMA�I; D–F: PMA plus anti-CD28, PMA � 28; untreated cells, control (all panels). A and D compare
the raw data. B and E compare globally normalized data. C and F compare Z score data. The distortion in the data (E) resulted in 226 genes being called as up-
regulated by global normalization in the PMA � 28 treatment. As shown for Z score transformation, this distortion is largely reduced (F) resulting in 24 genes being
up regulated. Arrows indicate areas of data distortion introduced by the PMA � 28 hybridization filter.

Table 2. Estimates of Significant Changes in Gene Expression

Treatment

Global normalization Z transformation Genes in common†

PMA � 1* PMA � 28† PMA � 1* PMA � 28† PMA � 1* PMA � 28†

Genes (no.) up-regulated 32 226 22 24 22 24
Genes (no.) down-regulated 67 19 20 25 20 20

*PMA � lonomycin
†PMA � anti-CD28
The number of genes up-regulated and down-regulated by treatments shown according to traditional fold ratio or Z ratio. Significance levels for fold

change estimates were set at two-fold changes up or down: for Z ratios the significance level was set at � 2 Z ratio (approximate 95% confidence
level).
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for example, VIM, P28 vs Ct). Figure 2 illustrates the
relationship between the complete datasets of measured
Z ratios and fold changes for this condition in the form of
a lognormal scatter plot. Linear regression analysis
shows that the data fit to a straight line with an r2 value of
0.96. Thus, for this example, estimates of changes in
gene expression by the two methods are virtually identi-
cal using two distinct normalization procedures (global or
Z score transformation) as well as two distinct signifi-
cance estimates (fold change or Z ratios). This equiva-
lence suggests that the Z normalization as well as Z ratio
calculations adequately mirror standard mean-adjusted
normalization and subsequent fold change estimates of
gene expression.

One advantage of Z score transformation appears to
be the ability to minimize the distortion introduced to
microarray datasets as a result of the occasional artifacts
encountered during labeling, hybridization, and image
acquisition. This point is illustrated by the comparison of
PMA � 28 data results in Table 2 where 226 genes were
designated as up-regulated using global normalization
versus 24 genes that are reported as up-regulated by the
Z ratio method. Figure 3 examines this effect by illustrat-
ing the results obtained using either global normalization

or Z score transformation as applied to the two separate
datasets: PMA�I versus control (Figure 3, A–C) or PMA
� 28 versus control (Figure 3, D and E). The top panels
show the original and normalized data for PMA�I. In this
case, both normalization methods appear to balance the
data symmetrically and, therefore, it is not surprising that
the resulting gene changes are found to be highly similar,
as previously mentioned (Figure 2). In contrast, the orig-
inal and normalized data for PMA � 28 (Figure 2, D–F),
demonstrate that Z score transformation but not global
normalization is capable of correcting the data distortion
(indicated by arrows) introduced by the PMA � 28 hy-
bridization data. Although the exact cause for this data
distortion is unclear (but neither is it uncommon; a false
positive rate associated with low gene expression has
been noted by other investigators20), it clearly accounts
for the skewed results reported for PMA�I up-regulation
in Table 2, mostly as the result of a bias in the data in the
PMA � 28 direction at lower expression levels. Further-
more, it should also be clear that inclusion of the PMA �
28 data in any extended set of experimental comparisons
would continue to exert a distorting effect. In general, Z
normalization shows greater stability as a result of exam-
ining where each gene intensity falls in the overall distri-
bution of values within a given array as opposed to ad-
justing all of the genes in an array by a single common
value.

Z scores can be used directly in any number of anal-
ysis formats including cluster analysis as demonstrated
in Figure 4. Z scores allow clustering and other analytical
methods to be used on corrected values that are directly
related to original intensity values as well as on compar-
ative ratios. The Z scores used here were generated from
a wider range of experiments than from the study of T cell
activation previously shown and include data from three
independent human T-cell donors as well as from cul-
tured Jurkat T cells. The unsupervised clustering algo-
rithm (both genes and experiments were allowed to clus-
ter independently) clearly separates not only the two
distinct cell types (Jurkat and donor T cells) but also
precisely sorts the primary T-cell cultures by individual
donor. The high correlation of clustered experimental
groups to the original experimental identities suggests
that Z score transformation by itself is a reliable normal-
ization process, providing a basic unit of comparison
between a wide range of samples being analyzed (within
a single microarray type).

In addition to the Z ratio method for computing signif-
icant changes in gene expression using Z scores, we
have also tested several additional statistical techniques
including the Z test12 and SAM analysis13 and compared
the results together as illustrated in Figure 5. The data
shown here is a sampling of the most significant genes
up-regulated by treatment with either PMA�I (A) or PMA
� 28 (B). The majority of all significant changes in gene
expression as calculated by any of the tested methods
can be seen in Figure 5. Gene changes exceeding spec-
ified significance thresholds are shaded in gray. The Z
test, Z ratio, fold change, and SAM analysis data in this
example were taken from the same set of experiments
using T cells harvested from a single donor. These results

Figure 4. Cluster analysis of Z score data, sorting both genes and experi-
ments simultaneously. Shown here is data from control cells only. Samples
include microarray data from both Jurkat as well as donor PBTs (D1, D2, D3).
RNA labeling replicates are alphabetical (A, B, C), duplicate data from the
same filter are numeric(1,2). Scale of red to green equals higher to lower
gene expression.
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were then compared to a composite of replicated data
from three individual donors (all donors Z test) by which
the data are sorted in descending order.

An inspection of the results in Figure 5 shows that the
fold changes calculated from globally normalized data
appear to greatly underestimate the number of significant
gene changes as predicted by all other methods. The Z
test and Z ratio results appear to agree quite well with
each other with some exceptions. The Z test was some-
what more conservative than the Z ratios for determining
significant changes in gene expression. Both Z ratios and
Z tests overlap with the significance determinations made
by the SAM program. In addition, and perhaps, most
importantly, the Z ratio, Z test and SAM predictions made
from data from a single donor appear to reliably mirror the
significance estimates made by performing the Z test on
the combined experimental data derived from three indi-
vidual donors. The significant overlap between three in-

dependent statistical analysis methods and the agree-
ment between single and multiple donor data suggests
that, in the aggregate, reliable changes in gene expres-
sion can be consistently detected by all three methods.

Discussion

We have addressed three issues of importance in mi-
croarray comparisons: normalization of microarray re-
sults, calculation of an appropriate gene comparison sta-
tistic, and the development of a flexible and archivable
data storage method by application of the Z score trans-
formation method specifically to microarray analysis. Z
scores provide a useful measurement of gene expression
that can be used in downstream analysis as proportional
to the hybridization intensities from which they were de-
rived. Z scores have been successfully used directly in

Figure 5. Comparison of several different methods for estimating significant changes in gene expression (highlighted by shaded values) using the same dataset.
Data shown is a sampling of the most significant genes up-regulated by treatment with either PMA plus ionomycin (A) or PMA plus an antibody to the CD28
receptor (B). Significance thresholds for fold change were set at � 2, for Z ratios at � 1.5, for Z test at P � 0.01, for SAM at d � 1.45. SAM, fold changes, Z ratios,
and Z test data are from a single donor. Labeling replicates (3 for the control sample RNA, 2 each for PMA�I and PMA � 28 sample RNAs) were first averaged
for Z ratio and fold change estimates. These results are compared to a composite of replicated data (using averages of multiple individual donor RNA labelings)
from three individuals (all donors Z test). The data are sorted in order of decreasing Z test value for the all donors column.
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hierarchical clustering, k-means clustering, self-organiz-
ing maps (SOM), principal component analysis (PCA),
multidimensional scaling as well as in visualization pro-
grams such as GeneSpring (data not shown). Z scores
(as well as the Z ratios and Z test statistics) can be rapidly
calculated from raw data through the use of a Microsoft
Excel spreadsheet available at http://www.grc.nia.nih
.gov/branches/rrb/dna/dnapubs.htm.

Z scores provide a relative, semiquantitative estimate
of gene expression levels and, as such, form the basis of
comparison of hybridization intensity data among many
experiments within the same array type. Direct inspection
of Z score values in visualization analyses such as hier-
archical clustering is aided by the fact that Z scores are
proportional to the intensity of the original hybridization
signal. The value of the Z score is directly reflective of the
underlying differential hybridization values (ie, higher
positive Z scores represent the most highly expressed
genes, lower negative Z scores represent the least ex-
pressed genes). Thus Z scores provide a useful and
intuitive method for visualizing and interpreting very large
amounts of data in their natural biological context. This is
in contrast to normalization strategies that express hy-
bridization intensities as ratios of one sample to another
(either experimental or to a common reference sample).
The values derived by ratio normalization techniques are
more difficult to interpret because they are always de-
pendent on the normalizing sample from which they were
derived. Positive and negative values in these analyses
simply indicate their relationship to the normalizing sam-
ple rather than reflecting actual gene expression levels.
Ratio normalization thus makes it difficult to compare
many different experiments directly even when using the
same array type.

Z ratios provide a relative measure of significant gene
expression changes in pair-wise group comparisons. In
this regard, Z ratios are the conceptual equivalent to
Cy3/Cy5 ratios generated using two-color fluorescent
techniques. Just as Z scores are used to analyze many
different experiments in terms of relative intensity mea-
surements, Z ratios can be used to compare significant
changes in gene expression across a similarly wide
range of experiments. The advantages of Z ratios are that
they are directly comparable among many different ex-
periments, rapidly calculated, and show good agreement
(Figure 5) with more complex statistical analyses (eg,
SAM analysis).

The application of Z test statistics to Z score microar-
ray data was used to address additional requirements for
a more rigorous statistical analysis than provided for
solely by Z ratios. These improvements include, in the Z
test, a SE method for balancing the effects of repeated
measurement variation versus the statistical power af-
forded by replicate numbers. Because the Z test places
a high value on low variability between experimental rep-
licates, it tends to be more conservative than Z ratios for
finding significant gene changes. Indeed, the impact on
significance calculations of sample variation when using
the Z test is such that it has mitigated the need, in our
hands, for a priori outlier removal. The use of the Z test is
facilitated directly in the Excel program, which provides

one-tailed P values for the Z distribution (function �
NORMSDIST).

The comparability of data are critical in the handling of
the ever-increasing data streams being generated during
ongoing microarray gene expression studies. Z scores
will not, theoretically, be comparable outside of the array
type from which they are generated since their value is
specifically linked to a fixed population of genes. This
limitation, however, is almost universal in the field of
microarray techniques making cross-array and cross-
platform comparisons difficult and inhibiting the growth of
universal databases. A reliable method such as Z score
transformation is, nonetheless, vital for intra-array com-
parisons in large studies using a stable focused array
format (eg, NIA-Immunoarray).
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