Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1993 Jan;108(1):57–61. doi: 10.1111/j.1476-5381.1993.tb13439.x

Comparison of the effects of selective inhibitors of phosphodiesterase types III and IV in airway smooth muscle with differing beta-adrenoceptor subtypes.

A Tomkinson 1, J A Karlsson 1, D Raeburn 1
PMCID: PMC1907714  PMID: 8428213

Abstract

1. The relaxant properties of the type IV adenosine 3',5'-cyclic monophosphate phosphodiesterase (cyclic AMP PDE) inhibitor, rolipram and the beta 2-selective and non-selective beta-adrenoceptor agonists salbutamol and isoprenaline, were compared on the guinea-pig, bovine, and mouse trachea and porcine bronchus all precontracted with methacholine (EC30). 2. Rolipram and both beta-agonists produced concentration-dependent reversal of the methacholine-induced tone in the four airway preparations. 3. Isoprenaline and salbutamol were similar in potency on the guinea-pig (-log10IC50:8.43, 8.06) and bovine (-log10 IC50:8.52, 8.40) airways. In contrast, salbutamol was much less potent than isoprenaline on the mouse trachea (> 1000 fold) and the porcine bronchus (> 100,000 fold). 4. The potency of rolipram approached that of isoprenaline on the guinea-pig and bovine trachea (beta 2-adrenoceptors predominate). However, rolipram was significantly less active than isoprenaline on the porcine bronchus (1000 fold) and mouse trachea (> 2000 fold) where beta 2-adrenoceptors predominate. 5. Siguazodan, the type III cyclic AMP PDE inhibitor, produced concentration-dependent relaxations of the porcine bronchus and guinea-pig trachea contracted with methacholine. Siguazodan was 100 fold more active than rolipram in pig tissues indicating the type III isoenzyme may be of greater functional significance in this tissue. In contrast, siguazodan was 15 times less potent that rolipram in guinea-pig airways suggesting a greater role for the type IV PDE. 6. These findings may reflect a possible relationship between the beta 2-adrenoceptor subtype and the functional importance of the type IV PDE isoenzyme. A similar relationship may exist between beta 1-adrenoceptors and the PDE type III isoenzyme.

Full text

PDF
58

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Beavo J. A., Reifsnyder D. H. Primary sequence of cyclic nucleotide phosphodiesterase isozymes and the design of selective inhibitors. Trends Pharmacol Sci. 1990 Apr;11(4):150–155. doi: 10.1016/0165-6147(90)90066-H. [DOI] [PubMed] [Google Scholar]
  2. Bülbring E., Tomita T. Catecholamine action on smooth muscle. Pharmacol Rev. 1987 Mar;39(1):49–96. [PubMed] [Google Scholar]
  3. Carstairs J. R., Nimmo A. J., Barnes P. J. Autoradiographic visualization of beta-adrenoceptor subtypes in human lung. Am Rev Respir Dis. 1985 Sep;132(3):541–547. doi: 10.1164/arrd.1985.132.3.541. [DOI] [PubMed] [Google Scholar]
  4. Carswell H., Nahorski S. R. Beta-adrenoceptor heterogeneity in guinea-pig airways: comparison of functional and receptor labelling studies. Br J Pharmacol. 1983 Aug;79(4):965–971. doi: 10.1111/j.1476-5381.1983.tb10542.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Giembycz M. A., Barnes P. J. Selective inhibition of a high affinity type IV cyclic AMP phosphodiesterase in bovine trachealis by AH 21-132. Relevance to the spasmolytic and anti-spasmogenic actions of AH 21-132 in the intact tissue. Biochem Pharmacol. 1991 Jul 15;42(3):663–677. doi: 10.1016/0006-2952(91)90330-8. [DOI] [PubMed] [Google Scholar]
  6. Giembycz M. A., Dent G. Prospects for selective cyclic nucleotide phosphodiesterase inhibitors in the treatment of bronchial asthma. Clin Exp Allergy. 1992 Mar;22(3):337–344. doi: 10.1111/j.1365-2222.1992.tb03095.x. [DOI] [PubMed] [Google Scholar]
  7. Goldie R. G., Papadimitriou J. M., Paterson J. W., Rigby P. J., Self H. M., Spina D. Influence of the epithelium on responsiveness of guinea-pig isolated trachea to contractile and relaxant agonists. Br J Pharmacol. 1986 Jan;87(1):5–14. doi: 10.1111/j.1476-5381.1986.tb10150.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Goldie R. G., Paterson J. W., Wale J. L. Classification of beta-adrenoceptors in isolated bronchus of the pig. Br J Pharmacol. 1983 May;79(1):177–180. doi: 10.1111/j.1476-5381.1983.tb10510.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Goldie R. G., Spina D., Paterson J. W. Beta agonist-induced desensitization in pig bronchus. J Pharmacol Exp Ther. 1986 Apr;237(1):275–282. [PubMed] [Google Scholar]
  10. Grandordy B. M., Cuss F. M., Barnes P. J. Breakdown of phosphoinositides in airway smooth muscle: lack of influence of anti-asthmatic drugs. Life Sci. 1987 Sep 28;41(13):1621–1627. doi: 10.1016/0024-3205(87)90730-2. [DOI] [PubMed] [Google Scholar]
  11. Harris A. L., Connell M. J., Ferguson E. W., Wallace A. M., Gordon R. J., Pagani E. D., Silver P. J. Role of low Km cyclic AMP phosphodiesterase inhibition in tracheal relaxation and bronchodilation in the guinea pig. J Pharmacol Exp Ther. 1989 Oct;251(1):199–206. [PubMed] [Google Scholar]
  12. Heitz A., Schwartz J., Velly J. Beta-adrenoceptors of the human myocardium: determination of beta 1 and beta 2 subtypes by radioligand binding. Br J Pharmacol. 1983 Dec;80(4):711–717. doi: 10.1111/j.1476-5381.1983.tb10062.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Henry P. J., Goldie R. G. Beta 1-adrenoceptors mediate smooth muscle relaxation in mouse isolated trachea. Br J Pharmacol. 1990 Jan;99(1):131–135. doi: 10.1111/j.1476-5381.1990.tb14666.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Henry P. J., Rigby P. J., Goldie R. G. Distribution of beta 1- and beta 2-adrenoceptors in mouse trachea and lung: a quantitative autoradiographic study. Br J Pharmacol. 1990 Jan;99(1):136–144. doi: 10.1111/j.1476-5381.1990.tb14667.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Lemonine H., Novotny G. E., Kaumann A. J. Neuronally released (-)-noradrenaline relaxes smooth muscle of calf trachea mainly through beta 1-adrenoceptors: comparison with (-)-adrenaline and relation to adenylate cyclase stimulation. Naunyn Schmiedebergs Arch Pharmacol. 1989 Jan-Feb;339(1-2):85–98. doi: 10.1007/BF00165131. [DOI] [PubMed] [Google Scholar]
  16. Lohmann S. M., Miech R. P., Butcher F. R. Effects of isoproterenol, theophylline and carbachol on cyclic nucleotide levels and relaxation of bovine tracheal smooth muscle. Biochim Biophys Acta. 1977 Sep 29;499(2):238–250. doi: 10.1016/0304-4165(77)90006-x. [DOI] [PubMed] [Google Scholar]
  17. Molenaar P., Summers R. J. Characterization of beta-1 and beta-2 adrenoceptors in guinea pig atrium: functional and receptor binding studies. J Pharmacol Exp Ther. 1987 Jun;241(3):1041–1047. [PubMed] [Google Scholar]
  18. Muller B., Lugnier C., Stoclet J. C. Implication of cyclic AMP in the positive inotropic effects of cyclic GMP-inhibited cyclic AMP phosphodiesterase inhibitors on guinea pig isolated left atria. J Cardiovasc Pharmacol. 1990 Mar;15(3):444–451. doi: 10.1097/00005344-199003000-00015. [DOI] [PubMed] [Google Scholar]
  19. Muller B., Lugnier C., Stoclet J. C. Involvement of rolipram-sensitive cyclic AMP phosphodiesterase in the regulation of cardiac contraction. J Cardiovasc Pharmacol. 1990 Nov;16(5):796–803. doi: 10.1097/00005344-199011000-00016. [DOI] [PubMed] [Google Scholar]
  20. O'Donnell S. R. An examination of some -adrenoreceptor stimulants for selectivity using the isolated trachea and atria of the guinea pig. Eur J Pharmacol. 1972 Sep;19(3):371–379. doi: 10.1016/0014-2999(72)90104-5. [DOI] [PubMed] [Google Scholar]
  21. Raeburn D. Putative role of epithelial derived factors in airway smooth muscle reactivity. Agents Actions Suppl. 1990;31:259–274. doi: 10.1007/978-3-0348-7379-6_36. [DOI] [PubMed] [Google Scholar]
  22. Richardson J. B., Ferguson C. C. Neuromuscular structure and function in the airways. Fed Proc. 1979 Feb;38(2):202–208. [PubMed] [Google Scholar]
  23. Shahid M., van Amsterdam R. G., de Boer J., ten Berge R. E., Nicholson C. D., Zaagsma J. The presence of five cyclic nucleotide phosphodiesterase isoenzyme activities in bovine tracheal smooth muscle and the functional effects of selective inhibitors. Br J Pharmacol. 1991 Oct;104(2):471–477. doi: 10.1111/j.1476-5381.1991.tb12453.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Silver P. J., Hamel L. T., Perrone M. H., Bentley R. G., Bushover C. R., Evans D. B. Differential pharmacologic sensitivity of cyclic nucleotide phosphodiesterase isozymes isolated from cardiac muscle, arterial and airway smooth muscle. Eur J Pharmacol. 1988 May 20;150(1-2):85–94. doi: 10.1016/0014-2999(88)90753-4. [DOI] [PubMed] [Google Scholar]
  25. Torphy T. J., Undem B. J. Phosphodiesterase inhibitors: new opportunities for the treatment of asthma. Thorax. 1991 Jul;46(7):512–523. doi: 10.1136/thx.46.7.512. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Zaagsma J., van der Heijden P. J., van der Schaar M. W., Bank C. M. Comparison of functional beta-adrenoceptor heterogeneity in central and peripheral airway smooth muscle of guinea pig and man. J Recept Res. 1983;3(1-2):89–106. doi: 10.3109/10799898309041925. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES