Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1992 Nov;107(3):671–678. doi: 10.1111/j.1476-5381.1992.tb14505.x

Characterization of adenosine receptors in brush-border membranes from pig kidney.

J Blanco 1, E I Canela 1, J Mallol 1, C Lluís 1, R Franco 1
PMCID: PMC1907783  PMID: 1335333

Abstract

1. The adenosine receptors from pig kidney proximal tubules have been studied in membrane vesicle preparations derived from either luminal (brush-border membranes-BBM-) or basolateral (BL) sides. There was a substantial amount of A2-like NECA binding in both preparations, but the A1 subtype of adenosine receptors was not found in either BBM or BL membranes. The use of [3H]-CGS21680 which is a more specific ligand for A2a receptors revealed true adenosine receptors in the BBM. 2. The kinetic parameters for [3H]-CGS21680 binding to pig renal BBM were: Bmax = 1.48 pmol mg-1 protein and Kd = 150 nM. In the presence of Gpp(NH)p the affinity decreased (Kd = 220 nM), whereas the addition of Mg2+ induced a marked increase in affinity (Kd = 83 nM). These equilibrium constants are higher than those found for the A2a adenosine receptors present in pig brain striatal membranes (Kd = 12 nM), and are close to those found in rat renal BBM (Kd = 90 nM). 3. The order of potency of agonist and antagonists was not consistent with the presence of either A1 or A2 receptors, but it was very similar to the agonist order of potency for the A3 receptor subtype. Furthermore, the blockade of the [3H]-CGS21680 binding by both cholera and pertussis toxin further supports the view that the subtypes present in BBM are neither A1 nor A2. 4. Overall the results suggest the presence in BBM of an A3 receptor, or of a new subtype of adenosine receptor, which is linked to G proteins sensitive to both cholera and pertussis toxins.

Full text

PDF
671

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ali H., Cunha-Melo J. R., Saul W. F., Beaven M. A. Activation of phospholipase C via adenosine receptors provides synergistic signals for secretion in antigen-stimulated RBL-2H3 cells. Evidence for a novel adenosine receptor. J Biol Chem. 1990 Jan 15;265(2):745–753. [PubMed] [Google Scholar]
  2. Ametani M. S., Southard J. H., Belzer F. O. Importance of glutathione and adenosine in cold storage of the kidney. Transplant Proc. 1990 Apr;22(2):469–471. [PubMed] [Google Scholar]
  3. Arend L. J., Bakris G. L., Burnett J. C., Jr, Megerian C., Spielman W. S. Role for intrarenal adenosine in the renal hemodynamic response to contrast media. J Lab Clin Med. 1987 Oct;110(4):406–411. [PubMed] [Google Scholar]
  4. Arend L. J., Burnatowska-Hledin M. A., Spielman W. S. Adenosine receptor-mediated calcium mobilization in cortical collecting tubule cells. Am J Physiol. 1988 Nov;255(5 Pt 1):C581–C588. doi: 10.1152/ajpcell.1988.255.5.C581. [DOI] [PubMed] [Google Scholar]
  5. Arend L. J., Handler J. S., Rhim J. S., Gusovsky F., Spielman W. S. Adenosine-sensitive phosphoinositide turnover in a newly established renal cell line. Am J Physiol. 1989 Jun;256(6 Pt 2):F1067–F1074. doi: 10.1152/ajprenal.1989.256.6.F1067. [DOI] [PubMed] [Google Scholar]
  6. Bruns R. F., Lu G. H., Pugsley T. A. Characterization of the A2 adenosine receptor labeled by [3H]NECA in rat striatal membranes. Mol Pharmacol. 1986 Apr;29(4):331–346. [PubMed] [Google Scholar]
  7. Canela E. I. A free derivative program for non-linear regression analysis of enzyme kinetics to be used on small computers. Int J Biomed Comput. 1984 Mar-Apr;15(2):121–130. doi: 10.1016/0020-7101(84)90024-2. [DOI] [PubMed] [Google Scholar]
  8. Casadó V., Cantí C., Mallol J., Canela E. I., Lluis C., Franco R. Solubilization of A1 adenosine receptor from pig brain: characterization and evidence of the role of the cell membrane on the coexistence of high- and low-affinity states. J Neurosci Res. 1990 Aug;26(4):461–473. doi: 10.1002/jnr.490260409. [DOI] [PubMed] [Google Scholar]
  9. Casadó V., Mallol J., Lluis C., Franco R., Canela E. I. Adenosine receptors in myelin fractions and subfractions: the effect of the agonist (R)-phenylisopropyladenosine on myelin membrane microviscosity. J Neurochem. 1991 Nov;57(5):1623–1629. doi: 10.1111/j.1471-4159.1991.tb06360.x. [DOI] [PubMed] [Google Scholar]
  10. Casadó V., Martí T., Franco R., Lluis C., Mallol J., Canela E. I. A method for binding parameters estimation of A1 adenosine receptor subtype: a practical approach. Anal Biochem. 1990 Jan;184(1):117–123. doi: 10.1016/0003-2697(90)90022-2. [DOI] [PubMed] [Google Scholar]
  11. Churchill P. C., Jacobson K. A., Churchill M. C. XAC, a functionalized congener of 1,3-dialkylxanthine, antagonizes A1 adenosine receptor-mediated inhibition of renin secretion in vitro. Arch Int Pharmacodyn Ther. 1987 Dec;290(2):293–301. [PMC free article] [PubMed] [Google Scholar]
  12. Churchill P. C. Renal effects of 2-chloroadenosine and their antagonism by aminophylline in anesthetized rats. J Pharmacol Exp Ther. 1982 Aug;222(2):319–323. [PubMed] [Google Scholar]
  13. Collis M. G., Baxter G. S., Keddie J. R. The adenosine receptor antagonist, 8-phenyltheophylline, causes diuresis and saliuresis in the rat. J Pharm Pharmacol. 1986 Nov;38(11):850–852. doi: 10.1111/j.2042-7158.1986.tb04510.x. [DOI] [PubMed] [Google Scholar]
  14. Deray G., Sabra R., Herzer W. A., Jackson E. K., Branch R. A. Interaction between angiotensin II and adenosine in mediating the vasoconstrictor response to intrarenal hypertonic saline infusions in the dog. J Pharmacol Exp Ther. 1990 Feb;252(2):631–635. [PubMed] [Google Scholar]
  15. Dillingham M. A., Anderson R. J. Purinergic regulation of basal and arginine vasopressin-stimulated hydraulic conductivity in rabbit cortical collecting tubule. J Membr Biol. 1985;88(3):277–281. doi: 10.1007/BF01871091. [DOI] [PubMed] [Google Scholar]
  16. Fredholm B. B., Dunwiddie T. V. How does adenosine inhibit transmitter release? Trends Pharmacol Sci. 1988 Apr;9(4):130–134. doi: 10.1016/0165-6147(88)90194-0. [DOI] [PubMed] [Google Scholar]
  17. Freissmuth M., Hausleithner V., Tuisl E., Nanoff C., Schütz W. Glomeruli and microvessels of the rabbit kidney contain both A1- and A2-adenosine receptors. Naunyn Schmiedebergs Arch Pharmacol. 1987 Apr;335(4):438–444. doi: 10.1007/BF00165560. [DOI] [PubMed] [Google Scholar]
  18. Freissmuth M., Nanoff C., Tuisl E., Schuetz W. Stimulation of adenylate cyclase activity via A2-adenosine receptors in isolated tubules of the rabbit renal cortex. Eur J Pharmacol. 1987 Jun 12;138(1):137–140. doi: 10.1016/0014-2999(87)90350-5. [DOI] [PubMed] [Google Scholar]
  19. Gouyon J. B., Guignard J. P. Adenosine in the immature kidney. Dev Pharmacol Ther. 1989;13(2-4):113–119. doi: 10.1159/000457592. [DOI] [PubMed] [Google Scholar]
  20. Hall J. E., Granger J. P., Hester R. L. Interactions between adenosine and angiotensin II in controlling glomerular filtration. Am J Physiol. 1985 Mar;248(3 Pt 2):F340–F346. doi: 10.1152/ajprenal.1985.248.3.F340. [DOI] [PubMed] [Google Scholar]
  21. James S., Xuereb J. H., Askalan R., Richardson P. J. Adenosine receptors in post-mortem human brain. Br J Pharmacol. 1992 Jan;105(1):238–244. doi: 10.1111/j.1476-5381.1992.tb14240.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Jarvis M. F., Schulz R., Hutchison A. J., Do U. H., Sills M. A., Williams M. [3H]CGS 21680, a selective A2 adenosine receptor agonist directly labels A2 receptors in rat brain. J Pharmacol Exp Ther. 1989 Dec;251(3):888–893. [PubMed] [Google Scholar]
  23. Kinsella J. L., Holohan P. D., Pessah N. I., Ross C. R. Isolation of luminal and antiluminal membranes from dog kidney cortex. Biochim Biophys Acta. 1979 Apr 19;552(3):468–477. doi: 10.1016/0005-2736(79)90191-3. [DOI] [PubMed] [Google Scholar]
  24. Kuan C. J., Wells J. N., Jackson E. K. Endogenous adenosine restrains renin release during sodium restriction. J Pharmacol Exp Ther. 1989 Apr;249(1):110–116. [PubMed] [Google Scholar]
  25. Kuan C. J., Wells J. N., Jackson E. K. Endogenous adenosine restrains renin release in conscious rats. Circ Res. 1990 Mar;66(3):637–646. doi: 10.1161/01.res.66.3.637. [DOI] [PubMed] [Google Scholar]
  26. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  27. Lin J. T., Da Cruz M. E., Riedel S., Kinne R. Partial purification of hog kidney sodium-D-glucose cotransport system by affinity chromatography on a phlorizin polymer. Biochim Biophys Acta. 1981 Jan 8;640(1):43–54. doi: 10.1016/0005-2736(81)90530-7. [DOI] [PubMed] [Google Scholar]
  28. Lopez-Cabrera A., Cabré F., Franco R., Canela E. I. Identification and rejection of outliers in enzyme kinetics. Int J Biomed Comput. 1988 Oct;23(1-2):9–20. doi: 10.1016/0020-7101(88)90059-1. [DOI] [PubMed] [Google Scholar]
  29. López-Novoa J. M., de Arriba G., Barrio V., Rodriguez-Puyol D. Adenosine induces a calcium-dependent glomerular contraction. Eur J Pharmacol. 1987 Feb 24;134(3):365–367. doi: 10.1016/0014-2999(87)90371-2. [DOI] [PubMed] [Google Scholar]
  30. Macias-Nuñez J. F., García-Iglesias C., Santos J. C., Sanz E., López-Novoa J. M. Influence of plasma renin content, intrarenal angiotensin II, captopril, and calcium channel blockers on the vasoconstriction and renin release promoted by adenosine in the kidney. J Lab Clin Med. 1985 Nov;106(5):562–567. [PubMed] [Google Scholar]
  31. McPhee M. D., Whiting S. J. The effect of adenosine and adenosine analogues on methylxanthine-induced hypercalciuria in the rat. Can J Physiol Pharmacol. 1989 Oct;67(10):1278–1282. doi: 10.1139/y89-203. [DOI] [PubMed] [Google Scholar]
  32. Murray R. D., Churchill P. C. Concentration dependency of the renal vascular and renin secretory responses to adenosine receptor agonists. J Pharmacol Exp Ther. 1985 Jan;232(1):189–193. [PubMed] [Google Scholar]
  33. Ohnishi A., Li P., Branch R. A., Biaggioni I. O., Jackson E. K. Adenosine in renin-dependent renovascular hypertension. Hypertension. 1988 Aug;12(2):152–161. doi: 10.1161/01.hyp.12.2.152. [DOI] [PubMed] [Google Scholar]
  34. Olivera A., Lamas S., Rodriguez-Puyol D., López-Novoa J. M. Adenosine induces mesangial cell contraction by an A1-type receptor. Kidney Int. 1989 Jun;35(6):1300–1305. doi: 10.1038/ki.1989.126. [DOI] [PubMed] [Google Scholar]
  35. Palacios J. M., Fastbom J., Wiederhold K. H., Probst A. Visualization of adenosine A1 receptors in the human and the guinea-pig kidney. Eur J Pharmacol. 1987 Jun 19;138(2):273–276. doi: 10.1016/0014-2999(87)90443-2. [DOI] [PubMed] [Google Scholar]
  36. Paul S., Jackson E. K., Robertson D., Branch R. A., Biaggioni I. Caffeine potentiates the renin response to furosemide in rats. Evidence for a regulatory role of endogenous adenosine. J Pharmacol Exp Ther. 1989 Oct;251(1):183–187. [PubMed] [Google Scholar]
  37. Pawlowska D., Granger J. P., Knox F. G. Effects of adenosine infusion into renal interstitium on renal hemodynamics. Am J Physiol. 1987 Apr;252(4 Pt 2):F678–F682. doi: 10.1152/ajprenal.1987.252.4.F678. [DOI] [PubMed] [Google Scholar]
  38. Ribeiro-Neto F. A., Mattera R., Hildebrandt J. D., Codina J., Field J. B., Birnbaumer L., Sekura R. D. ADP-ribosylation of membrane components by pertussis and cholera toxin. Methods Enzymol. 1985;109:566–572. doi: 10.1016/0076-6879(85)09115-7. [DOI] [PubMed] [Google Scholar]
  39. Ribeiro J. A., Sebastião A. M. Adenosine receptors and calcium: basis for proposing a third (A3) adenosine receptor. Prog Neurobiol. 1986;26(3):179–209. doi: 10.1016/0301-0082(86)90015-8. [DOI] [PubMed] [Google Scholar]
  40. Ribeiro J. A., Sebastião A. M. On the type of receptor involved in the inhibitory action of adenosine at the neuromuscular junction. Br J Pharmacol. 1985 Apr;84(4):911–918. doi: 10.1111/j.1476-5381.1985.tb17385.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Schnefel S., Pröfrock A., Hinsch K. D., Schulz I. Cholecystokinin activates Gi1-, Gi2-, Gi3- and several Gs-proteins in rat pancreatic acinar cells. Biochem J. 1990 Jul 15;269(2):483–488. doi: 10.1042/bj2690483. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Sebastião A. M., Ribeiro J. A. 1,3,8- and 1,3,7-substituted xanthines: relative potency as adenosine receptor antagonists at the frog neuromuscular junction. Br J Pharmacol. 1989 Jan;96(1):211–219. doi: 10.1111/j.1476-5381.1989.tb11802.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Sebastião A. M., Ribeiro J. A. On the adenosine receptor and adenosine inactivation at the rat diaphragm neuromuscular junction. Br J Pharmacol. 1988 May;94(1):109–120. doi: 10.1111/j.1476-5381.1988.tb11505.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Shryock J. C., Rubio R., Berne R. M. Extraction of adenine nucleotides from cultured endothelial cells. Anal Biochem. 1986 Nov 15;159(1):73–81. doi: 10.1016/0003-2697(86)90309-x. [DOI] [PubMed] [Google Scholar]
  45. Skøtt O., Baumbach L. Effects of adenosine on renin release from isolated rat glomeruli and kidney slices. Pflugers Arch. 1985 Jul;404(3):232–237. doi: 10.1007/BF00581244. [DOI] [PubMed] [Google Scholar]
  46. Vannier C., Louvard D., Maroux S., Desnuelle P. Structural and topological homology between porcine intestinal and renal brush border aminopeptidase. Biochim Biophys Acta. 1976 Nov 11;455(1):185–199. doi: 10.1016/0005-2736(76)90163-2. [DOI] [PubMed] [Google Scholar]
  47. Wan W., Sutherland G. R., Geiger J. D. Binding of the adenosine A2 receptor ligand [3H]CGS 21680 to human and rat brain: evidence for multiple affinity sites. J Neurochem. 1990 Nov;55(5):1763–1771. doi: 10.1111/j.1471-4159.1990.tb04967.x. [DOI] [PubMed] [Google Scholar]
  48. Weber R. G., Jones C. R., Palacios J. M., Lohse M. J. Autoradiographic visualization of A1-adenosine receptors in brain and peripheral tissues of rat and guinea pig using 125I-HPIA. Neurosci Lett. 1988 May 3;87(3):215–220. doi: 10.1016/0304-3940(88)90451-x. [DOI] [PubMed] [Google Scholar]
  49. Weinberg J. M., Davis J. A., Shayman J. A., Knight P. R. Alterations of cytosolic calcium in LLC-PK1 cells induced by vasopressin and exogenous purines. Am J Physiol. 1989 May;256(5 Pt 1):C967–C976. doi: 10.1152/ajpcell.1989.256.5.C967. [DOI] [PubMed] [Google Scholar]
  50. Woodcock E. A., Leung E., Johnston C. I. Adenosine receptors in papilla of human kidneys. Clin Sci (Lond) 1986 Apr;70(4):353–357. doi: 10.1042/cs0700353. [DOI] [PubMed] [Google Scholar]
  51. Woodcock E. A., Loxley R., Leung E., Johnston C. I. Demonstration of RA - adenosine receptors in rat renal papillae. Biochem Biophys Res Commun. 1984 Jun 15;121(2):434–440. doi: 10.1016/0006-291x(84)90201-8. [DOI] [PubMed] [Google Scholar]
  52. Wu P. H., Churchill P. C. 2-Chloro-[3H]-adenosine binding in isolated rat kidney membranes. Arch Int Pharmacodyn Ther. 1985 Jan;273(1):83–87. [PubMed] [Google Scholar]
  53. van Calker D., Müller M., Hamprecht B. Adenosine regulates via two different types of receptors, the accumulation of cyclic AMP in cultured brain cells. J Neurochem. 1979 Nov;33(5):999–1005. doi: 10.1111/j.1471-4159.1979.tb05236.x. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES