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Endothelin-1 in the rabbit: interactions with cyclo-oxygenase
and NO-synthase products
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1 Endothelin-1 infusion (5-40 pmolkg~!'min~') in the normal anaesthetized rabbit, produced a
dose-dependent increase in mean arterial blood pressure (MAP) and reduced renal blood flow (RBF)
and glomerular filtration rate (GFR), when compared with an equivalent infusion of physiological
saline.

2 Endothelin, 20 pmol kg~! min~!, was also assessed in animals pretreated with either indomethacin
(2mgkg™'), methylene blue (1.6mgkg='h~!) or N®monomethyl L-arginine (L-NMMA, 10mg
kg='h-h).

3 The effect of endothelin on MAP and RBF was enhanced (P = 0.05 and <0.01 respectively) by the
cyclo-oxygenase inhibitor, indomethacin, without any significant change in the effect on GFR.

4 Methylene blue and L-NMMA, inhibitors of endothelium-derived relaxant factor (EDRF), enhanced
the effect of endothelin on each of the parameters measured (P <<0.01).

5 Our results are consistent with endothelin having a predominant effect on pre-glomerular vascular
resistance to reduce GFR. Endothelin appears to stimulate the release of vasodilator prostanoids and
EDRF which oppose its effects. Thus endothelin may have an important role in the complex control of

GFR in the rabbit.
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Introduction

Endothelin-1 is a 21 amino acid peptide with potent
vasoconstrictor properties (Yanagisawa et al., 1988). It is
produced by endothelial cells in culture and is coded in the
genome of several species. Endothelium-dependent constrict-
ing factors are released in response to stimuli such as hypoxia
and increased transmural pressure (Rubanyi & Vanhoutte,
1985) and endothelin is thought to be one such factor.
Endothelin has a prolonged effect in vivo but a short half-life
in the circulation (Spokes et al., 1989). This is consistent with
avid uptake at specific binding sites, which have been demon-
strated widely in the vasculature and in the parenchyma of
several organs including kidney, brain and heart (Koseki et
al., 1989).

Endothelin increases renal vascular resistance and de-
creases renal function in both rats (Badr et al., 1989; Lopez-
Farré et al., 1989) and dogs (Goetz et al., 1988; Miller et al.,
1989). Kon and her colleagues (1989) infused endothelin-1
into the first order branch of the left main renal artery in
Munich-Wistar rats and found a 35% reduction in single
nephron glomerular filtration rate (GFR) compared with
unexposed glomeruli in the same kidney. Furthermore, in
models of ischaemic acute renal failure (Kon et al., 1989) and
acute cyclosporin nephrotoxicity (Kon et al., 1990) in the
same model, the infusion of a polyclonal anti-endothelin
antibody protected against the characteristic renal vasocon-
striction in each case. This supports the idea that endothelin
might have an important physiological and pathophysio-
logical role in the kidney (Firth et al., 1988; Cairns et al.,
1988).

The control of glomerular blood flow is critical in the
maintenance of homeostasis and the rabbit kidney exhibits
autoregulation of its flow (Forster & Maes, 1947). There is a
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complex interaction between neural and humoral, constrictor
and dilator and local and systemic mechanisms contributing
to this control. The two best documented regulatory
mechanisms involved are the renin-angiotensin system and
the renal eicosanoids; the principal renal prostaglandins are
prostaglandin E, (PGE,;) and PGI, (Terragno et al., 1978),
which are both vasodilator in the kidney. Since the isolated
perfused kidney can still autoregulate (Kastner et al., 1984),
local factors are likely to be important, in particular, the
importance of the endothelium as a source of vasoactive
agents is increasingly recognized.

We have therefore studied the systemic and renal effects of
endothelin in the rabbit and assessed its role in the regulation
of renal blood flow by inhibiting some of these other systems:
cyclo-oxygenase with indomethacin and the action and
generation of endothelium-derived relaxing factor (EDRF:
nitric oxide, Ignarro et al., 1987), with methylene blue (MB)
an inhibitor of soluble guanylate cyclase (Ignarro et al., 1986)
and N® monomethyl-L-arginine (L-NMMA) a competitive
inhibitor of the enzyme NO synthase (Palmer & Moncada,
1989).

Methods

Surgical preparation

Normal adult New Zealand White rabbits (6—10 in each
group) -of either sex and weighing 2.5-3.5 kg (Rosemead,
U.K.) were fluid loaded with physiological saline (50 ml) and
given 2 mg frusemide via the ear vein, to induce a temporary
diuresis prior to cannulation of the ureter. Anaesthesia was
induced with pentobarbitone 15 mgkg~' (Sagatal, May &
Baker, Dagenham, U.K.) and althesin 0.2 ml kg~! (contain-
ing 9mg alfaxalone and 3 mg alphadolone ml~!) (Saffan,
Glaxovet, U.K.) as intravenous boluses, and maintained with
a continuous infusion of althesin 1.2-1.5mlkg='h-! into



the ear vein.

After formation of a tracheostomy, the animals were ven-
tilated with room air supplemented with 100% oxygen. The
left carotid artery was cannulated for blood sampling and for
continuous measurement of blood pressure via a Statham
blood pressure transducer on a Watanabe (Type WA281) pen
chart recorder. A second catheter was introduced by the
Seldinger technique, over a guide wire, into the right femoral
artery and thence into the aorta. The catheter tip was posi-
tioned approximately one centimeter above the level of the
renal arteries by palpation and was flushed with heparinised
saline for the subsequent infusion of endothelin.

At laparotomy both ureters were cannulated so that timed
urine collections could be made and an electromagnetic flow
probe (1.5mm, Gould) was placed around the left renal
artery and connected to a flowmeter (Gould Inc., Oxnard,
Ca. model SP2202) for measurement of renal blood flow. The
midline wound was then closed with clips. Animals were
hydrated throughout with 0.9% saline, 20 ml kg='h~', and
0.5 MBq of ['Cr]-EDTA was administered by the carotid
cannula as a bolus, followed by a further 0.5 MBq in isotonic
saline as a continuous infusion (0.3 ml min~!'), via the ear
vein.

In addition in six animals, indomethacin was given as an
intravenous bolus (2mgkg™") followed by an infusion at
1 mgkg~' h~! in normal saline, to block the cyclo-oxygenase
enzyme (Flower, 1974).

Methylene blue (MB), 1.6mgkg~'h~! and L-NMMA,
10 mg kg~' h~!, were infused for 140 and 60 min respectively
from the end of the recovery period in a further 5 animals
each. These doses had been shown in our preliminary
experiments to inhibit the effect of acetylcholine 10 nmol
kg 'min~! in the normal rabbit.

Experimental procedure

After completion of the surgical preparation and infusions of
[*'Cr]-EDTA and drugs, the animals were allowed to recover
from the operation for a period of 30—40 min. Two con-
secutive baseline 10 min collections of urine were then made
with recordings of arterial pressure (MAP) renal blood flow
(RBF) and plasma sampling at the mid-point of the collec-
tion. Glomerular filtration rate (GFR) was subsequently
calculated as the clearance of [*'Cr]-EDTA during each col-
lection period. In the animals treated with methylene blue or
L-NMMA, repeateed baseline measurements were made after
10 min of administration. Endothelin-1 (Peptide Institute,
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Osaka, Japan), 250 nM in normal saline, was then infused
into the aortic cannula to allow adequate mixing of the drug
in the blood before reaching the renal circulation whilst
minimizing the systemic effect. The infusion continued for a
total of 40 min during which three sets of measurements were
made at 5, 10 and 30 min respectively.

After completing the infusion a 70 min recovery period
was allowed with three similar observation periods at 55, 80
and 110 min from the start of the infusion. Endothelin was
infused at 5, 20 and 40 pmol kg~'min~! in preliminary
studies to assess the dose response (n = 5—6) and thereafter,
20 pmol kg~! min~! was infused in each experiment.

Results are expressed, at each time point, as the percentage
change from the mean of the two baseline measurements
(absolute baseline values are shown in Table 1). The GFR
results reported are from the right kidney. The rabbit renal
artery is sensitive to manipulation and placement of the flow
probe on the left resulted in a reduction in renal function on
that side which recovered to a variable degree in each case.
In 27 of 122 different experiments employing this preparation
renal function was preserved on the left (mean GFR 69.2%
of that on the right, range 10.7-268%). In these cases both
kidneys responded similarly to pharmacological manipula-
tion, and we have therefore considered it valid to compare
measurements of function on the right with recordings of
blood flow from the left kidney.

Statistical analyses were by multifactor analysis of variance
(ANOVA).

Results

Endothelin alone

Endothelin infusion (20 pmol kg~! min~!) produced an in-
crease in MAP from baseline 49.3 * 5mmHg to 56.8
5 mmHg (mean t s.e.mean) at the end of the infusion period.
This was accompanied by a reduction in GFR (4.2 £ 0.5 to
2.1 £0.5mlmin~') and RBF (12.9%2.3 to 8 £ 2mlmin~!)
(Figure 1). The changes were dose related, in the range
5-40 pmol kg~' min~!, developed immediately and pro-
gressed throughout the course of the infusion period to a
maximum at 30 min in most cases. There was no initial fall in
MAP. After the infusion, mean arterial pressure returned to
baseline values by 55min at the lower dose levels of
endothelin but did not recover after 40 pmol kg~! min~'.
RBF was not affected by the lowest dose of endothelin

Table 1 Absolute data at baseline before infusion of control saline or endothelin at various doses with or without other named agents

MAP
(mmHg)

Control 53.1
@3.1)

Endothelin 20 49.3
pmol kg~! min~! 5.1

Endothelin 40 440
pmol kg~ min~! (5.0)

Endothelin § 70.2
pmol kg~' min~! (4.8)

Endothelin 20 69.8
+ indomethacin 2.7

Endothelin 20 69.9
+ Meth. blue (1.7

Endothelin 5 74.8
+ Meth. blue (5.8)

Endothelin 1 66.5
+ Meth. blue (11.2)

Endothelin 20 74.5
+ L-NMMA (6.9)

RBF GFR PP
(ml min~") (ml min~") (mmHg)
17.7 33 33.7
2.6) (0.6) (3.0)
12.8 42 29.9
2.3) 0.5) 2.4)
20.0 3.1 26.3
(5.3) (1.0) 5.9
16.6 5.1 33.6
2.4 0.5) @.1)
25.9 5.8 26.6
3.7 (1.0) Q.1
15.1 4.5 29.7
24 (1.0) (1.8)
14.4 1.7 29.9
(4.0) 0.3) 2.3)
16.1 3.0 28.3
3.3) (0.8) 2.9)
24.7 4.8 25.6
3.0) 0.9) (3.0)

Values are mean % s.e.mean. MAP = mean arterial pressure; RBF = renal blood flow; GFR = glomerular filtration rate; PP = pulse
pressure. L-NMMA = N°-monomethyl L-arginine; Meth blue = methylene blue.
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Figure 1 Dose-response curve to a 40 min endothelin-1 infusion. (a)
Percentage change in mean arterial pressure (MAP); (b) percentage
change in renal blood flow (RBF); (c) percentage change in
glomerular filtration rate (GFR): (O) saline control; (@) endothelin
S pmol kg~! min~'; (A) endothelin 20 pmol kg~! min~'; (A) endo-
thelin 40 pmol kg~! min~!. Horizontal line indicates endothelin
infusion period.

(5 pmol kg~!') but at 40 pmol kg~! min~! the marked reduc-
tion (80%) had not returned to the baseline value by the end
of the observation period. In contrast, there was a fall in
GFR after only 5 pmol kg~! endothelin (P = 0.06 v control)
and the profound reduction in GFR (81 * 13.2%) induced
by endothelin 40 pmol kg~! min~' returned to the pre-infusion
level 15min after the infusion had been discontinued. A
progressive fall in pulse pressure also occurred throughout
the infusion and did not recover (data not shown).

Endothelin with indomethacin

Administration of indomethacin alone increases basal blood
pressure and GFR (24.8 and 15.4% respectively, n = 3);
results following infusion of endothelin were therefore ex-

pressed as percentages from this new baseline. Indomethacin
enhanced the effect of endothelin infusion (20 pmol kg~!) on
RBF (25.9 = 3.7 ml min~! falling to 8 £ 1.4 ml min~"') (that is
— 66.5% of baseline compared with — 30.3%, P = 0.02) and
MAP (69.8+2.7 to 889+ 3.5mmHg or 27.4% against
17.8% for endothelin alone, P = 0.35), neither MAP nor
RBF had returned to pre-infusion values by the end of the
experiment. Despite these changes, the fall in GFR after
administration of indomethacin (5.6 +0.9 to 2.6 £ 0.6 ml
min~') was not different from that produced by endothelin
alone (Figure 2).

Endothelin with methylene blue and N°-monomethyl-L-
arginine

MB potentiated the effect of endothelin on MAP (+ 57% v
17.8%, P<0.01), RBF (- 75% v — 30.3%, P<<0.001) and
GFR (-914% v —45%, P<<0.001) (Figure 3). A dose-
response curve to endothelin (1-20 pmol kg~! min~') in the
presence of MB showed a shift to the left (Figure 4)
indicating that endothelin is more potent in the absence of
soluble guanylate cyclase activity. Similarly, in the presence
of L-NMMA 10 mg kg~' h~!, all three parameters showed an
exaggerated response to endothelin 20 pmol kg~! min~!
(MAP +39%, P<0.01; RBF -74%, P<0.02; GFR
— 87%, P<<0.02, Figure 3). L-NMMA also caused a basal
increase in systemic blood pressure of 10%, but without a
statistically significant change in RBF (data not shown).
There was no difference between the effects of MB and
L-NMMA on the response to endothelin 20 pmol kg~! min~!
(P<<0.6), thus this enhancement of the effect of endothelin is
likely to be due to inhibition of EDRF.

Control

Infusion of physiological saline at the same rate as endothelin
served as the control experiment (Figure 1), and produced a
10% fall in MAP and a rise in RBF (20%) and GFR (35%).

These changes may represent the effect of a local infusion
of fluid into the aorta, but more likely represent the in-
stability of the baseline values, since they did not progress
during the infusion. The changes seen in response to
endothelin are opposite to those in the control animals, hence
any error introduced by the early response to saline will tend
to minimize the observed effect of endothelin, enhancing the
validity of our conclusions.

Discussion

Our results demonstrate that endothelin is a very potent
constrictor of the systemic and renal vasculature. The con-
strictor effect is markedly potentiated by inhibition of either
the cyclo-oxygenase enzyme system or the action or genera-
tion of EDRF, indicating that vasodilator prostaglandins and
EDREF are released in vivo to offset the effect of endothelin
alone. The reduction of GFR induced by endothelin is also
potentiated by inhibitors of EDRF but not by indomethacin
suggesting that the interaction of endothelin and cyclo-
oxygenase products in the control of GFR is more complex.

The reduction in renal perfusion and glomerular filtration
rate observed in vivo, confirms our earlier finding in the
isolated perfused kidney of the rabbit (Cairns et al., 1989)
and is consistent with other studies of endothelin infusion in
vivo, in both rat (Badr et al., 1989) and dog (Goetz et al.,
1988; Miller et al., 1989) and with the effect of endothelin
infused at low dose (0.16 pmol min~") directly into a segmen-
tal renal artery in rats (Kon et al., 1989). The dose-related
reduction in renal blood flow and GFR, despite a significant
increase in mean arterial blood pressure, suggests that
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endothelin is acting predominantly on pre-glomerular resis-
tance vessels to reduce the net intraglomerular hydraulic
pressure difference (A-P), and glomerular plasma flow.
Preferential afferent arteriolar constriction by endothelin has
been shown by direct observation in the split hydronephrotic
rat kidney model (Loutzenhiser ez al., 1990). Micropuncture
studies in Munich-Wistar rats (Badr et al, 1989) have
confirmed that endothelin infusion (10 pmol min~!) increases
the resistance .of both afferent and efferent arterioles, lower-
ing both the single nephron GFR and the calculated
ultrafiltration co-efficient (Kp). In support of the latter,
endothelin has been shown to induce contraction of mesan-
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Figure 3 Percentage change in (a) mean arterial blood pressure
(MAP); (b) renal blood flow (RBF) and (c) glomerular filtration rate
(GFR) following infusion of endothelin 20 pmol kg~' min~' alone
(®); endothelin 20 pmol kg~! min~' with methylene blue 1.6 mg
kg~'h-' (A); endothelin 20 pmol kg~' min~! with N®-monomethyl-
L-arginine 10mgkg~' (A). Horizontal line indicates endothelin
infusion.

Figure 2 Percentage change in (a) mean arterial blood pressure
(MAP), (b) pulse pressure (PP), (c) renal blood flow (RBF) (d)
glomerular filtration rate (GFR) following infusion of endothelin
20 pmol kg~! min~! alone (@®); endothelin 20 pmol kg~' min~' with
indomethacin 2mgkg~' (A). Horizontal line indicates endothelin
infusion period.
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Figure 4 Maximal change in (a) mean arterial pressure (MAP), (b)
renal blood flow (RBF) and (c) glomerular filtration rate (GFR), at
variable doses of endothelin, with or without methylene blue
(1.6mgkg='h-'): (@) endothelin alone; (O) endothelin with
methylene blue 1.6 mgkg='h-".

gial cells in culture (Badr et al., 1989; Simonson et al., 1989),
Kon however, found no change in K; (Kon et al., 1989).
Other studies in anaesthetized rabbits also showed an in-
crease in both pre and post glomerular vascular resistances,
with a delayed fall in GFR (Denton & Anderson, 1990). The
overall effect of endothelin on GFR may therefore be com-
plex, involving changes in both vascular resistance and
mesangial cell tone.

The striking reduction in pulse pressure seen during
endothelin infusion implies that its hypertensive effect may be
mediated by an effect on the peripheral vasculature rather
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