Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1991 May;103(1):1242–1250. doi: 10.1111/j.1476-5381.1991.tb12331.x

Endothelin modulates calcium channel current in neurones of rabbit pelvic parasympathetic ganglia.

T Nishimura 1, T Akasu 1, J Krier 1
PMCID: PMC1908065  PMID: 1652345

Abstract

1. The effects of endothelin were studied, in vitro, on neurones contained in the rabbit vesical pelvic ganglion by use of intracellular and single-electrode voltage clamp techniques under conditions where sodium and potassium channels were blocked. 2. In the current-clamp experiments, endothelin (1 microM) caused a depolarization followed by a hyperpolarization of the membrane potential. In the voltage-clamp experiments, endothelin (0.01-1 microM) caused an inward current followed by an outward current in a concentration-dependent manner. 3. Membrane conductance was increased during the endothelin-induced depolarization and inward current. Membrane conductance was decreased during the endothelin-induced hyperpolarization and outward current. 4. The endothelin-induced inward and outward currents were not altered by lowering external sodium concentration or raising external potassium concentration. 5. The endothelin-induced inward current was depressed (mean 72%) in a Krebs solution containing nominally zero calcium and high magnesium. These results suggest that a predominent component of the endothelin-induced inward current is mediated by calcium ions. 6. The calcium-insensitive component of the inward current was abolished by a chloride channel blocker, 4-acetamide-4'-isothiocyanostilbene-2,2'-disulphonic acid. The mean reversal potential for the calcium-insensitive component of the inward current was -18 mV. This value is near the equilibrium potential for chloride. Thus, it is presumed that the calcium-insensitive component of the inward current is carried by chloride ions. 7. Endothelin caused an initial depression followed by a long lasting facilitation of both rapidly and slowly decaying components of high-threshold calcium channel currents (N- and L-type).(ABSTRACT TRUNCATED AT 250 WORDS)

Full text

PDF

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Akasu T., Gallagher J. P., Hirai K., Shinnick-Gallagher P. Vasoactive intestinal polypeptide depolarizations in cat bladder parasympathetic ganglia. J Physiol. 1986 May;374:457–473. doi: 10.1113/jphysiol.1986.sp016091. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Akasu T., Gallagher J. P., Nakamura T., Shinnick-Gallagher P., Yoshimura M. Noradrenaline hyperpolarization and depolarization in cat vesical parasympathetic neurones. J Physiol. 1985 Apr;361:165–184. doi: 10.1113/jphysiol.1985.sp015639. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Akasu T., Hasuo H., Tokimasa T. Activation of 5-HT3 receptor subtypes causes rapid excitation of rabbit parasympathetic neurones. Br J Pharmacol. 1987 Jul;91(3):453–455. doi: 10.1111/j.1476-5381.1987.tb11236.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Akasu T., Nishimura T., Tokimasa T. Calcium-dependent chloride current in neurones of the rabbit pelvic parasympathetic ganglia. J Physiol. 1990 Mar;422:303–320. doi: 10.1113/jphysiol.1990.sp017985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bader C. R., Bertrand D., Schlichter R. Calcium-activated chloride current in cultured sensory and parasympathetic quail neurones. J Physiol. 1987 Dec;394:125–148. doi: 10.1113/jphysiol.1987.sp016863. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Brehm P., Eckert R. Calcium entry leads to inactivation of calcium channel in Paramecium. Science. 1978 Dec 15;202(4373):1203–1206. doi: 10.1126/science.103199. [DOI] [PubMed] [Google Scholar]
  7. Fox A. P., Nowycky M. C., Tsien R. W. Kinetic and pharmacological properties distinguishing three types of calcium currents in chick sensory neurones. J Physiol. 1987 Dec;394:149–172. doi: 10.1113/jphysiol.1987.sp016864. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Gallagher J. P., Griffith W. H., Shinnick-Gallagher P. Cholinergic transmission in cat parasympathetic ganglia. J Physiol. 1982 Nov;332:473–486. doi: 10.1113/jphysiol.1982.sp014425. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Giaid A., Gibson S. J., Ibrahim B. N., Legon S., Bloom S. R., Yanagisawa M., Masaki T., Varndell I. M., Polak J. M. Endothelin 1, an endothelium-derived peptide, is expressed in neurons of the human spinal cord and dorsal root ganglia. Proc Natl Acad Sci U S A. 1989 Oct;86(19):7634–7638. doi: 10.1073/pnas.86.19.7634. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Goto K., Kasuya Y., Matsuki N., Takuwa Y., Kurihara H., Ishikawa T., Kimura S., Yanagisawa M., Masaki T. Endothelin activates the dihydropyridine-sensitive, voltage-dependent Ca2+ channel in vascular smooth muscle. Proc Natl Acad Sci U S A. 1989 May;86(10):3915–3918. doi: 10.1073/pnas.86.10.3915. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Gray P. T., Ritchie J. M. A voltage-gated chloride conductance in rat cultured astrocytes. Proc R Soc Lond B Biol Sci. 1986 Aug 22;228(1252):267–288. doi: 10.1098/rspb.1986.0055. [DOI] [PubMed] [Google Scholar]
  12. Inoue I. Voltage-dependent chloride conductance of the squid axon membrane and its blockade by some disulfonic stilbene derivatives. J Gen Physiol. 1985 Apr;85(4):519–537. doi: 10.1085/jgp.85.4.519. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Inoue Y., Oike M., Nakao K., Kitamura K., Kuriyama H. Endothelin augments unitary calcium channel currents on the smooth muscle cell membrane of guinea-pig portal vein. J Physiol. 1990 Apr;423:171–191. doi: 10.1113/jphysiol.1990.sp018017. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Itoh Y., Yanagisawa M., Ohkubo S., Kimura C., Kosaka T., Inoue A., Ishida N., Mitsui Y., Onda H., Fujino M. Cloning and sequence analysis of cDNA encoding the precursor of a human endothelium-derived vasoconstrictor peptide, endothelin: identity of human and porcine endothelin. FEBS Lett. 1988 Apr 25;231(2):440–444. doi: 10.1016/0014-5793(88)80867-6. [DOI] [PubMed] [Google Scholar]
  15. Kennedy C., Krier J. Delta-opioid receptors mediate inhibition of fast excitatory postsynaptic potentials in cat parasympathetic colonic ganglia. Br J Pharmacol. 1987 Oct;92(2):437–443. doi: 10.1111/j.1476-5381.1987.tb11340.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Korn S. J., Weight F. F. Patch-clamp study of the calcium-dependent chloride current in AtT-20 pituitary cells. J Neurophysiol. 1987 Dec;58(6):1431–1451. doi: 10.1152/jn.1987.58.6.1431. [DOI] [PubMed] [Google Scholar]
  17. Koseki C., Imai M., Hirata Y., Yanagisawa M., Masaki T. Autoradiographic distribution in rat tissues of binding sites for endothelin: a neuropeptide? Am J Physiol. 1989 Apr;256(4 Pt 2):R858–R866. doi: 10.1152/ajpregu.1989.256.4.R858. [DOI] [PubMed] [Google Scholar]
  18. Lee K. S., Marban E., Tsien R. W. Inactivation of calcium channels in mammalian heart cells: joint dependence on membrane potential and intracellular calcium. J Physiol. 1985 Jul;364:395–411. doi: 10.1113/jphysiol.1985.sp015752. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. MacCumber M. W., Ross C. A., Snyder S. H. Endothelin in brain: receptors, mitogenesis, and biosynthesis in glial cells. Proc Natl Acad Sci U S A. 1990 Mar;87(6):2359–2363. doi: 10.1073/pnas.87.6.2359. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Masaki T. The discovery, the present state, and the future prospects of endothelin. J Cardiovasc Pharmacol. 1989;13 (Suppl 5):S1–S18. doi: 10.1097/00005344-198900135-00002. [DOI] [PubMed] [Google Scholar]
  21. Miller R. J. Multiple calcium channels and neuronal function. Science. 1987 Jan 2;235(4784):46–52. doi: 10.1126/science.2432656. [DOI] [PubMed] [Google Scholar]
  22. Nishimura T., Tokimasa T., Akasu T. 5-hydroxytryptamine inhibits cholinergic transmission through 5-HT1A receptor subtypes in rabbit vesical parasympathetic ganglia. Brain Res. 1988 Mar 1;442(2):399–402. doi: 10.1016/0006-8993(88)91534-x. [DOI] [PubMed] [Google Scholar]
  23. Nishimura T., Tokimasa T., Akasu T. Calcium-dependent potassium conductance in neurons of rabbit vesical pelvic ganglia. J Auton Nerv Syst. 1988 Sep;24(1-2):133–145. doi: 10.1016/0165-1838(88)90142-7. [DOI] [PubMed] [Google Scholar]
  24. Nowycky M. C., Fox A. P., Tsien R. W. Three types of neuronal calcium channel with different calcium agonist sensitivity. Nature. 1985 Aug 1;316(6027):440–443. doi: 10.1038/316440a0. [DOI] [PubMed] [Google Scholar]
  25. Plummer M. R., Logothetis D. E., Hess P. Elementary properties and pharmacological sensitivities of calcium channels in mammalian peripheral neurons. Neuron. 1989 May;2(5):1453–1463. doi: 10.1016/0896-6273(89)90191-8. [DOI] [PubMed] [Google Scholar]
  26. Scott R. H., McGuirk S. M., Dolphin A. C. Modulation of divalent cation-activated chloride ion currents. Br J Pharmacol. 1988 Jul;94(3):653–662. doi: 10.1111/j.1476-5381.1988.tb11572.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Seward E. P., Henderson G. Characterization of two components of the N-like, high-threshold-activated calcium channel current in differentiated SH-SY5Y cells. Pflugers Arch. 1990 Oct;417(2):223–230. doi: 10.1007/BF00370703. [DOI] [PubMed] [Google Scholar]
  28. Silberberg S. D., Poder T. C., Lacerda A. E. Endothelin increases single-channel calcium currents in coronary arterial smooth muscle cells. FEBS Lett. 1989 Apr 10;247(1):68–72. doi: 10.1016/0014-5793(89)81242-6. [DOI] [PubMed] [Google Scholar]
  29. Stojilković S. S., Merelli F., Iida T., Krsmanović L. Z., Catt K. J. Endothelin stimulation of cytosolic calcium and gonadotropin secretion in anterior pituitary cells. Science. 1990 Jun 29;248(4963):1663–1666. doi: 10.1126/science.2163546. [DOI] [PubMed] [Google Scholar]
  30. Tillotson D. Inactivation of Ca conductance dependent on entry of Ca ions in molluscan neurons. Proc Natl Acad Sci U S A. 1979 Mar;76(3):1497–1500. doi: 10.1073/pnas.76.3.1497. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Yanagisawa M., Kurihara H., Kimura S., Tomobe Y., Kobayashi M., Mitsui Y., Yazaki Y., Goto K., Masaki T. A novel potent vasoconstrictor peptide produced by vascular endothelial cells. Nature. 1988 Mar 31;332(6163):411–415. doi: 10.1038/332411a0. [DOI] [PubMed] [Google Scholar]
  32. Yoshizawa T., Kimura S., Kanazawa I., Uchiyama Y., Yanagisawa M., Masaki T. Endothelin localizes in the dorsal horn and acts on the spinal neurones: possible involvement of dihydropyridine-sensitive calcium channels and substance P release. Neurosci Lett. 1989 Jul 31;102(2-3):179–184. doi: 10.1016/0304-3940(89)90075-x. [DOI] [PubMed] [Google Scholar]
  33. Yoshizawa T., Shinmi O., Giaid A., Yanagisawa M., Gibson S. J., Kimura S., Uchiyama Y., Polak J. M., Masaki T., Kanazawa I. Endothelin: a novel peptide in the posterior pituitary system. Science. 1990 Jan 26;247(4941):462–464. doi: 10.1126/science.2405487. [DOI] [PubMed] [Google Scholar]
  34. Zhang W., Sakai N., Yamada H., Fu T., Nozawa Y. Endothelin-1 induces intracellular calcium rise and inositol 1,4,5-trisphosphate formation in cultured rat and human glioma cells. Neurosci Lett. 1990 May 4;112(2-3):199–204. doi: 10.1016/0304-3940(90)90203-l. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES