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Nitric oxide is the mediator of ATP-induced dilatation of the
rabbit hepatic arterial vascular bed

IR.T. Mathie, *V. Ralevic, 2B. Alexander & *G. Burnstock

Department of Surgery, Royal Postgraduate Medical School, London W12 ONN and *Department of Anatomy &
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1 Livers of 10 New Zealand White rabbits were perfused in vitro with Krebs-Biilbring buffer via the
hepatic artery (HA) and portal vein (PV) at constant flows of 23 + 1 and 77 + 1 mlmin~' 100g~! respec-
tively. The tone of the preparation was raised with noradrenaline (concentration: 10 um).

2 Dose-response curves for the vasodilatation produced by adenosine 5'-triphosphate (ATP), acetyl-
choline (ACh), adenosine, and sodium nitroprusside (SNP) were obtained following injection into the HA
supply. Injections were then repeated in the presence of the L-arginine to nitric oxide pathway inhibitors
N-monomethyl-L-arginine (L-NMMA, n = 6) and N-nitro-L-arginine methyl ester (L-NAME, n = 4) at
concentrations of 30 uM and 100 uM for each inhibitor.

3 Both L-NMMA and L-NAME antagonized the responses to ATP and ACh; L-NAME was 2-3 times
more potent than L-NMMA as an inhibitor of these endothelium-dependent vasodilatations. Neither
L-NMMA nor L-NAME attenuated responses of the endothelium-independent vasodilators, adenosine
and SNP.

4 These results indicate that nitric oxide is the mediator of ATP-induced vasodilatation in the HA
vascular bed of the rabbit and that the receptor responsible for the release of nitric oxide, the
P, -purinoceptor, is located predominantly on the endothelium.
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Introduction

The importance of adenosine in the control of hepatic arterial
(HA) blood flow has recently been established (Lautt et al.,
1985; Lautt & Legare, 1985; Ezzat & Lautt, 1987; Mathie &
Alexander, 1990), and a regulatory role for adenosine 5'-
triphosphate (ATP) has also been suggested (Mathie & Alex-
ander, 1990). Work from our laboratory has demonstrated, in
the HA vascular bed of the rabbit, the existence of purinocep-
tors which mediate adenosine-induced vasodilatation (A,
receptors; Mathie et al., 1991), and ATP-induced vasocons-
triction (P,, receptors) and vasodilatation (P,, receptors)
(Ralevic et al., 1991a).

We concluded from these studies that the vasodilatation
induced by ATP was likely to have been mediated by the
release of the endothelium-derived relaxing factor (EDRF),
nitric oxide (Palmer et al., 1987; Ignarro et al., 1987), follow-
ing activation of endothelial P, -purinoceptors in the HA
vascular bed; nitric oxide in turn elicits relaxation by activat-
ing guanylate cyclase in vascular smooth muscle cells (Murad,
1986; Ignarro, 1989). Our conclusion was based on the obser-
vation that methylene blue attenuated relaxant responses to
ATP and to the endothelium-dependent vasodilator acetyl-
choline (ACh), but not those to the endothelium-independent
dilator, sodium nitroprusside (SNP), consistent with a direct
inactivation of EDRF by methylene blue (Martin et al., 1985;
Watanabe et al., 1988). However, the action of methylene blue
may, at least partly, proceed through inhibition of smooth
muscle guanylate cyclase (Martin et al; 1985), thus leaving
open the possibility that some of the relaxation to ATP could
have taken place through direct action on a sub-population of
P,,-purinoceptors located on the smooth muscle; this, in fact,
has recently been shown to be the predominant location of
these receptors in the common hepatic artery of the rabbit
(Brizzolara & Burnstock, 1991).
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The present study was therefore conducted to clarify the
role of nitric oxide in ATP-induced vasodilatation, and
thereby establish the location of the P, -purinoceptors in the
HA vascular bed. We have used the same isolated dual-
perfused rabbit liver model described previously (Alexander et
al., 1991; Mathie et al., 1991; Ralevic et al., 1991a). Rabbit
livers were perfused via both the HA and the portal vein (PV)
at constant physiological flow rates from a common reservoir
of Krebs-Biilbring buffered solution. Vasodilator responses
were examined in the presence and in the absence of the spe-
cific inhibitors of the biosynthesis of nitric oxide from L-
arginine, N-monomethyl-L-arginine (L-NMMA: Palmer et al.,
1988; Rees et al., 1989a,b), and N-nitro-L-arginine methyl ester
(Moore et al., 1990) for which we have used the recently
adopted abbreviation L-NAME.

Methods

Operative procedures

Experiments were carried out on a total of 10 New Zealand
White rabbits of either sex, weighing 2.1-2.7kg (mean 2.4 kg).
The operative technique has been described previously
(Alexander et al., 1991), but will be outlined in brief here. The
rabbits were initially sedated with fentanyl/fluanisone i.p.
(Hypnorm, 0.25mlkg~!), and then anaesthetized with a
mixture of 1 part Hypnorm (0.3mlkg™!) and 1 part mid-
azolam (Hypnovel, 1.5mgkg™!) in 2 parts water ip. (total:
1.20mlkg™!) (Flecknell, 1987). A marginal ear vein was can-
nulated for subsequent i.v. administration of the Hypnorm/
midazolam/water mixture (0.25-0.5mlkg™*h~1).

The abdomen was opened through a mid-line incision, and
the common bile duct cannulated. The gastroduodenal artery
was cannulated (Portex 3FG), and the catheter advanced to
the junction of the common and proper hepatic arteries; the
common hepatic artery was then ligated and divided, and
4-5ml saline infused into the catheter to prevent blood coagu-
lation in the intrahepatic HA vasculature. After adminis-
tration of heparin i.v. (100 unitskg~!), the PV was cannulated
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and 40-50ml saline infused into the catheter to prevent accu-
mulation of blood in the intrahepatic PV system. The liver
was then rapidly, but carefully, excised from the animal,
weighed and placed in an organ bath.

Liver perfusion

The liver was perfused with oxygenated (95% O,/5% CO,)
Krebs-Biilbring buffer solution, composition (mm): NaCl 133,
KCl 4.7, NaH, PO, 1.35, MgSO, 0.61, glucose 7.8 and CaCl,
2.52 at 37°C. Each liver was perfused via the HA and PV at
constant flow rates (mean values for all experiments:
23+ 1mlmin~! 100g™! and 77+ Imlmin~! 100g~!
respectively). Perfusion pressures were measured with Gould
P23 pressure transducers on side-arms of the perfusion circuit,
and recordings made on a Grass 79D polygraph. Bile was col-
lected for the duration of perfusion.

After an equilibration period of 5-10min, the tone of the
preparation was raised by addition to the perfusate of nor-
adrenaline to a final concentration of 10 uMm.

Drug administration

Adenosine (hemisulphate), ATP, ACh, SNP, noradrenaline
bitartrate and N®-nitro-L-arginine methyl ester (L-NAME)
were obtained from Sigma. N®-monomethyl-L-arginine (L-
NMMA) was obtained from Wellcome Research Labor-
atories. (The ‘@’ and ‘G’ designations are used here in order to
retain the description of the compounds provided by the
manufacturers. We would like to point out, however, that
these superscripts are, in fact, synonymous; see also Dis-
cussion.) All the above were dissolved in distilled water, except
noradrenaline which was made up as a 10mM stock solution
in 0.1 mM ascorbic acid (to prevent oxidation).

ATP, ACh, adenosine and SNP were injected in turn as
0.1 ml boluses into the HA, in the dose range 10~ '-10~¢mol.
Injections of distilled water were given at the end of each
experiment in order to account for any injection artefact or
haemodynamic response; water caused no change in pressure
other than the injection artefact.

The above protocol was employed in 2 separate groups: in
Group I (6 rabbits) the effect of the above series of agents was
investigated before and after the addition to the perfusate of
L-NMMA to final concentrations of 30 uM (n = 6) and 100 uM
(n = 3); in Group II (4 rabbits) the effect of the same agents
was studied before and after the addition of L-NAME to final
concentrations of 30 uM (n = 4) and 100 uM (n = 4).

Statistics and presentation of data

Responses were recorded as changes in perfusion pressure
(mmHg). Student’s paired and unpaired ¢ tests were used, as
appropriate, to test the significance of- differences between
responses, P < 0.05 being taken as significant. All results are
quoted as mean + s.e.mean. The vasodilator potency of ACh
and ATP were calculated by use of the pD,, the negative
logarithm of the number of mol required to elicit a half-
maximal response.

Results

Perfusion indices

Group 1 (N-monomethyl-L-arginine, L-NMMA) Basal per-
fusion pressures in the HA and PV were 34 + 10mmHg and
4 + 1mmHg respectively. Pressures in the HA and PV
increased to 134 + 13mmHg and 10 + 2mmHg respectively
following the addition of noradrenaline to the perfusate. The
addition of 30uM L-NMMA to the perfusate produced a
further, non-significant, 5mmHg mean increase in HA tone.
The total volume of bile collected was 6 + 1 ml over the

225 + 20min perfusion period, approximating to an hourly
mean output of 1.6 ml.

Group II (N-nitro-L-arginine methyl ester, L-NAME) Basal
perfusion pressures in the HA and PV were 65 + 13 mmHg
and 7 + 1 mmHg respectively; neither was significantly differ-
ent from the corresponding value in Group I. Pressures in the
HA and PV increased to 149 + 28 mmHg and 11 + 1 mmHg
respectively following the addition of noradrenaline to the
perfusate; these values were not significantly different from
those of Group I. The addition of 30 um L-NAME to the per-
fusate produced a further, non-significant, 6 mmHg mean
increase in HA tone. The total volume of bile collected was
13 + 1 ml over the 250 + 14 min perfusion period, equivalent
to an hourly mean output of 3.1 ml.

Responses to adenosine 5'-triphosphate, acetylcholine,
adenosine and sodium nitroprusside

Adenosine 5'-triphosphate

Group I (L-NMMA): Bolus injections of ATP produced
dose-dependent vasodilator responses in the HA (Figure 1a).
L-NMMA at a concentration of 30 uM had no effect on the
responses, but at 100 uM there was a significant attenuation of
the responses to the three highest doses of ATP. There was no
significant change in pD, value with either concentration of
L-NMMA (84 + 0.3 to 8.1 + 0.2 with 30 um L-NMMA).

Group II (L-NAME): Control injections of ATP produced a
greater maximum vasodilatation in this group than in Group
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Figure 1 Responses of hepatic arterial pressure (HAP) to increasing
doses of adenosine 5'-triphosphate (ATP), before and during perfusion
with (a) N-monomethyl-L-arginine (L-NMMA), and (b) N-nitro-L-
arginine methyl ester (L-NAME): (0J) 30 uM; (<©)100 uM L-NMMA/L-
NAME. * indicates significant difference from control response (Il)
(P < 0.05); n = 6 for (a) and n = 4 for (b).
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Figure 2 Responses of hepatic arterial pressure (HAP) to increasing
doses of acetylcholine (ACh), before and during perfusion with (a) N-
monomethyl-L-arginine (L-NMMA), and (b) N-nitro-L-arginine
methyl ester (L-NAME): () 30 uM; (©) 100 uM L-NMMA/L-NAME.
* indicates significant difference from control response (l) (P < 0.05);
n = 6 for (a) and n = 4 for (b).

I (Figure 1b). L-NAME at both 30 uM and 100 uM caused sig-
nificant inhibition of ATP-induced vasodilatation at all doses
of ATP except the smallest. L-NAME at 30uM produced a
statistically significant change in pD, from 84 + 0.2 to
7.6 + 0.2; the 100 uM concentration caused no further change
in pD, . For the 30 uM concentration, therefore, L-NAME had
approximately 3 times the inhibitory potency of L-NMMA.

Acetylcholine

Group 1 (L-NMMA): Bolus injections of ACh produced
dose-dependent vasodilator responses in the HA (Figure 2a).
L-NMMA at a concentration of 30 uM had no significant effect
on the responses, but at 100 uM there was significant inhibition
of the responses at the three highest doses of ACh. The
control pD, (8.7 & 0.1) was not altered by either concentra-
tion of L-NMMA.

Group 11 (L-NAME): L-NAME at 30uM caused significant
attenuation of ACh-induced vasodilatation at the highest two
doses of ACh, while at 100 um there was significant inhibition
at the highest three doses of ACh (Figure 2b). The control
pD, (9.0 + 0.2) was significantly reduced to 8.6 + 0.2 by the
30uM concentration of L-NAME; the 100uM concentration
produced no further change in pD,. For the 30 uM concentra-
tion, therefore, L-NAME had approximately twice the inhibi-
tory potency of L-NMMA.

Adenosine Bolus injections of adenosine produced dose-
dependent vasodilatation of the HA, which was not signifi-
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Figure 3 Responses of hepatic arterial pressure (HAP) to increasing
doses of adenosine, before and during perfusion with (a) N-
monomethyl-L-arginine (L-NMMA), and (b) N-nitro-L-arginine
methyl ester (L-NAME): (l) control response; ((J) 30 uM L-NMMA/
L-NAME; (¢) 100 uM L-NMMA/L-NAME. In (a) n = 6, in (b) n = 4.

cantly affected by L-NMMA (Group I) or L-NAME (Group
II) at either 30 uM or 100 uM (Figure 3), confirming that the
mechanism of adenosine-induced vasodilatation is indepen-
dent of nitric oxide.

Sodium nitroprusside Relaxations to SNP were not inhibited,
but at some doses were enhanced, both by L-NMMA (Group
I) and by L-NAME (Group II), indicating a retained ability of
the smooth muscle to relax (Figure 4).

Discussion

These studies have provided direct evidence that ATP-induced
vasodilatation of the HA vascular bed is predominantly medi-
ated by an endothelial receptor, stimulation of which results in
smooth muscle relaxation through the action of the EDREF,
nitric oxide (Palmer et al., 1987; Ignarro et al, 1987). This
conclusion arises from the observation that the vasodilata-
tions caused by ATP and ACh were significantly attenuated
by the inhibitors of the L-arginine to nitric oxide pathway,
L-NMMA and L-NAME. The present experiments therefore
confirm the main conclusion of our earlier work, in which
methylene blue was also found to inhibit the vasodilatation
caused by both ATP and ACh (Ralevic et al., 1991a). Since at
least part of the action of methylene blue can be attributed to
direct inhibition of smooth muscle guanylate cyclase (Martin
et al., 1985), results obtained with it may be somewhat incon-
clusive. L-NMMA and L-NAME, however, are specific inhibi-
tors of nitric oxide biosynthesis (Palmer et al., 1988; Rees et
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Figure 4 Responses of hepatic arterial pressure (HAP) to increasing
doses of sodium nitroprusside (SNP), before and during perfusion
with (a) N-monomethyl-L-arginine (L-NMMA), and (b) N-nitro-L-
arginine methyl ester (L-NAME): (O) 30uM; (&) 100 um L-NMMA/
L-NAME. * indicates significant difference from control response (H)
(P <0.05):n=6in(a),n=4in (b).

al., 1989a,b; Moore et al., 1990), and their use therefore pro-
vides a greater degree of certainty in the interpretation of
data. It is implicit from the above that our results are consis-
tent with the identification of EDRF as nitric oxide, formed
from L-arginine (Moncada et al., 1989).

L-NMMA was the compound originally used to establish
the role of L-arginine as the precursor for the formation of
endothelial nitric oxide (Palmer et al., 1988). Since then, a
number of additional structural analogues of L-arginine have
been employed, some of which are more potent than
L-NMMA. One of these is L-NAME, also used in the present
investigation. The pD, values we have obtained for ATP and
ACh support the view that L-NAME is up to 5 times more
potent than L-NMMA at inhibiting endothelially-mediated
vasodilatation (Moore et al., 1990).

A problem in this field of study is the in consistency in the
nomenclature with which the analogues of L-arginine are
described; the use of different abbreviations to describe identi-
cal compounds has led to even more confusion. It is impor-
tant to be clear about the terminology describing the ‘w’ end
of the L-arginine molecule, in particular to note the frequent
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