Contribution of P_2 -purinoceptors to neurogenic contraction of rat urinary bladder smooth muscle

Minori Hashimoto & 'Shinichiro Kokubun

Department of Physiology, Nihon University School of Medicine, 30-1 Ohyaguchi-kamimachi, Itabashi-ku, Tokyo, 173 Japan

1 The contribution of P_2 -purinoceptors to neurogenic contraction was investigated in rat urinary bladder smooth muscle by measurement of isotonic tension.

2 Contraction of rat urinary bladder smooth muscle induced by electrical stimulation was decreased to $84.19 \pm 3.90\%$ of the control (n=16) in the presence of atropine $(1 \ \mu M)$, which was further decreased to $38.80 \pm 2.75\%$ of the control (n=49) in the presence of both atropine and $10 \ \mu M \ \alpha,\beta$ -methylene adenosine 5'-triphosphate $(\alpha,\beta$ -Me ATP).

3 The contractile response induced by electrical stimulation in the presence of atropine and α,β -Me ATP was decreased to $27.81 \pm 4.07\%$ (n=23) and $26.63 \pm 5.01\%$ (n=15) of the control, by the addition of 100 μ M cibacron blue 3GA and 100 μ M suramin, respectively. The application of 100 μ M adenosine 5'o-2-thiodiphosphate (ADP β S) in the presence of atropine and α,β -Me ATP decreased the contractile response induced by electrical stimulations to $17.15 \pm 3.71\%$ (n=15) of the control.

4 Pretreatment of muscle strips with 100 μ M ADP β S significantly reduced the response to either 200 μ M α , β -methylene adenosine 5'-diphosphate or 200 μ M ADP β S.

5 Uridine 5'-triphosphate (100 μ M to 1 mM) concentration-dependently contracted muscle strips, and this contraction was significantly antagonized by desensitization of P₂-receptors with α,β -Me ATP (10 μ M), and completely antagonized by pretreatment of muscle strips with both α,β -Me ATP and ADP β S (100 μ M).

6 Di(adenosine-5') tetraphosphate (30 and 100 μ M) contracted muscle strips, whereas it failed to contract after desensitization of P₂-receptors.

7 It is suggested that about 20% of the neurogenic contraction of rat urinary bladder smooth muscle is mediated via $ADP\beta S$ -sensitive purinoceptors.

Keywords: P₂-purinoceptors; urinary bladder smooth muscle; α,β -methylene adenosine 5'-triphosphate; adenosine 5'-o-2-thiodiphosphate; cibacron blue 3GA; suramin

Introduction

It is well known that there is a variety of receptors in urinary bladder smooth muscles (Hisayama *et al.*, 1988; Iacovou *et al.*, 1990). The existence of P_{2X} -receptors was confirmed in guineapig urinary bladder (Burnstock & Kennedy, 1985; Iacovou *et al.*, 1988); in mouse urinary bladder it was reported that P_{2X} and P_{2Y} -receptors coexist (Boland *et al.*, 1993) and in rat urinary bladder, P_1 - and P_{2X} -receptors (Bhat *et al.*, 1989; Nicholls *et al.*, 1992) were shown to exist.

Recently, we reported that a P₂-purinoceptor other than P_{2x}, which mediates contraction, exists in rat urinary bladder (Suzuki & Kokubun, 1994). This type of purinoceptor responds to either adenosine 5'-o-2-thiodiphosphate (ADP β S) or α,β -methylene adenosine 5'-diphosphate (α,β -Me ADP) but not to α,β -Me ATP and 2-MeSATP (ADP β S-sensitive purinoceptor), and is, not completely but significantly, antagonized by cibacron blue 3 GA (CB3GA). However, the physiological role of this receptor in rat urinary bladder, i.e. the role of the receptor in neurogenic contraction of the bladder, has not yet been investigated. Therefore, the first aim of this study was to investigate whether ADP β S-sensitive purinary bladder.

Since various P_2 -purinoceptors are known to induce contraction of various smooth muscles or increase intracellular Ca^{2+} concentration in various tissues (Fredholm *et al.*, 1994), the second aim of this study was to investigate whether purinoceptors other than P_{2x} and ADP β S-sensitive purinoceptors mediate contraction in rat urinary bladder smooth muscle.

Methods

Male Wistar strain rats (weighing 200 to 250 g) were anaesthetized with pentobarbitone sodium (40 mg kg⁻ ¹), and the urinary bladder was rapidly removed. The bladder was transferred into Tyrode solution and then cut into small tissue strips of 7.5×2 mm. The strip was suspended between two platinumplate electrodes in an organ bath which contained 10 ml of Tyrode solution with the following composition (mM): NaCl 136.9, KCl 5.4, CaCl₂ 1.8, MgCl₂ 0.5, NaH₂PO₄ 0.33, HEPES 5.0 and glucose 5.0 (pH = 7.4). The solution was aerated with O₂ and maintained at 37°C. Responses to drugs as well as electrical stimulations were monitored by measuring isotonic tension under a resting load of 0.5 g, after the strip had been equilibrated for 90 min. After each application of the drug, it was washed out with more than 100 ml of Tyrode solution; the next application of the drug was given at least 30 min later. When the concentration-response curves were performed, each dose was added separately. To desensitize P_{2X} receptors, 10 μM α,β -Me ATP was added 8 min before the experiments, and to desensitize P_{2x} and ADP β S-sensitive purinoceptors simultaneously, both 10 μ M α , β -Me ATP and 100 μ M ADP β S were added 18 min before the experiments. Guanethidine (5 μ M) and atropine $(1 \mu M)$ were present in experiments shown in Figure 3.

Electrical field stimulation was with pulses of 0.5 ms duration at supramaximal voltage (30-35 V) from a bath drive amplifier SEG-3104 (Nihon Kohden). The strips were stimulated at a frequency of 10 Hz for 1 s in every 2 min. In preliminary experiments, it was established that contractile responses to electrical stimulations were fully abolished by tetrodotoxin, 0.5 μ M; such responses were therefore deemed to be wholly neurogenic. Guanethidine (5 μ M) was always present in electrical stimulation experiments. When we investigated the

¹Author for correspondence.

Figure 1 Contractile responses of rat urinary bladder smooth muscle to electrical stimulations in the presence of various agents. Each column represents the mean contractile response and s.e.mean, expressed as a percentage of the control response. Concentrations of agents are: atropine 10^{-6} M; α,β -Me ATP 10^{-5} M; CB3GA 10^{-4} M, suramin 10^{-4} M and ADP β S 10^{-4} M. A+B on the abscissa scale indicate the presence of atropine $(10^{-6}$ M) and α,β -Me ATP $(10^{-5}$ M). CB3GA, suramin and ADP β S were applied in the presence of atropine and α,β -Me ATP. The number of experiments is shown above each column. *P < 0.05; **P < 0.01. For abbreviations, see text.

effects of various agents on the contraction induced by electrical stimulation, responses at the steady state were obtained at least 30 min after the application of agents.

Drugs

 α,β -Methylene adenosine 5'-diphosphate (α,β -Me ADP), α,β methylene adenosine 5'-triphosphate (α,β -Me ATP), adenosine 5'-o-2-thiodiphosphate (ADP β S), uridine 5'-triphosphate (UTP), uridine 5'-diphosphate (UDP), di(adenosine-5') tetraphosphate (Ap₄A), atropine, guanethidine and cibacron blue 3GA were purchased from Sigma Chemical Company. Acetylcholine chloride (ACh) was purchased from Daiichiseiyaku. Germanin (suramin) was a gift from Bayer. All drugs were prepared freshly before each experiment by dissolving them in Tyrode solution.

Statistical analysis

Results are expressed as mean \pm s.e.mean. One-way analysis of variance (one-way anova) was used to test for statistical significance. A probability of 0.05 or less was considered significant.

Results

Inhibition of contractile responses to electrical stimulation by various agents

We investigated the contribution of purinergic regulation in neurogenic contraction of rat urinary bladder (Figure 1). In the presence of atropine $(1 \ \mu M)$ the contractile response was decreased to $84.19 \pm 3.90\%$ of the control (n=16), whereas in the presence of α,β -Me ATP $(10 \ \mu M)$ it was decreased to $43.25 \pm 3.16\%$ of the control (n=21). The inhibitory potency of these drugs was significantly different (P < 0.01). When we applied both agents simultaneously, the contractile response was decreased to $38.80 \pm 2.75\%$ (n=49). In the presence of both atropine and α,β -Me ATP, either CB3GA (100 μ M) or suramin (100 μ M) significantly decreased contraction (P < 0.01). The contraction observed in the presence of atropine, α,β -Me ATP and CB3GA was $27.81 \pm 4.07\%$ (n=23), and that in the presence of atropine, α,β -Me ATP and suramin $26.63 \pm 5.01\%$ (n=15) of the control. They were not sig-

Figure 2 Effects of suramin on concentration-response curves to α,β -Me ATP (a), ADP β S (b) and ACh (c). (a) Responses to α,β -Me ATP in control (\bigcirc), in the presence of 10^{-5} M suramin (\bigtriangleup) and of 10^{-4} M suramin (\square) are plotted against the concentration of α,β -Me ATP (M). Each point represents mean ± s.e.mean (n=5), expressed as percentage of response to 10^{-5} M ACh. (b) Responses to ADP β S in P_{2X}-desensitized tissues in control (\bigcirc), in the presence of 10^{-5} M (\bigtriangleup) and of 10^{-4} M suramin (\square) are plotted against the concentration of ADP β S (M). Each point represents mean ± s.e.mean (n=6), expressed as percentage of response to 10^{-5} M ACh. (c) Responses to ACh in control (\bigcirc) and in the presence of 10^{-4} M suramin (\square) are plotted against the concentration of ADP β S (M). Each point represents mean ± s.e.mean (n=6), expressed as percentage of response to 10^{-5} M ACh. (c) Responses to ACh in control (\bigcirc) and in the presence of 10^{-4} M suramin (\square) are plotted against the concentration of ACh (M). Each point represents mean ± s.e.mean (n=6), expressed as a percentage of the response to 3×10^{-4} M ACh. For abbreviations, see text.

nificantly different. When we applied ADP β S (100 μ M) in the presence of atropine and α,β -Me ATP, the contractile response to electrical stimulation was potently inhibited, being 17.15±3.71% of the control (n=15), which was significantly smaller than that observed in any other conditions (P < 0.01).

Effects of suramin on contractile response to α,β -Me ATP, ADP β S and ACh

Suramin had similar inhibitory effects on the neurogenic contraction of rat urinary bladder to CB3GA in the presence of α,β -Me ATP and atropine. Since suramin is an antagonist of P2-purinoceptors (Dunn & Blakely, 1988; Voogd et al., 1993), we investigated the effects of suramin on the concentrationresponse relations of α,β -Me ATP and ADP β S (Figure 2).

Suramin (10 μ M) significantly decreased the contraction induced by α,β -Me ATP at concentrations lower than 100 μ M (P < 0.01), though at 100 and 300 μ M, it did not significantly decrease α,β -Me ATP-induced contractions (Figure 2a); 100 μ M suramin further decreased contractions. At concentrations of α,β -Me ATP lower than 100 μ M, 100 μ M suramin was significantly more potent than 10 μ M (P<0.01 at concentrations lower than 10 μ M; P < 0.05 at 30 μ M), though at 100 and 300 μ M α , β -Me ATP, 100 μ M suramin, like 10 μ M, did not significantly inhibit the contraction.

We examined the effect of suramin on ADPBS-induced contraction in P_{2x} -desensitized strips, since ADP β S is known to contract muscle strips not only via ADPBS-sensitive purinoceptors but also via P2x-receptors (Suzuki & Kokubun, 1994) which were relatively antagonized by suramin as shown in Figure 2a (Figure 2b). P2x-receptors were desensitized by pretreatment with α,β -Me ATP (10 μ M). Suramin 10 μ M significantly inhibited contractions induced by $ADP\beta S$ at concentrations lower than 100 μ M (P < 0.01 at concentrations lower than 30 μ M; P < 0.05 at 30 μ M). At 300 μ M and 1 mM ADP β S, suramin slightly augmented contraction rather than inhibited it, though the difference was not significant. Suramin 100 μ M completely antagonized contractile effects of ADP β S lower than 300 μ M. The mean contractile response to 300 μ M ADP β S in the presence of 100 μ M suramin was 27.27% of that in the absence of the antagonist, which was significantly smaller (P < 0.01). At 1 mM ADP β S, 100 μ M suramin did not significantly inhibit contraction.

We also examined the effect of suramin (100 μ M) on the concentration-response relation of ACh (Figure 2c). Though suramin did not affect the contractile effect of ACh at concentrations lower than 30 μ M, it augmented the contraction between 30 and 300 μ M (P < 0.05 at 30 and 100 μ M, P < 0.01 at 300 μ M). In the presence of 10 μ M suramin, the concentrationresponse relation of ACh was not significantly affected in four experiments (data not shown).

 α,β -Me ATP 10⁻⁵м

Contraction by ADP β S and α , β -Me ADP in ADP β Spretreated muscle strips

Since addition of ADP β S in the presence of atropine and α,β -Me ATP most significantly decreased contractile response to electrical stimulation as shown in Figure 1, we examined whether ADP β S desensitized the drug-sensitive purinoceptors. We first examined the contractile response to α,β -Me ADP (100 μ M) (Figure 3a) 35 min after the washout of the drug; we treated the muscle strip with both α,β -Me ATP and ADP β S. We applied α,β -Me ATP (10 μ M) to desensitize P_{2x}-receptors, and then applied ADP β S (100 μ M); 14 min after the application of ADP β S, α , β -Me ADP (200 μ M) was applied. The response to 200 $\mu M \alpha, \beta$ -Me ADP in the presence of α, β -Me ATP and ADP β S was 5.56% of that to α,β -Me ADP (100 μ M) in the absence of these agents in this particular experiment. In 9 experiments the contractile response to α,β -Me ADP in the presence of α,β -Me ATP and ADP β S was $11.31 \pm 5.65\%$ of the control. In Figure 3b we examined the contractile response to ADP β S in the muscle strip pretreated with α,β -Me ATP and ADP β S. The experiment was done with the same muscle strip as that used in Figure 3a. We first applied α,β -Me ATP (10 μ M), and then applied ADPBS (100 μ M), ADPBS (final concentration in the bath: 200 μ M) was cumulatively applied 24 min after the first application of the drug. The contractile response to successive applications of ADP β S was 5.75% of

Figure 3 Contraction of rat urinary bladder smooth muscle induced by α,β -Me ADP (a) and ADP β S (b) in the absence and the presence of 10⁻⁵ M α,β -Me ATP and 10⁻⁴ M ADP β S. Experiments were done in the presence of atropine $(1 \ \mu M)$ and guanethidine $(5 \ \mu M)$. At the left side of (a), the control contraction induced by $10^{-4} M \ \alpha,\beta$ -Me ADP is shown. At the right side the contraction induced by ADP is shown. At the right side the contraction induced by 2×10^{-4} M α , β -Me ADP after pretreatment of the muscle strip with 10^{-5} M α , β -Me ATP and 10^{-4} M ADP β S. In (b) the contraction by cumulative application of ADP β S (final concentration = 2×10^{-4} M) in the presence of α , β -Me ATP (10^{-5} M) is shown. All records in this figure were obtained from the same strip. Drugs were applied at (\bullet) or $(\mathbf{\nabla})$. For abbreviations, see text.

Figure 4 Contractile responses induced by UTP (a) and Ap₄A (b) in the control (open columns), the presence of 10^{-5} M α,β -Me ATP (hatched columns) and the presence of 10^{-5} M α,β -Me ATP and 10^{-4} M ADPBS (solid columns). Each column indicates the mean contractile response and s.e.mean, expressed as a percentage of the response to 10^{-5} M ACh. Abscissae indicate concentrations of drugs (M). The number of experiments in (a) was 13 in all concentrations of UTP, whereas in (b) it was 4 in 3×10^{-5} M and 5 in 10^{-4} M of Ap₄A. *P < 0.05, **P < 0.01. For abbreviations, see text.

that to the first application of the drug. In 9 experiments the response to the second application of $ADP\beta S$ was $11.17 \pm 5.00\%$ of that to the first application.

Effects of UTP, UDP and Ap_4A on urinary bladder smooth muscle

Since ADP β S almost, though not completely, desensitized the drug-sensitive purinoceptors as has been shown in the previous section, we considered the possibility that purinoceptors such as P_{2U} and P_{2D} mediated the neurogenic contraction which still remained in the presence of atropine, α,β -Me ATP and ADP β S. Therefore, we investigated the effects of UTP and ADA on rat urinary bladder smooth muscle. Figure 4a shows the contractile effect of UTP on muscle strips in the control, the presence of α,β -Me ATP (10 μ M) and the presence of both α,β -Me ATP (10 μ M) and ADP β S (100 μ M). UTP concentration-dependently induced contraction; 1.15±0.28% of response to ACh (10 µM) at 30 µM (not included in Figure 4a), $5.00 \pm 6.00\%$ at 100 μ M, 10.7 \pm 1.40% at 300 μ M and $22.05 \pm 2.09\%$ at 1 mM (n = 13). These effects were significantly antagonized by pretreatment with α,β -Me ATP (10 μ M). In the presence of α,β -Me ATP UTP did not produce contraction at concentrations lower than 300 µM. At 300 µM and 1 mM UTP the response was $2.05 \pm 0.22\%$ and $6.62 \pm 1.23\%$ of that to ACh (10 μ M), respectively. When we pretreated muscle strips with both α,β -Me ATP (10 μ M) and ADP β S (100 μ M), UTP at any concentration induced no obvious contraction of muscle strips. We also examined the effects of UDP on urinary bladder smooth muscle. In 11 experiments UDP (<5 mM) did not induce contraction (data not shown).

We next examined whether Ap₄A induced contraction after desensitization of P_{2X}-receptors as well as ADP β S-sensitive purinoceptors. As shown in Figure 4b, Ap₄A contracted urinary bladder smooth muscle producing $18.08 \pm 2.82\%$ of the response to ACh (10 μ M) at 30 μ M (n=4) and 49.22 $\pm 3.15\%$ at 100 μ M (n=5). In the presence of α , β -Me ATP (10 μ M), or α , β -Me ATP (10 μ M) plus ADP β S (100 μ M), Ap₄A did not contract muscle strips.

Discussion

The contribution of muscarinic receptors to neurogenic contraction was significantly smaller than that of P_{2X} -receptors. About 15% of the neurogenic contraction was via muscarinic receptors, while about 50% of that was via P_{2X} -receptors. After inhibition of both muscarinic receptors and P_{2X} -receptors, about 34% of the control contraction remained. It was interesting to know which receptors mediated the contraction under these conditions.

As previously reported (Suzuki & Kokubun, 1994), ADP β S-sensitive purinoceptors mediating contraction, which respond not to α,β -Me ATP but to either ADP β S or α,β -Me ADP and which are significantly inhibited by CB3GA, exist in rat urinary bladder smooth muscle in addition to P_{2x} receptors. Therefore, in this study we examined whether CB3GA inhibited the neurogenic contraction in the presence of both atropine and α,β -Me ATP. CB3GA significantly inhibited the neurogenic contraction under these conditions, though about 28% of control response still remained.

Suramin, which is a specific P_{2X} -purinoceptor antagonist (Dunn & Blakely, 1988; Voogd *et al.*, 1993), inhibited the neurogenic contraction by a similar extent to CB3GA. We, therefore, examined whether suramin antagonized ADP β S. Though suramin had a more potent inhibitory effect than CB3GA on P_{2X} -mediated contraction, it showed almost the same potency as CB3GA in inhibiting the response to lower concentrations of ADP β S and was less potent than CB3GA in inhibiting the response of ADP β S at higher concentrations (>100 μ M). Suramin did not inhibit but did augment the response to ACh at concentrations higher than 10 μ M, though CB3GA did not affect it at all (Suzuki & Kokubun, 1994). These results suggest that CB3GA is a more specific antagonist than suramin at $ADP\beta$ S-sensitive purinoceptors in rat urinary bladder smooth muscle.

Purinoceptors in urinary bladder smooth muscle

The neurogenic contraction was most potently inhibited by the application of ADP β S in the presence of atropine and α , β -Me ATP. This suggested the possibility that, just as α,β -Me ATP acts as a specific agonist to P_{2X} -receptors as well as a specific antagonist by desensitizing the receptors (Kasakov & Burnstock, 1983), ADPBS also acted as an agonist to ADPBSsensitive purinoceptors as well as an antagonist by desensitizing them. If this were the case, the contraction inhibited by the application of ADP β S in the presence of atropine and α,β -Me ATP was via $ADP\beta$ S-sensitive purinoceptors. Indeed, pretreatment of P_{2X} -desensitized muscle strips by ADP β S significantly inhibited the contractions induced by either ADPBS or α,β -Me ADP. These effects were not due to P_{2x}-desensitization by α,β -Me ATP, since we previously found that α,β -Me ATP by itself did not inhibit responses induced by either ADP β S or α,β -Me ADP (Suzuki & Kokubun, 1994). Therefore, the neurogenic contraction inhibited by the application of ADP β S in the presence of atropine and α,β -Me ATP, which was about 20% of the control response, is suggested to be via ADP β S-sensitive purinoceptors.

Which receptor mediated the neurogenic contraction observed in the presence of atropine, α,β -Me ATP and ADP β S, which was about 17% of the control response? While atropine (1 μ M) may abolish all cholinergic responses? While atropine (10 μ M) reduces but does not abolish responses mediated via P_{2X}-purinoceptors in this tissue, as previously reported (Suzuki & Kokubun, 1994). Similarly, ADP β S (100 μ M) reduced but did not abolish responses mediated via ADP β S-sensitive purinoceptors. Therefore, the remaining response in the presence of atropine, α,β -Me ATP and ADP β S could be mediated via either P_{2X} and/or ADP β S-sensitive purinoceptors. Alternatively, the remaining response in the presence of atropine, α,β -Me ATP and ADP β S could be mediated by other P₂-purinoceptors, such as P_{2U}, P_{2D}, P_{2Z} or P_{2T}.

Since P_{2U} -receptors respond to UTP and ATP but not to α, β -Me ATP and 2-MeSATP (O'Connor et al., 1991), we examined the effect of UTP on rat urinary bladder smooth muscle. In this preparation, UTP induced contraction, which was significantly inhibited by pretreatment of the muscle with α,β -Me ATP and completely inhibited by pretreatment with both α,β -Me ATP and ADP β S. This indicates that UTP mediated contraction of this tissue was not via P_{2U} -receptors but via P_{2X} and ADP β Ssensitive purinoceptors. We also examined the effect of the P_{2D} agonist, Ap₄A (Hilderman et al., 1991; Castro et al., 1992). The drug induced a stronger contraction than UTP, which was almost completely inhibited by pretreatment with α , β -Me ATP. This indicates that Ap₄A mediated contraction mainly via P_{2x} receptors. These results suggest that in rat urinary bladder smooth muscle, the neurogenic contraction was mediated by neither P_{2U} - nor P_{2D} -receptors.

 P_{2Z} - and P_{2T} -receptors respond to ATP⁴⁻ and ADP, respectively. The former was reported to exist in macrophages (Steinberg & Silverstein, 1987), mast cells (Dahlqvist & Diamant, 1974) and vas deferens (Fedan et al., 1990), while the latter exists only in platelets (Gordon, 1986). In order to investigate whether P2z-receptors exist in rat urinary bladder smooth muscle, we would have to examine the dependency of contractile effects of ATP on the concentration of divalent cations, such as extracellular Mg^{2+} concentration, as has been done in guinea-pig vas deferens (Fedan et al., 1990). However, we experienced difficulties in performing quantitative experiments on the effect of ATP, since in rat urinary bladder smooth muscle, adenosine produced by hydrolysis of ATP relaxed muscle strips via A2b-receptors (Suzuki & Kokubun, 1994). Similarly, quantitative experiments on ADP to investigate the existance of P_{2T} -receptors were difficult, since ADP is also hydrolyzed. Therefore, in this study we have not investigated whether the neurogenic contraction in the presence of atropine, α,β -Me ATP and ADP β S is mediated by P_{2Z}- and/or P_{2T}receptors.

This work was supported by the Ministry of Education, Science and Culture of Japan.

References

- BHAT, M.B., MISHRA, S.K. & RAVIPRAKASH, V. (1989). Differential susceptibility of cholinergic and noncholinergic neurogenic responses to calcium channel blockers and low Ca²⁺ medium in rat urinary bladder. *Br. J. Pharmacol.*, **96**, 837–842.
- BOLAND, B., HIMPENS, B., PAQUES, R., CASTEELS, R. & GILLIS, J.M. (1993). ATP induced-relaxation in the mouse bladder smooth muscle. Br. J. Pharmacol., 108, 749-753.
- BURNSTOCK, G. & KENNEDY, C. (1985). Is there a basis for distinguishing two types of P2-purinoceptor? Gen. Pharmacol., 16, 433-440.
- CASTRO, E., PINTOR, J. & MIRAS-PORTUGAL, M.T. (1992). Ca2+stores mobilization by diadenosine tetraphosphate, Ap4A, through a putative P_{2Y} purinoceptor in adrenal chromaffin cells. Br. J. Pharmacol., **106**, 833-837.
- DAHLQVIST, R. & DIAMANT, B. (1974). Interactions of ATP and calcium on the rat mast cell: effects on histamine release. Acta Pharmacol. Toxicol., 34, 368-384.
- DUNN, P.M. & BLAKELY, A.G.H. (1988). Suramin: a reversible P2purinoceptor antagonist in the mouse vas deferens. Br. J. Pharmacol., 93, 243-245.
- FEDAN, J.S., DAGIRMANJIAN, J.P., ATTFIELD, M.D. & CHIDECK-EL, E.W. (1990). Evidence that the P_{2X} purinoceptor of the smooth muscle of the guinea pig vas deferens is an ATP⁴⁻ receptor. J. Pharmacol. Exp. Ther., **255**, 46-51.
- FREDHOLM, B.B., ABBRACHIO, M.P., BURNSTOCK, G., DALY, J.W., HARDEN, K., JACOBSON, K.A., LEFF, P. & WILLIAMS, M. (1994). Nomenclature and classification of purinoceptors. *Pharmacol. Rev.*, 46, 143-156.
- GORDON, J.L. (1986). Extracellular ATP: effects, sources and fate. Bichem. J., 233, 309-319.
- HILDERMAN, R.H., MARTIN, M., ZIMMERMAN, J.K. & PIVORUN, E.B. (1991). Identification of a unique membrane receptor for adenosine 5',5"'-P1,P4-tetraphosphate. J. Biol. Chem., 266, 6915-6918.

- HISAYAMA, T., SHINKAI, M., TAKAYANAGI, I. & TOYODA, T. (1988). Mechanism of action of nicotine in isolated urinary bladder of guinea-pig. Br. J. Pharmacol., 95, 465-472.
- IACOVOU, J.W., HILL, S.J. & BIRMINGHAM, A.T. (1988). Involvement of extracellular calcium in agonist-induced contraction of the guinea-pig detrusor. Br. J. Pharmacol., 95, 848P.
- IACOVOU, J.W., HILL, S.J. & BIRMINGHAM, A.T. (1990). Agonistinduced contraction and accumulation of inositol phosphates in the guinea-pig detrusor: evidence that muscarinic and purinergic receptors raise intracellular calcium by different mechanisms. J. Urol., 144, 775-779.
- KASAKOV, L. & BURNSTOCK, G. (1983). The use of the slowly degradable analog, α,β -methylene ATP, to produce desensitization of the P2-purinoceptor: effect on non-adrenergic, non-cholinergic responses of the guinea-pig urinary bladder. *Eur. J. Pharmacol.*, **86**, 291–294.
- NICHOLLS, J., HOURANI, S.M.O. & KITCHEN, I. (1992). Characterization of P₁-purinoceptors on rat duodenum and urinary bladder. Br. J. Pharmacol., 105, 639-642.
- bladder. Br. J. Pharmacol., 105, 639-642.
 O'CONNOR, S.E., DAINTY, I.A. & LEFF, P. (1991). Further subclassification of ATP receptors based on agonist studies. Trends Pharmacol. Sci., 12, 137-141.
- STEINBERG, T.H. & SILVERSTEIN, S.C. (1987). Extracellular ATP⁴⁻ promotes cation fluxes in the J774 mouse macrophage cell line. J. Biol. Chem., 262, 3118-3122.
- SUZUKI, H. & KOKUBUN, S. (1994). Subtypes of purinoceptors in rat and dog urinary bladder smooth muscles. Br. J. Pharmacol., 112, 117-122.
- VOOGD, T.E., VANSTERKENBURG, E.L.M., WILING, J. & JANSSEN, J.H.M. (1993). Recent research on the biological activity of suramin. *Pharmacol. Rev.*, 45, 177-203.

(Received November 14, 1994 Revised February 17, 1995 Accepted March 1, 1995)