Abstract
1. The present study aimed to examine whether there is any change in vascular responsiveness to phenylephrine and KC1 during exercise, and whether the vascular endothelium plays a role in these changes. 2. Adult male rats were subjected to a swimming schedule every day for 5-6 weeks. Studies were performed in vitro on thoracic aortae. 3. Maximum contractile response to phenylephrine of endothelium-intact thoracic aortic rings (passive tension 1.0 g) obtained from swimming rats (1.2 +/- 0.2 g, n = 8) was lower than of sedentary control rats (2.1 +/- 0.2 g, n = 8). When the endothelium was removed, however, the dose-response curves of both groups of rats were shifted to the left with an increase in maximum responses and they were no longer significantly different (max. tension, swimming rats: 3.2 +/- 0.3 g, n = 6, control rats: 3.4 +/- 0.4 g, n = 5). 4. Indomethacin did not significantly alter the dose-response curves. A similar effect to that obtained by removal of the endothelium was observed when methylene blue and indomethacin were both added. 5. Passive tension in the range of 2.5-3.0 g, caused a significant increase in active tension developed to phenylephrine (1 microM for endothelium-intact and 0.1 microM for endothelium-denuded) of thoracic aortic rings of both swimming and sedentary control rats compared to their corresponding groups when using passive tension of 1.0-1.5 g. 6. The reduction in responses to phenylephrine of endothelium-intact thoracic aortic rings of swimming rats persisted with the use of a passive tension of 3.0 g.(ABSTRACT TRUNCATED AT 250 WORDS)
Full text
PDF







Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Armstrong R. B., Laughlin M. H. Exercise blood flow patterns within and among rat muscles after training. Am J Physiol. 1984 Jan;246(1 Pt 2):H59–H68. doi: 10.1152/ajpheart.1984.246.1.H59. [DOI] [PubMed] [Google Scholar]
- Berdeaux A., Drieu la Rochelle C., Richard V., Giudicelli J. F. Opposed responses of large and small coronary arteries to propranolol during exercise in dogs. Am J Physiol. 1991 Aug;261(2 Pt 2):H265–H270. doi: 10.1152/ajpheart.1991.261.2.H265. [DOI] [PubMed] [Google Scholar]
- Buttrick P. M., Schaible T. F., Scheuer J. Combined effects of hypertension and conditioning on coronary vascular reserve in rats. J Appl Physiol (1985) 1986 Jan;60(1):275–279. doi: 10.1152/jappl.1986.60.1.275. [DOI] [PubMed] [Google Scholar]
- Delp M. D., McAllister R. M., Laughlin M. H. Exercise training alters endothelium-dependent vasoreactivity of rat abdominal aorta. J Appl Physiol (1985) 1993 Sep;75(3):1354–1363. doi: 10.1152/jappl.1993.75.3.1354. [DOI] [PubMed] [Google Scholar]
- Edwards J. G., Tipton C. M., Matthes R. D. Influence of exercise training on reactivity and contractility of arterial strips from hypertensive rats. J Appl Physiol (1985) 1985 May;58(5):1683–1688. doi: 10.1152/jappl.1985.58.5.1683. [DOI] [PubMed] [Google Scholar]
- Frew J. D., Paisley K., Martin W. Selective inhibition of basal but not agonist-stimulated activity of nitric oxide in rat aorta by NG-monomethyl-L-arginine. Br J Pharmacol. 1993 Nov;110(3):1003–1008. doi: 10.1111/j.1476-5381.1993.tb13913.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Furchgott R. F., Zawadzki J. V. The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature. 1980 Nov 27;288(5789):373–376. doi: 10.1038/288373a0. [DOI] [PubMed] [Google Scholar]
- Gerová M., Smiesko V., Gero J., Barta E. Dilatation of conduit coronary artery induced by high blood flow. Physiol Bohemoslov. 1983;32(1):55–63. [PubMed] [Google Scholar]
- Griffith T. M., Henderson A. H., Edwards D. H., Lewis M. J. Isolated perfused rabbit coronary artery and aortic strip preparations: the role of endothelium-derived relaxant factor. J Physiol. 1984 Jun;351:13–24. doi: 10.1113/jphysiol.1984.sp015228. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gruetter C. A., Kadowitz P. J., Ignarro L. J. Methylene blue inhibits coronary arterial relaxation and guanylate cyclase activation by nitroglycerin, sodium nitrite, and amyl nitrite. Can J Physiol Pharmacol. 1981 Feb;59(2):150–156. doi: 10.1139/y81-025. [DOI] [PubMed] [Google Scholar]
- Harri M. N. Physical training under the influence of beta-blockade in rats. II. Effects on vascular reactivity. Eur J Appl Physiol Occup Physiol. 1979 Nov;42(3):151–157. doi: 10.1007/BF00431021. [DOI] [PubMed] [Google Scholar]
- Jansakul C., Boura A. L., King R. G. Effects of endothelial cell removal on constrictor and dilator responses of aortae of pregnant rats. J Auton Pharmacol. 1989 Apr;9(2):93–101. doi: 10.1111/j.1474-8673.1989.tb00200.x. [DOI] [PubMed] [Google Scholar]
- Lütgemeier I., Luft F. C., Unger T., Ganten U., Lang R. E., Gless K. H., Ganten D. Blood pressure, electrolyte and adrenal responses in swim-trained hypertensive rats. J Hypertens. 1987 Apr;5(2):241–247. doi: 10.1097/00004872-198704000-00017. [DOI] [PubMed] [Google Scholar]
- Martin W. H., 3rd, Kohrt W. M., Malley M. T., Korte E., Stoltz S. Exercise training enhances leg vasodilatory capacity of 65-yr-old men and women. J Appl Physiol (1985) 1990 Nov;69(5):1804–1809. doi: 10.1152/jappl.1990.69.5.1804. [DOI] [PubMed] [Google Scholar]
- Meredith I. T., Friberg P., Jennings G. L., Dewar E. M., Fazio V. A., Lambert G. W., Esler M. D. Exercise training lowers resting renal but not cardiac sympathetic activity in humans. Hypertension. 1991 Nov;18(5):575–582. doi: 10.1161/01.hyp.18.5.575. [DOI] [PubMed] [Google Scholar]
- Noma K., Rupp H., Jacob R. Subacute and long term effect of swimming training on blood pressure in young and old spontaneously hypertensive rats. Cardiovasc Res. 1987 Dec;21(12):871–877. doi: 10.1093/cvr/21.12.871. [DOI] [PubMed] [Google Scholar]
- Ohkubo T., Jacob R., Rupp H. Swimming changes vascular fatty acid composition and prostanoid generation of rats. Am J Physiol. 1992 Mar;262(3 Pt 2):R464–R471. doi: 10.1152/ajpregu.1992.262.3.R464. [DOI] [PubMed] [Google Scholar]
- Oltman C. L., Parker J. L., Adams H. R., Laughlin M. H. Effects of exercise training on vasomotor reactivity of porcine coronary arteries. Am J Physiol. 1992 Aug;263(2 Pt 2):H372–H382. doi: 10.1152/ajpheart.1992.263.2.H372. [DOI] [PubMed] [Google Scholar]
- Overton J. M., Joyner M. J., Tipton C. M. Reductions in blood pressure after acute exercise by hypertensive rats. J Appl Physiol (1985) 1988 Feb;64(2):748–752. doi: 10.1152/jappl.1988.64.2.748. [DOI] [PubMed] [Google Scholar]
- Palmer R. M., Ferrige A. G., Moncada S. Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature. 1987 Jun 11;327(6122):524–526. doi: 10.1038/327524a0. [DOI] [PubMed] [Google Scholar]
- Pavlik G., Hegyi A., Frenkl R. Alpha and beta adrenergic sensitivity in trained and untrained albino rats. Eur J Appl Physiol Occup Physiol. 1976 Dec 6;36(1):65–73. doi: 10.1007/BF00421635. [DOI] [PubMed] [Google Scholar]
- Rogers P. J., Miller T. D., Bauer B. A., Brum J. M., Bove A. A., Vanhoutte P. M. Exercise training and responsiveness of isolated coronary arteries. J Appl Physiol (1985) 1991 Dec;71(6):2346–2351. doi: 10.1152/jappl.1991.71.6.2346. [DOI] [PubMed] [Google Scholar]
- Rubanyi G. M., Lorenz R. R., Vanhoutte P. M. Bioassay of endothelium-derived relaxing factor(s): inactivation by catecholamines. Am J Physiol. 1985 Jul;249(1 Pt 2):H95–101. doi: 10.1152/ajpheart.1985.249.1.H95. [DOI] [PubMed] [Google Scholar]
- Seals D. R., Reiling M. J. Effect of regular exercise on 24-hour arterial pressure in older hypertensive humans. Hypertension. 1991 Nov;18(5):583–592. doi: 10.1161/01.hyp.18.5.583. [DOI] [PubMed] [Google Scholar]
- Sessa W. C., Pritchard K., Seyedi N., Wang J., Hintze T. H. Chronic exercise in dogs increases coronary vascular nitric oxide production and endothelial cell nitric oxide synthase gene expression. Circ Res. 1994 Feb;74(2):349–353. doi: 10.1161/01.res.74.2.349. [DOI] [PubMed] [Google Scholar]
- Sinoway L. I., Shenberger J., Wilson J., McLaughlin D., Musch T., Zelis R. A 30-day forearm work protocol increases maximal forearm blood flow. J Appl Physiol (1985) 1987 Mar;62(3):1063–1067. doi: 10.1152/jappl.1987.62.3.1063. [DOI] [PubMed] [Google Scholar]
- Smiesko V., Kozík J., Dolezel S. Role of endothelium in the control of arterial diameter by blood flow. Blood Vessels. 1985;22(5):247–251. [PubMed] [Google Scholar]
- Wang J., Wolin M. S., Hintze T. H. Chronic exercise enhances endothelium-mediated dilation of epicardial coronary artery in conscious dogs. Circ Res. 1993 Nov;73(5):829–838. doi: 10.1161/01.res.73.5.829. [DOI] [PubMed] [Google Scholar]
- Watanabe T., Morimoto A., Sakata Y., Long N. C., Murakami N. Prostaglandin E2 is involved in adrenocorticotrophic hormone release during swimming exercise in rats. J Physiol. 1991 Feb;433:719–725. doi: 10.1113/jphysiol.1991.sp018452. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wiegman D. L., Harris P. D., Joshua I. G., Miller F. N. Decreased vascular sensitivity to norepinephrine following exercise training. J Appl Physiol Respir Environ Exerc Physiol. 1981 Aug;51(2):282–287. doi: 10.1152/jappl.1981.51.2.282. [DOI] [PubMed] [Google Scholar]
- Yanagisawa M., Kurihara H., Kimura S., Tomobe Y., Kobayashi M., Mitsui Y., Yazaki Y., Goto K., Masaki T. A novel potent vasoconstrictor peptide produced by vascular endothelial cells. Nature. 1988 Mar 31;332(6163):411–415. doi: 10.1038/332411a0. [DOI] [PubMed] [Google Scholar]
- Yancey S. L., Overton J. M. Cardiovascular responses to voluntary and treadmill exercise in rats. J Appl Physiol (1985) 1993 Sep;75(3):1334–1340. doi: 10.1152/jappl.1993.75.3.1334. [DOI] [PubMed] [Google Scholar]

