Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1991 Oct;104(2):361–366. doi: 10.1111/j.1476-5381.1991.tb12436.x

Modulation of agonist-induced calcium mobilisation in bovine aortic endothelial cells by phorbol myristate acetate and cyclic AMP but not cyclic GMP.

K W Buchan 1, W Martin 1
PMCID: PMC1908532  PMID: 1665733

Abstract

1. In bovine aortic endothelial cells (BAEC), thrombin (1 mu ml-1), bradykinin (1-10 nM) and adenosine triphosphate (ATP) (0.3 microM-100 microM) each induced a biphasic elevation of cytosolic calcium ([Ca2+]i), consisting of an initial transient followed by a sustained plateau phase. 2. Pretreatment of BAEC with 4 beta-phorbol 12-myristate 13-acetate (PMA; 100 nM) reduced the magnitude of the initial transient elevation of [Ca2+]i, induced by thrombin (1 mu ml-1), low concentrations of bradykinin (1 nM) or ATP (0.3 microM, 3 microM), but not by higher concentrations of the latter two agonists. Addition of PMA (100 nM) during the plateau phase of the increase in [Ca2+]i induced by thrombin (1 mu ml-1), bradykinin (10 nM) or ATP (30 microM) resulted in a fall in [Ca2+]i. 3. The inhibitory effects of PMA (100 nM) were inhibited by staurosporine (100 nM) but not mimicked by the inactive phorbol ester, 4 alpha-phorbol 12,13-didecanoate (4 alpha-PDD; 100 nM). Furthermore, staurosporine (100 nM) increased [Ca2+]i when added during the plateau phase of the increase in [Ca2+]i induced by thrombin or bradykinin. In contrast, staurosporine (100 nM) reduced [Ca2+]i when added during the plateau phase of the increase in [Ca2+]i induced by ATP (30 microM). 4. Pretreatment with forskolin (10 microM) had no effect on the magnitude of the initial transient elevation of [Ca2+]i induced by thrombin (1 mu ml-1), bradykinin (1 nM and 10 nM) or ATP (30 microM).(ABSTRACT TRUNCATED AT 250 WORDS)

Full text

PDF

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Berridge M. J. Inositol trisphosphate and diacylglycerol as second messengers. Biochem J. 1984 Jun 1;220(2):345–360. doi: 10.1042/bj2200345. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Brock T. A., Capasso E. A. Thrombin and histamine activate phospholipase C in human endothelial cells via a phorbol ester-sensitive pathway. J Cell Physiol. 1988 Jul;136(1):54–62. doi: 10.1002/jcp.1041360107. [DOI] [PubMed] [Google Scholar]
  3. Brock T. A., Dennis P. A., Griendling K. K., Diehl T. S., Davies P. F. GTP gamma S loading of endothelial cells stimulates phospholipase C and uncouples ATP receptors. Am J Physiol. 1988 Nov;255(5 Pt 1):C667–C673. doi: 10.1152/ajpcell.1988.255.5.C667. [DOI] [PubMed] [Google Scholar]
  4. Buchan K. W., Martin W. Bradykinin induces elevations of cytosolic calcium through mobilisation of intracellular and extracellular pools in bovine aortic endothelial cells. Br J Pharmacol. 1991 Jan;102(1):35–40. doi: 10.1111/j.1476-5381.1991.tb12128.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Carson M. R., Shasby S. S., Shasby D. M. Histamine and inositol phosphate accumulation in endothelium: cAMP and a G protein. Am J Physiol. 1989 Oct;257(4 Pt 1):L259–L264. doi: 10.1152/ajplung.1989.257.4.L259. [DOI] [PubMed] [Google Scholar]
  6. Carter T. D., Hallam T. J., Pearson J. D. Protein kinase C activation alters the sensitivity of agonist-stimulated endothelial-cell prostacyclin production to intracellular Ca2+. Biochem J. 1989 Sep 1;262(2):431–437. doi: 10.1042/bj2620431. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Castagna M., Takai Y., Kaibuchi K., Sano K., Kikkawa U., Nishizuka Y. Direct activation of calcium-activated, phospholipid-dependent protein kinase by tumor-promoting phorbol esters. J Biol Chem. 1982 Jul 10;257(13):7847–7851. [PubMed] [Google Scholar]
  8. Cherry P. D., Gillis C. N. Antagonism of acetylcholine-mediated relaxation of rabbit pulmonary arteries by phorbol myristate acetate. J Pharmacol Exp Ther. 1988 Nov;247(2):542–546. [PubMed] [Google Scholar]
  9. Colden-Stanfield M., Schilling W. P., Ritchie A. K., Eskin S. G., Navarro L. T., Kunze D. L. Bradykinin-induced increases in cytosolic calcium and ionic currents in cultured bovine aortic endothelial cells. Circ Res. 1987 Nov;61(5):632–640. doi: 10.1161/01.res.61.5.632. [DOI] [PubMed] [Google Scholar]
  10. Connolly T. M., Lawing W. J., Jr, Majerus P. W. Protein kinase C phosphorylates human platelet inositol trisphosphate 5'-phosphomonoesterase, increasing the phosphatase activity. Cell. 1986 Sep 12;46(6):951–958. doi: 10.1016/0092-8674(86)90077-2. [DOI] [PubMed] [Google Scholar]
  11. Davis P. D., Hill C. H., Keech E., Lawton G., Nixon J. S., Sedgwick A. D., Wadsworth J., Westmacott D., Wilkinson S. E. Potent selective inhibitors of protein kinase C. FEBS Lett. 1989 Dec 18;259(1):61–63. doi: 10.1016/0014-5793(89)81494-2. [DOI] [PubMed] [Google Scholar]
  12. Evans H. G., Smith J. A., Lewis M. J. Release of endothelium-derived relaxing factor is inhibited by 8-bromo-cyclic guanosine monophosphate. J Cardiovasc Pharmacol. 1988 Dec;12(6):672–677. doi: 10.1097/00005344-198812000-00008. [DOI] [PubMed] [Google Scholar]
  13. Grynkiewicz G., Poenie M., Tsien R. Y. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem. 1985 Mar 25;260(6):3440–3450. [PubMed] [Google Scholar]
  14. Hallam T. J., Jacob R., Merritt J. E. Evidence that agonists stimulate bivalent-cation influx into human endothelial cells. Biochem J. 1988 Oct 1;255(1):179–184. doi: 10.1042/bj2550179. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Hallam T. J., Pearson J. D. Exogenous ATP raises cytoplasmic free calcium in fura-2 loaded piglet aortic endothelial cells. FEBS Lett. 1986 Oct 20;207(1):95–99. doi: 10.1016/0014-5793(86)80019-9. [DOI] [PubMed] [Google Scholar]
  16. Hogan J. C., Smith J. A., Richards A. C., Lewis M. J. Atrial natriuretic peptide inhibits the release of endothelium-derived relaxing factor from blood vessels of the rabbit. Eur J Pharmacol. 1989 Jun 8;165(1):129–134. doi: 10.1016/0014-2999(89)90778-4. [DOI] [PubMed] [Google Scholar]
  17. Johns A., Lategan T. W., Lodge N. J., Ryan U. S., Van Breemen C., Adams D. J. Calcium entry through receptor-operated channels in bovine pulmonary artery endothelial cells. Tissue Cell. 1987;19(6):733–745. doi: 10.1016/0040-8166(87)90015-2. [DOI] [PubMed] [Google Scholar]
  18. Lang D., Lewis M. J. Inhibition of inositol 1,4,5-trisphosphate formation by cyclic GMP in cultured aortic endothelial cells of the pig. Br J Pharmacol. 1991 Jan;102(1):277–281. doi: 10.1111/j.1476-5381.1991.tb12166.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Leitman D. C., Murad F. Comparison of binding and cyclic GMP accumulation by atrial natriuretic peptides in endothelial cells. Biochim Biophys Acta. 1986 Jan 23;885(1):74–79. doi: 10.1016/0167-4889(86)90040-6. [DOI] [PubMed] [Google Scholar]
  20. Lewis M. J., Henderson A. H. A phorbol ester inhibits the release of endothelium-derived relaxing factor. Eur J Pharmacol. 1987 Jun 4;137(2-3):167–171. doi: 10.1016/0014-2999(87)90218-4. [DOI] [PubMed] [Google Scholar]
  21. Lückhoff A., Mülsch A., Busse R. cAMP attenuates autacoid release from endothelial cells: relation to internal calcium. Am J Physiol. 1990 Apr;258(4 Pt 2):H960–H966. doi: 10.1152/ajpheart.1990.258.4.H960. [DOI] [PubMed] [Google Scholar]
  22. Martin W., White D. G., Henderson A. H. Endothelium-derived relaxing factor and atriopeptin II elevate cyclic GMP levels in pig aortic endothelial cells. Br J Pharmacol. 1988 Jan;93(1):229–239. doi: 10.1111/j.1476-5381.1988.tb11426.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Mayer B., Schmidt K., Humbert P., Böhme E. Biosynthesis of endothelium-derived relaxing factor: a cytosolic enzyme in porcine aortic endothelial cells Ca2+-dependently converts L-arginine into an activator of soluble guanylyl cyclase. Biochem Biophys Res Commun. 1989 Oct 31;164(2):678–685. doi: 10.1016/0006-291x(89)91513-1. [DOI] [PubMed] [Google Scholar]
  24. Moore P. K., al-Swayeh O. A., Chong N. W., Evans R. A., Gibson A. L-NG-nitro arginine (L-NOARG), a novel, L-arginine-reversible inhibitor of endothelium-dependent vasodilatation in vitro. Br J Pharmacol. 1990 Feb;99(2):408–412. doi: 10.1111/j.1476-5381.1990.tb14717.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Palmer R. M., Ferrige A. G., Moncada S. Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature. 1987 Jun 11;327(6122):524–526. doi: 10.1038/327524a0. [DOI] [PubMed] [Google Scholar]
  26. Singer H. A., Peach M. J. Calcium- and endothelial-mediated vascular smooth muscle relaxation in rabbit aorta. Hypertension. 1982 May-Jun;4(3 Pt 2):19–25. [PubMed] [Google Scholar]
  27. Smith J. A., Lang D. Release of endothelium-derived relaxing factor from pig cultured aortic endothelial cells, as assessed by changes in endothelial cell cyclic GMP content, is inhibited by a phorbol ester. Br J Pharmacol. 1990 Mar;99(3):565–571. doi: 10.1111/j.1476-5381.1990.tb12969.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Weinheimer G., Wagner B., Osswald H. Interference of phorbolesters with endothelium-dependent vascular smooth muscle relaxation. Eur J Pharmacol. 1986 Nov 4;130(3):319–322. doi: 10.1016/0014-2999(86)90285-2. [DOI] [PubMed] [Google Scholar]
  29. Willems P. H., Van den Broek B. A., Van Os C. H., De Pont J. J. Inhibition of inositol 1,4,5-trisphosphate-induced Ca2+ release in permeabilized pancreatic acinar cells by hormonal and phorbol ester pretreatment. J Biol Chem. 1989 Jun 15;264(17):9762–9767. [PubMed] [Google Scholar]
  30. de Nucci G., Gryglewski R. J., Warner T. D., Vane J. R. Receptor-mediated release of endothelium-derived relaxing factor and prostacyclin from bovine aortic endothelial cells is coupled. Proc Natl Acad Sci U S A. 1988 Apr;85(7):2334–2338. doi: 10.1073/pnas.85.7.2334. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES