Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1991 Oct;104(2):440–444. doi: 10.1111/j.1476-5381.1991.tb12448.x

Different pharmacological profiles of big-endothelin-3 and big-endothelin-1 in vivo and in vitro.

P D'Orléans-Juste 1, S Télémaque 1, A Claing 1
PMCID: PMC1908550  PMID: 1797310

Abstract

1. Human big-endothelin-1 (big-ET-1) and endothelin-1 (ET-1) are equipotent as pressor agents and produce a significant change in mean arterial blood pressure (MAP) in anaesthetized guinea-pigs (2 nmol kg-1: peak delta MAP: 23 +/- 6 mmHg and 26 +/- 5 mmHg, respectively). 2. Unlike big-ET-1, big-endothelin-3 (big-ET-3) (10 and 20 nmol kg-1) induces no pressor responses whereas endothelin-3 (ET-3) at 2 nmol kg-1 induces a significant increase of blood pressure in anaesthetized guinea-pigs (peak delta MAP: 27 +/- 5 mmHg) with a shorter duration than ET-1 and big-ET-1. 3. Big-ET-1 at concentrations 40 times higher than those required for ET-1 (2.5 nM) releases prostacyclin (PGI2) (maximal release: 2.7 +/- 0.8 ng ml-1; 2.9 +/- 0.9 ng ml-1, respectively) and thromboxane B2 (TxB2) (maximal release: 6.7 +/- 1.3 ng ml-1; 6.8 +/- 1.1 ng ml-1, respectively) from guinea-pig perfused lungs. ET-3 (2.5 nM) is also a potent releaser of PGI2 and TxB2 from the guinea-pig lungs (maximal release: PGI2: 2.4 +/- 1.0 ng ml-1; TxB2: 3.8 +/- 0.6 ng ml-1). Conversely, big-ET-3 (100 nM) does not increase basal release of eicosanoids. 4. Phosphoramidon (50 microM), a metalloprotease inhibitor, markedly reduced the eicosanoid releasing properties of big-ET-1 (n = 4, P less than 0.01) in guinea-pig perfused lungs without affecting the release stimulated by ET-1.(ABSTRACT TRUNCATED AT 250 WORDS)

Full text

PDF
440

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bakhle Y. S., Reynard A. M., Vane J. R. Metabolism of the angiotensins in isolated perfused tissues. Nature. 1969 Jun 7;222(5197):956–959. doi: 10.1038/222956a0. [DOI] [PubMed] [Google Scholar]
  2. Bloch K. D., Eddy R. L., Shows T. B., Quertermous T. cDNA cloning and chromosomal assignment of the gene encoding endothelin 3. J Biol Chem. 1989 Oct 25;264(30):18156–18161. [PubMed] [Google Scholar]
  3. D'Orléans-Juste P., Lidbury P. S., Warner T. D., Vane J. R. Intravascular big endothelin increases circulating levels of endothelin-1 and prostanoids in the rabbit. Biochem Pharmacol. 1990 May 1;39(9):R21–R22. doi: 10.1016/0006-2952(90)90419-l. [DOI] [PubMed] [Google Scholar]
  4. Emori T., Hirata Y., Marumo F. Specific receptors for endothelin-3 in cultured bovine endothelial cells and its cellular mechanism of action. FEBS Lett. 1990 Apr 24;263(2):261–264. doi: 10.1016/0014-5793(90)81388-5. [DOI] [PubMed] [Google Scholar]
  5. Fukuroda T., Noguchi K., Tsuchida S., Nishikibe M., Ikemoto F., Okada K., Yano M. Inhibition of biological actions of big endothelin-1 by phosphoramidon. Biochem Biophys Res Commun. 1990 Oct 30;172(2):390–395. doi: 10.1016/0006-291x(90)90685-g. [DOI] [PubMed] [Google Scholar]
  6. Inoue A., Yanagisawa M., Kimura S., Kasuya Y., Miyauchi T., Goto K., Masaki T. The human endothelin family: three structurally and pharmacologically distinct isopeptides predicted by three separate genes. Proc Natl Acad Sci U S A. 1989 Apr;86(8):2863–2867. doi: 10.1073/pnas.86.8.2863. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Kashiwabara T., Inagaki Y., Ohta H., Iwamatsu A., Nomizu M., Morita A., Nishikori K. Putative precursors of endothelin have less vasoconstrictor activity in vitro but a potent pressor effect in vivo. FEBS Lett. 1989 Apr 10;247(1):73–76. doi: 10.1016/0014-5793(89)81243-8. [DOI] [PubMed] [Google Scholar]
  8. Matsumoto H., Suzuki N., Onda H., Fujino M. Abundance of endothelin-3 in rat intestine, pituitary gland and brain. Biochem Biophys Res Commun. 1989 Oct 16;164(1):74–80. doi: 10.1016/0006-291x(89)91684-7. [DOI] [PubMed] [Google Scholar]
  9. Matsumura Y., Hisaki K., Takaoka M., Morimoto S. Phosphoramidon, a metalloproteinase inhibitor, suppresses the hypertensive effect of big endothelin-1. Eur J Pharmacol. 1990 Aug 21;185(1):103–106. doi: 10.1016/0014-2999(90)90216-s. [DOI] [PubMed] [Google Scholar]
  10. McMahon E. G., Fok K. F., Moore W. M., Smith C. E., Siegel N. R., Trapani A. J. In vitro and in vivo activity of chymotrypsin-activated big endothelin (porcine 1-40). Biochem Biophys Res Commun. 1989 Jun 15;161(2):406–413. doi: 10.1016/0006-291x(89)92613-2. [DOI] [PubMed] [Google Scholar]
  11. McMahon E. G., Palomo M. A., Moore W. M., McDonald J. F., Stern M. K. Phosphoramidon blocks the pressor activity of porcine big endothelin-1-(1-39) in vivo and conversion of big endothelin-1-(1-39) to endothelin-1-(1-21) in vitro. Proc Natl Acad Sci U S A. 1991 Feb 1;88(3):703–707. doi: 10.1073/pnas.88.3.703. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Mumford R. A., Pierzchala P. A., Strauss A. W., Zimmerman M. Purification of a membrane-bound metalloendopeptidase from porcine kidney that degrades peptide hormones. Proc Natl Acad Sci U S A. 1981 Nov;78(11):6623–6627. doi: 10.1073/pnas.78.11.6623. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Okada K., Miyazaki Y., Takada J., Matsuyama K., Yamaki T., Yano M. Conversion of big endothelin-1 by membrane-bound metalloendopeptidase in cultured bovine endothelial cells. Biochem Biophys Res Commun. 1990 Sep 28;171(3):1192–1198. doi: 10.1016/0006-291x(90)90811-z. [DOI] [PubMed] [Google Scholar]
  14. Pons F., Loquet I., Touvay C., Roubert P., Chabrier P. E., Mencia-Huerta J. M., Braquet P. Comparison of the bronchopulmonary and pressor activities of endothelin isoforms ET-1, ET-2, and ET-3 and characterization of their binding sites in guinea pig lung. Am Rev Respir Dis. 1991 Feb;143(2):294–300. doi: 10.1164/ajrccm/143.2.294. [DOI] [PubMed] [Google Scholar]
  15. Rouissi N., Nantel F., Drapeau G., Rhaleb N. E., Dion S., Regoli D. Inhibitors of peptidases: how they influence the biological activities of substance P, neurokinins, bradykinin and angiotensin in guinea pig, hamster and rat urinary bladders. Pharmacology. 1990;40(4):196–204. doi: 10.1159/000138659. [DOI] [PubMed] [Google Scholar]
  16. Salmon J. A. A radioimmunoassay for 6-keto-prostaglandin F1alpha. Prostaglandins. 1978 Mar;15(3):383–397. doi: 10.1016/0090-6980(78)90122-3. [DOI] [PubMed] [Google Scholar]
  17. Suda H., Aoyagi T., Takeuchi T., Umezawa H. Letter: A thermolysin inhibitor produced by Actinomycetes: phospholamidon. J Antibiot (Tokyo) 1973 Oct;26(10):621–623. doi: 10.7164/antibiotics.26.621. [DOI] [PubMed] [Google Scholar]
  18. Wallace J. L., Keenan C. M., MacNaughton W. K., McKnight G. W. Comparison of the effects of endothelin-1 and endothelin-3 on the rat stomach. Eur J Pharmacol. 1989 Aug 11;167(1):41–47. doi: 10.1016/0014-2999(89)90745-0. [DOI] [PubMed] [Google Scholar]
  19. Whittle B. J., Payne A. N., Esplugues J. V. Cardiopulmonary and gastric ulcerogenic actions of endothelin-1 in the guinea pig and rat. J Cardiovasc Pharmacol. 1989;13 (Suppl 5):S103–S123. doi: 10.1097/00005344-198900135-00026. [DOI] [PubMed] [Google Scholar]
  20. Yamaji T., Johshita H., Ishibashi M., Takaku F., Ohno H., Suzuki N., Matsumoto H., Fujino M. Endothelin family in human plasma and cerebrospinal fluid. J Clin Endocrinol Metab. 1990 Dec;71(6):1611–1615. doi: 10.1210/jcem-71-6-1611. [DOI] [PubMed] [Google Scholar]
  21. Yanagisawa M., Inoue A., Ishikawa T., Kasuya Y., Kimura S., Kumagaye S., Nakajima K., Watanabe T. X., Sakakibara S., Goto K. Primary structure, synthesis, and biological activity of rat endothelin, an endothelium-derived vasoconstrictor peptide. Proc Natl Acad Sci U S A. 1988 Sep;85(18):6964–6967. doi: 10.1073/pnas.85.18.6964. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Yanagisawa M., Kurihara H., Kimura S., Tomobe Y., Kobayashi M., Mitsui Y., Yazaki Y., Goto K., Masaki T. A novel potent vasoconstrictor peptide produced by vascular endothelial cells. Nature. 1988 Mar 31;332(6163):411–415. doi: 10.1038/332411a0. [DOI] [PubMed] [Google Scholar]
  23. de Nucci G., Thomas R., D'Orleans-Juste P., Antunes E., Walder C., Warner T. D., Vane J. R. Pressor effects of circulating endothelin are limited by its removal in the pulmonary circulation and by the release of prostacyclin and endothelium-derived relaxing factor. Proc Natl Acad Sci U S A. 1988 Dec;85(24):9797–9800. doi: 10.1073/pnas.85.24.9797. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES