Abstract
1. The ability of acromelic acid A to inhibit [3H]-kainic acid and [3H]-(RS)-alpha-amino-3-hydroxy-5-methyloxazole-4-propionic acid ([3H]-AMPA) binding to rat brain synaptic plasma membranes was investigated by equilibrium radioligand binding assay. 2. Kinetic analysis of [3H]-kainic acid binding demonstrated the existence of two kainate binding sites in this tissue preparation and yielded equilibrium dissociation constants for [3H]-kainic acid of KD = 0.4 nM and KD = 20.8 nM. 3. Kainic acid and domoic acid both appeared to displace [3H]-kainic acid from a single binding site with equilibrium binding constants of KD = 19.4 nM and Ki = 14.5 nM respectively. Acromelic acid A exhibited a biphasic inhibition of [3H]-kainic acid binding to synaptic membranes with binding affinities of Ki = 15.1 nM and Ki = 1.49 microM. 4. In the absence of chaotropic ions, the order of potency of inhibition of [3H]-AMPA binding was acromelic acid A (Ki = 26 nM) greater than AMPA (KD = 184 nM) greater than domoic acid (Ki = 499 nM). 5. The inclusion of 100 mM thiocynanate ion in the [3H]-AMPA binding assay resulted in a change in the order of potency to: AMPA (KD = 160 nM) greater than acromelic acid A (Ki = 289 nM) greater than domoic acid (Ki = 9.02 microM). 6. These results show that acromelic acid A distinguishes two kainate binding sites in rat brain synaptic plasma membranes and in addition, that in the absence of chaotropic ions, acromelic acid A is the most potent displacer of [3H]-AMPA binding yet described.
Full text
PDF



Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ambrosini A., Henley J. H., Barnard E. A. Kainate and quisqualate binding sites are co-purified from Xenopus central nervous system. Biochem Soc Trans. 1990 Jun;18(3):401–402. doi: 10.1042/bst0180401. [DOI] [PubMed] [Google Scholar]
- Gregor P., Mano I., Maoz I., McKeown M., Teichberg V. I. Molecular structure of the chick cerebellar kainate-binding subunit of a putative glutamate receptor. Nature. 1989 Dec 7;342(6250):689–692. doi: 10.1038/342689a0. [DOI] [PubMed] [Google Scholar]
- Henley J. M., Ambrosini A., Krogsgaard-Larsen P., Barnard E. A. Evidence for a single glutamate receptor of the ionotropic kainate/quisqualate type. New Biol. 1989 Nov;1(2):153–158. [PubMed] [Google Scholar]
- Hollmann M., O'Shea-Greenfield A., Rogers S. W., Heinemann S. Cloning by functional expression of a member of the glutamate receptor family. Nature. 1989 Dec 7;342(6250):643–648. doi: 10.1038/342643a0. [DOI] [PubMed] [Google Scholar]
- Honoré T., Drejer J., Nielsen M. Calcium discriminates two [3H]kainate binding sites with different molecular target sizes in rat cortex. Neurosci Lett. 1986 Mar 28;65(1):47–52. doi: 10.1016/0304-3940(86)90118-7. [DOI] [PubMed] [Google Scholar]
- Ishida M., Shinozaki H. Acromelic acid is a much more potent excitant than kainic acid or domoic acid in the isolated rat spinal cord. Brain Res. 1988 Dec 6;474(2):386–389. doi: 10.1016/0006-8993(88)90456-8. [DOI] [PubMed] [Google Scholar]
- Jones D. H., Matus A. I. Isolation of synaptic plasma membrane from brain by combined flotation-sedimentation density gradient centrifugation. Biochim Biophys Acta. 1974 Aug 9;356(3):276–287. doi: 10.1016/0005-2736(74)90268-5. [DOI] [PubMed] [Google Scholar]
- Keinänen K., Wisden W., Sommer B., Werner P., Herb A., Verdoorn T. A., Sakmann B., Seeburg P. H. A family of AMPA-selective glutamate receptors. Science. 1990 Aug 3;249(4968):556–560. doi: 10.1126/science.2166337. [DOI] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- London E. D., Coyle J. T. Specific binding of [3H]kainic acid to receptor sites in rat brain. Mol Pharmacol. 1979 May;15(3):492–505. [PubMed] [Google Scholar]
- Maruyama M., Takeda K. Effects of acromelic acid A on the binding of [3H]glutamic acid and [3H]kainic acid to synaptic membranes and on the depolarization at the frog spinal cord. Brain Res. 1989 Dec 18;504(2):328–331. doi: 10.1016/0006-8993(89)91379-6. [DOI] [PubMed] [Google Scholar]
- Munson P. J., Rodbard D. Ligand: a versatile computerized approach for characterization of ligand-binding systems. Anal Biochem. 1980 Sep 1;107(1):220–239. doi: 10.1016/0003-2697(80)90515-1. [DOI] [PubMed] [Google Scholar]
- Olsen R. W., Szamraj O., Houser C. R. [3H]AMPA binding to glutamate receptor subpopulations in rat brain. Brain Res. 1987 Feb 3;402(2):243–254. doi: 10.1016/0006-8993(87)90030-8. [DOI] [PubMed] [Google Scholar]
- Slevin J. T., Collins J. F., Coyle J. T. Analogue interactions with the brain receptor labeled by [3H]kainic acid. Brain Res. 1983 Apr 11;265(1):169–172. doi: 10.1016/0006-8993(83)91351-3. [DOI] [PubMed] [Google Scholar]
- Wada K., Dechesne C. J., Shimasaki S., King R. G., Kusano K., Buonanno A., Hampson D. R., Banner C., Wenthold R. J., Nakatani Y. Sequence and expression of a frog brain complementary DNA encoding a kainate-binding protein. Nature. 1989 Dec 7;342(6250):684–689. doi: 10.1038/342684a0. [DOI] [PubMed] [Google Scholar]
- Watkins J. C., Krogsgaard-Larsen P., Honoré T. Structure-activity relationships in the development of excitatory amino acid receptor agonists and competitive antagonists. Trends Pharmacol Sci. 1990 Jan;11(1):25–33. doi: 10.1016/0165-6147(90)90038-a. [DOI] [PubMed] [Google Scholar]
- Wenthold R. J., Hunter C., Wada K., Dechesne C. J. Antibodies to a C-terminal peptide of the rat brain glutamate receptor subunit, GluR-A, recognize a subpopulation of AMPA binding sites but not kainate sites. FEBS Lett. 1990 Dec 10;276(1-2):147–150. doi: 10.1016/0014-5793(90)80529-r. [DOI] [PubMed] [Google Scholar]
- Young A. B., Fagg G. E. Excitatory amino acid receptors in the brain: membrane binding and receptor autoradiographic approaches. Trends Pharmacol Sci. 1990 Mar;11(3):126–133. doi: 10.1016/0165-6147(90)90199-i. [DOI] [PubMed] [Google Scholar]
