Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1995 May;115(1):31–38. doi: 10.1111/j.1476-5381.1995.tb16316.x

Multiple pathways underlying endothelium-dependent relaxation in the rabbit isolated femoral artery.

F Plane 1, T Pearson 1, C J Garland 1
PMCID: PMC1908746  PMID: 7647981

Abstract

1. In isolated segments of the rabbit femoral artery stimulated with noradrenaline, both acetylcholine (1 nM-10 microM) and the calcium ionophore A23187 (1 nM-100 microM) evoked endothelium-dependent smooth muscle relaxation and hyperpolarization while bradykinin (0.01-100 nM) had no effect. 2. The nitric oxide synthase inhibitors, NG-nitro-L-arginine (L-NOARG; 100 microM; 20 min) or NG-nitro-L-arginine methyl ester (L-NAME; 100 microM; 20 min) each abolished the hyperpolarization and the majority of the relaxation to acetylcholine (maximal response reduced from 96.8 +/- 2.3% to 2.0 +/- 1.4%). 3. The potassium channel blocker, glibenclamide (10 microM; 10 min) also abolished the change in membrane potential to acetylcholine but did not modify the smooth muscle relaxation. 4. In contrast, neither L-NAME nor glibenclamide modified the comparable responses of the femoral artery to A23187, which were also unaffected by the cyclo-oxygenase inhibitor, indomethacin (10 microM). 5. In artery segments stimulated with potassium chloride (25 mM), the maximal change in tension and membrane potential evoked by A23187 (100 microM) was significantly reduced from 95.0 +/- 4.5% and 23.0 +/- 2.0 mV to 69.0 +/- 10.1% and 12.0 +/- 1.5 mV, respectively. Under these conditions L-NAME further reduced the relaxation but not the accompanying hyperpolarization to A23187. 6. Endothelium-denuded arterial segments sandwiched with endothelium-intact 'donor' segments gave qualitatively similar relaxant responses to those described above for acetylcholine and A23187.(ABSTRACT TRUNCATED AT 250 WORDS)

Full text

PDF
36

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adeagbo A. S., Triggle C. R. Varying extracellular [K+]: a functional approach to separating EDHF- and EDNO-related mechanisms in perfused rat mesenteric arterial bed. J Cardiovasc Pharmacol. 1993 Mar;21(3):423–429. [PubMed] [Google Scholar]
  2. Brayden J. E. Membrane hyperpolarization is a mechanism of endothelium-dependent cerebral vasodilation. Am J Physiol. 1990 Sep;259(3 Pt 2):H668–H673. doi: 10.1152/ajpheart.1990.259.3.H668. [DOI] [PubMed] [Google Scholar]
  3. Cachofeiro V., Nasjletti A. Increased vascular responsiveness to bradykinin in kidneys of spontaneously hypertensive rats. Effect of N omega-nitro-L-arginine. Hypertension. 1991 Nov;18(5):683–688. doi: 10.1161/01.hyp.18.5.683. [DOI] [PubMed] [Google Scholar]
  4. Chand N., Mahoney T. P., Jr, Diamantis W., Sofia R. D. Pharmacological modulation of bradykinin-, acetylcholine- and calcium ionophore A23187-induced relaxation of rabbit pulmonary arterial segments. Eur J Pharmacol. 1987 Jun 4;137(2-3):173–177. doi: 10.1016/0014-2999(87)90219-6. [DOI] [PubMed] [Google Scholar]
  5. Chen G., Suzuki H., Weston A. H. Acetylcholine releases endothelium-derived hyperpolarizing factor and EDRF from rat blood vessels. Br J Pharmacol. 1988 Dec;95(4):1165–1174. doi: 10.1111/j.1476-5381.1988.tb11752.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Chen G., Yamamoto Y., Miwa K., Suzuki H. Hyperpolarization of arterial smooth muscle induced by endothelial humoral substances. Am J Physiol. 1991 Jun;260(6 Pt 2):H1888–H1892. doi: 10.1152/ajpheart.1991.260.6.H1888. [DOI] [PubMed] [Google Scholar]
  7. Cowan C. L., Cohen R. A. Different mechanisms of relaxation of pig coronary artery to bradykinin and cromakalim are distinguished by potassium channel blockers. J Pharmacol Exp Ther. 1992 Jan;260(1):248–253. [PubMed] [Google Scholar]
  8. Cowan C. L., Cohen R. A. Two mechanisms mediate relaxation by bradykinin of pig coronary artery: NO-dependent and -independent responses. Am J Physiol. 1991 Sep;261(3 Pt 2):H830–H835. doi: 10.1152/ajpheart.1991.261.3.H830. [DOI] [PubMed] [Google Scholar]
  9. Garland C. J., McPherson G. A. Evidence that nitric oxide does not mediate the hyperpolarization and relaxation to acetylcholine in the rat small mesenteric artery. Br J Pharmacol. 1992 Feb;105(2):429–435. doi: 10.1111/j.1476-5381.1992.tb14270.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Garland C. J. The role of membrane depolarization in the contractile response of the rabbit basilar artery to 5-hydroxytryptamine. J Physiol. 1987 Nov;392:333–348. doi: 10.1113/jphysiol.1987.sp016783. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Huang A. H., Busse R., Bassenge E. Endothelium-dependent hyperpolarization of smooth muscle cells in rabbit femoral arteries is not mediated by EDRF (nitric oxide). Naunyn Schmiedebergs Arch Pharmacol. 1988 Oct;338(4):438–442. doi: 10.1007/BF00172124. [DOI] [PubMed] [Google Scholar]
  12. Ignarro L. J., Byrns R. E., Buga G. M., Wood K. S. Mechanisms of endothelium-dependent vascular smooth muscle relaxation elicited by bradykinin and VIP. Am J Physiol. 1987 Nov;253(5 Pt 2):H1074–H1082. doi: 10.1152/ajpheart.1987.253.5.H1074. [DOI] [PubMed] [Google Scholar]
  13. Jackson W. F., König A., Dambacher T., Busse R. Prostacyclin-induced vasodilation in rabbit heart is mediated by ATP-sensitive potassium channels. Am J Physiol. 1993 Jan;264(1 Pt 2):H238–H243. doi: 10.1152/ajpheart.1993.264.1.H238. [DOI] [PubMed] [Google Scholar]
  14. McPherson G. A., Angus J. A. Evidence that acetylcholine-mediated hyperpolarization of the rat small mesenteric artery does not involve the K+ channel opened by cromakalim. Br J Pharmacol. 1991 May;103(1):1184–1190. doi: 10.1111/j.1476-5381.1991.tb12321.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Nagao T., Illiano S., Vanhoutte P. M. Heterogeneous distribution of endothelium-dependent relaxations resistant to NG-nitro-L-arginine in rats. Am J Physiol. 1992 Oct;263(4 Pt 2):H1090–H1094. doi: 10.1152/ajpheart.1992.263.4.H1090. [DOI] [PubMed] [Google Scholar]
  16. Nagao T., Vanhoutte P. M. Hyperpolarization as a mechanism for endothelium-dependent relaxations in the porcine coronary artery. J Physiol. 1992 Jan;445:355–367. doi: 10.1113/jphysiol.1992.sp018928. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Nakashima M., Mombouli J. V., Taylor A. A., Vanhoutte P. M. Endothelium-dependent hyperpolarization caused by bradykinin in human coronary arteries. J Clin Invest. 1993 Dec;92(6):2867–2871. doi: 10.1172/JCI116907. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Palmer R. M., Ferrige A. G., Moncada S. Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature. 1987 Jun 11;327(6122):524–526. doi: 10.1038/327524a0. [DOI] [PubMed] [Google Scholar]
  19. Parsons A. A., Schilling L., Wahl M. Analysis of acetylcholine-induced relaxation of rabbit isolated middle cerebral artery: effects of inhibitors of nitric oxide synthesis, Na,K-ATPase, and ATP-sensitive K channels. J Cereb Blood Flow Metab. 1991 Jul;11(4):700–704. doi: 10.1038/jcbfm.1991.123. [DOI] [PubMed] [Google Scholar]
  20. Plane F., Garland C. J. Differential effects of acetylcholine, nitric oxide and levcromakalim on smooth muscle membrane potential and tone in the rabbit basilar artery. Br J Pharmacol. 1993 Oct;110(2):651–656. doi: 10.1111/j.1476-5381.1993.tb13861.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Rajanayagam M. A., Li C. G., Rand M. J. Differential effects of hydroxocobalamin on NO-mediated relaxations in rat aorta and anococcygeus muscle. Br J Pharmacol. 1993 Jan;108(1):3–5. doi: 10.1111/j.1476-5381.1993.tb13429.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Rand V. E., Garland C. J. Endothelium-dependent relaxation to acetylcholine in the rabbit basilar artery: importance of membrane hyperpolarization. Br J Pharmacol. 1992 May;106(1):143–150. doi: 10.1111/j.1476-5381.1992.tb14307.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Tare M., Parkington H. C., Coleman H. A., Neild T. O., Dusting G. J. Hyperpolarization and relaxation of arterial smooth muscle caused by nitric oxide derived from the endothelium. Nature. 1990 Jul 5;346(6279):69–71. doi: 10.1038/346069a0. [DOI] [PubMed] [Google Scholar]
  24. Taylor S. G., Southerton J. S., Weston A. H., Baker J. R. Endothelium-dependent effects of acetylcholine in rat aorta: a comparison with sodium nitroprusside and cromakalim. Br J Pharmacol. 1988 Jul;94(3):853–863. doi: 10.1111/j.1476-5381.1988.tb11597.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Thirstrup S., Nielsen-Kudsk J. E. Effects of K+ channel blockers on the relaxant action of dihydralazine, cromakalim and nitroprusside in isolated rabbit femoral arteries. Eur J Pharmacol. 1992 May 14;215(2-3):177–183. doi: 10.1016/0014-2999(92)90026-z. [DOI] [PubMed] [Google Scholar]
  26. Vidal M., Vanhoutte P. M., Miller V. M. Dissociation between endothelium-dependent relaxations and increases in cGMP in systemic veins. Am J Physiol. 1991 May;260(5 Pt 2):H1531–H1537. doi: 10.1152/ajpheart.1991.260.5.H1531. [DOI] [PubMed] [Google Scholar]
  27. Wolin M. S., Cherry P. D., Rodenburg J. M., Messina E. J., Kaley G. Methylene blue inhibits vasodilation of skeletal muscle arterioles to acetylcholine and nitric oxide via the extracellular generation of superoxide anion. J Pharmacol Exp Ther. 1990 Sep;254(3):872–876. [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES