Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1996 Nov;70(11):8047–8054. doi: 10.1128/jvi.70.11.8047-8054.1996

Two 21-kilodalton components of the Epstein-Barr virus capsid antigen complex and their relationship to ZEBRA-associated protein p21 (ZAP21).

T R Serio 1, A Angeloni 1, J L Kolman 1, L Gradoville 1, R Sun 1, D A Katz 1, W Van Grunsven 1, J Middeldorp 1, G Miller 1
PMCID: PMC190878  PMID: 8892929

Abstract

The viral capsid antigen complex of Epstein-Barr virus (EBV), an important serodiagnostic marker of infection with the virus, consists of at least four components, with molecular masses of 150, 110, 40, and 21 kDa. Here we show that the 21-kDa component of the viral capsid antigen consists of products of two EBV genes, BFRF3 and BLRF2. Both products were expressed from late transcripts, were recognized by human antisera, and were present in virions. The BFRF3 product, but not that of BLRF2, fulfilled the definition of ZEBRA-associated protein p21 (ZAP21). In cells in which EBV was lytically replicating, BFRF3 protein was coimmunoprecipitated together with ZEBRA by a rabbit antiserum directed against amino acids 197 to 245 of BZLF1. In EBV-negative cells cotransfected with BZLF1 and BFRF3 expression vectors, BFRF3 was also coimmunoprecipitated with this antiserum. Although this antiserum could not detect BFRF3 on an immunoblot, it was able to immunoprecipitate BFRF3 in the absence of ZEBRA expression. The rabbit antiserum to amino acids 197 to 245 of BZLF1 was found to detect the same epitope at the carboxy end of BFRF3 as was recognized by rabbit antiserum to BFRF3 itself. Thus, coimmunoprecipitation of BFRF3 p21 with ZEBRA appeared to be due to cross-reactivity of the immunoprecipitating antiserum rather than to direct association of ZEBRA and BFRF3 p21.

Full Text

The Full Text of this article is available as a PDF (518.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Albrecht J. C., Nicholas J., Biller D., Cameron K. R., Biesinger B., Newman C., Wittmann S., Craxton M. A., Coleman H., Fleckenstein B. Primary structure of the herpesvirus saimiri genome. J Virol. 1992 Aug;66(8):5047–5058. doi: 10.1128/jvi.66.8.5047-5058.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Baer R., Bankier A. T., Biggin M. D., Deininger P. L., Farrell P. J., Gibson T. J., Hatfull G., Hudson G. S., Satchwell S. C., Séguin C. DNA sequence and expression of the B95-8 Epstein-Barr virus genome. Nature. 1984 Jul 19;310(5974):207–211. doi: 10.1038/310207a0. [DOI] [PubMed] [Google Scholar]
  3. Biggin M., Farrell P. J., Barrell B. G. Transcription and DNA sequence of the BamHI L fragment of B95-8 Epstein-Barr virus. EMBO J. 1984 May;3(5):1083–1090. doi: 10.1002/j.1460-2075.1984.tb01933.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Dolyniuk M., Wolff E., Kieff E. Proteins of Epstein-Barr Virus. II. Electrophoretic analysis of the polypeptides of the nucleocapsid and the glucosamine- and polysaccharide-containing components of enveloped virus. J Virol. 1976 Apr;18(1):289–297. doi: 10.1128/jvi.18.1.289-297.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Gong M., Ooka T., Matsuo T., Kieff E. Epstein-Barr virus glycoprotein homologous to herpes simplex virus gB. J Virol. 1987 Feb;61(2):499–508. doi: 10.1128/jvi.61.2.499-508.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Henle G., Henle W. Immunofluorescence in cells derived from Burkitt's lymphoma. J Bacteriol. 1966 Mar;91(3):1248–1256. doi: 10.1128/jb.91.3.1248-1256.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Hudson G. S., Gibson T. J., Barrell B. G. The BamHI F region of the B95-8 Epstein-Barr virus genome. Virology. 1985 Nov;147(1):99–109. doi: 10.1016/0042-6822(85)90230-2. [DOI] [PubMed] [Google Scholar]
  8. Hummel M., Kieff E. Mapping of polypeptides encoded by the Epstein-Barr virus genome in productive infection. Proc Natl Acad Sci U S A. 1982 Sep;79(18):5698–5702. doi: 10.1073/pnas.79.18.5698. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. KIT S., DUBBS D. R., PIEKARSKI L. J., HSU T. C. DELETION OF THYMIDINE KINASE ACTIVITY FROM L CELLS RESISTANT TO BROMODEOXYURIDINE. Exp Cell Res. 1963 Aug;31:297–312. doi: 10.1016/0014-4827(63)90007-7. [DOI] [PubMed] [Google Scholar]
  10. Katz D. A., Baumann R. P., Sun R., Kolman J. L., Taylor N., Miller G. Viral proteins associated with the Epstein-Barr virus transactivator, ZEBRA. Proc Natl Acad Sci U S A. 1992 Jan 1;89(1):378–382. doi: 10.1073/pnas.89.1.378. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Kishishita M., Luka J., Vroman B., Poduslo J. F., Pearson G. R. Production of monoclonal antibody to a late intracellular Epstein-Barr virus-induced antigen. Virology. 1984 Mar;133(2):363–375. doi: 10.1016/0042-6822(84)90402-1. [DOI] [PubMed] [Google Scholar]
  12. Kolman J. L., Taylor N., Gradoville L., Countryman J., Miller G. Comparing transcriptional activation and autostimulation by ZEBRA and ZEBRA/c-Fos chimeras. J Virol. 1996 Mar;70(3):1493–1504. doi: 10.1128/jvi.70.3.1493-1504.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Menezes J., Leibold W., Klein G., Clements G. Establishment and characterization of an Epstein-Barr virus (EBC)-negative lymphoblastoid B cell line (BJA-B) from an exceptional, EBV-genome-negative African Burkitt's lymphoma. Biomedicine. 1975 Jul;22(4):276–284. [PubMed] [Google Scholar]
  14. Miller G., Grogan E., Rowe D., Rooney C., Heston L., Eastman R., Andiman W., Niederman J., Lenoir G., Henle W. Selective lack of antibody to a component of EB nuclear antigen in patients with chronic active Epstein-Barr virus infection. J Infect Dis. 1987 Jul;156(1):26–35. doi: 10.1093/infdis/156.1.26. [DOI] [PubMed] [Google Scholar]
  15. Miller G., Lipman M. Release of infectious Epstein-Barr virus by transformed marmoset leukocytes. Proc Natl Acad Sci U S A. 1973 Jan;70(1):190–194. doi: 10.1073/pnas.70.1.190. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. PULVERTAFT J. V. CYTOLOGY OF BURKITT'S TUMOUR (AFRICAN LYMPHOMA). Lancet. 1964 Feb 1;1(7327):238–240. doi: 10.1016/s0140-6736(64)92345-1. [DOI] [PubMed] [Google Scholar]
  17. Rabson M., Heston L., Miller G. Identification of a rare Epstein-Barr virus variant that enhances early antigen expression in Raji cells. Proc Natl Acad Sci U S A. 1983 May;80(9):2762–2766. doi: 10.1073/pnas.80.9.2762. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Reischl U., Gerdes C., Motz M., Wolf H. Expression and purification of an Epstein-Barr virus encoded 23-kDa protein and characterization of its immunological properties. J Virol Methods. 1996 Mar;57(1):71–85. doi: 10.1016/0166-0934(95)01970-7. [DOI] [PubMed] [Google Scholar]
  19. Shedd D., Angeloni A., Niederman J., Miller G. Detection of human serum antibodies to the BFRF3 Epstein-Barr virus capsid component by means of a DNA-binding assay. J Infect Dis. 1995 Nov;172(5):1367–1370. doi: 10.1093/infdis/172.5.1367. [DOI] [PubMed] [Google Scholar]
  20. Takada K., Fujiwara S., Yano S., Osato T. Monoclonal antibody specific for capsid antigen of Epstein-Barr virus. Med Microbiol Immunol. 1983;171(4):225–231. doi: 10.1007/BF02123496. [DOI] [PubMed] [Google Scholar]
  21. Taylor N., Countryman J., Rooney C., Katz D., Miller G. Expression of the BZLF1 latency-disrupting gene differs in standard and defective Epstein-Barr viruses. J Virol. 1989 Apr;63(4):1721–1728. doi: 10.1128/jvi.63.4.1721-1728.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Vroman B., Luka J., Rodriguez M., Pearson G. R. Characterization of a major protein with a molecular weight of 160,000 associated with the viral capsid of Epstein-Barr virus. J Virol. 1985 Jan;53(1):107–113. doi: 10.1128/jvi.53.1.107-113.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. van Grunsven W. M., Nabbe A., Middeldorp J. M. Identification and molecular characterization of two diagnostically relevant marker proteins of the Epstein-Barr virus capsid antigen complex. J Med Virol. 1993 Jun;40(2):161–169. doi: 10.1002/jmv.1890400215. [DOI] [PubMed] [Google Scholar]
  24. van Grunsven W. M., Spaan W. J., Middeldorp J. M. Localization and diagnostic application of immunodominant domains of the BFRF3-encoded Epstein-Barr virus capsid protein. J Infect Dis. 1994 Jul;170(1):13–19. doi: 10.1093/infdis/170.1.13. [DOI] [PubMed] [Google Scholar]
  25. van Grunsven W. M., van Heerde E. C., de Haard H. J., Spaan W. J., Middeldorp J. M. Gene mapping and expression of two immunodominant Epstein-Barr virus capsid proteins. J Virol. 1993 Jul;67(7):3908–3916. doi: 10.1128/jvi.67.7.3908-3916.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES