Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1995 Aug;115(7):1290–1294. doi: 10.1111/j.1476-5381.1995.tb15038.x

Calcitonin gene-related peptide (CGRP)-enhanced non-adrenergic non-cholinergic contraction of guinea-pig proximal colon.

S Kojima 1, Y Shimo 1
PMCID: PMC1908780  PMID: 7582558

Abstract

1. We have investigated the effect of calcitonin gene-related peptide (CGRP) on non-adrenergic, non-cholinergic (NANC) excitatory transmission to the longitudinal muscle of the guinea-pig proximal colon. 2. In the presence of atropine (0.3 microM), guanethidine (5 microM), hexamethonium (100 microM) and indomethacin (3 microM), electrical field stimulation (EFS, 1 Hz, 0.3 ms for 10 s) produced tetrodotoxin-(300 nM)-sensitive contractions which were reduced by the combined administration of FK 888 (10 microM) and MEN 10,376 (0.3 microM), to block tachykinin NK1 and NK2 receptors, respectively. Thus, the EFS-induced NANC contractions are a tachykinin-mediated response. 3. CGRP, at concentrations higher than 0.1 nM, caused an increase in the electrically-evoked, NANC contractions in a concentration-dependent manner and at 10 nM produced a maximal effect (pEC50 = 9.20 +/- 0.17, n = 6). 4. 5-Hydroxytryptamine (5-HT, 1-100 nM) also caused an increase in the EFS-induced NANC contractions in a concentration-dependent manner and at 30 nM produced a maximal effect (pEC50 = 8.06 +/- 0.09, n = 4), but calcitonin (10-100 nM) failed to enhance the EFS-induced NANC responses. Moreover, a 5-HT4 receptor antagonist, DAU 6285 (3 microM) abolished the enhancing action of 5-HT (30 nM). 5. The combined administration of FK 888 (10 microM) plus MEN 10,376 (0.3 microM) abolished the enhancement of EFS-induced NANC contractions by CGRP (10 nM), but DAU 6285 (3 microM) had no effect on the enhancement.(ABSTRACT TRUNCATED AT 250 WORDS)

Full text

PDF
1292

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Dennis T., Fournier A., Cadieux A., Pomerleau F., Jolicoeur F. B., St Pierre S., Quirion R. hCGRP8-37, a calcitonin gene-related peptide antagonist revealing calcitonin gene-related peptide receptor heterogeneity in brain and periphery. J Pharmacol Exp Ther. 1990 Jul;254(1):123–128. [PubMed] [Google Scholar]
  2. Dumuis A., Gozlan H., Sebben M., Ansanay H., Rizzi C. A., Turconi M., Monferini E., Giraldo E., Schiantarelli P., Ladinsky H. Characterization of a novel 5-HT4 receptor antagonist of the azabicycloalkyl benzimidazolone class: DAU 6285. Naunyn Schmiedebergs Arch Pharmacol. 1992 Mar;345(3):264–269. doi: 10.1007/BF00168685. [DOI] [PubMed] [Google Scholar]
  3. Giuliani S., Lecci A., Giachetti A., Maggi C. A. Tachykinins and reflexly evoked atropine-resistant motility in the guinea pig colon in vivo. J Pharmacol Exp Ther. 1993 Jun;265(3):1224–1231. [PubMed] [Google Scholar]
  4. Goltzman D., Mitchell J. Interaction of calcitonin and calcitonin gene-related peptide at receptor sites in target tissues. Science. 1985 Mar 15;227(4692):1343–1345. doi: 10.1126/science.2983422. [DOI] [PubMed] [Google Scholar]
  5. Holzer P., Barthó L., Matusák O., Bauer V. Calcitonin gene-related peptide action on intestinal circular muscle. Am J Physiol. 1989 Mar;256(3 Pt 1):G546–G552. doi: 10.1152/ajpgi.1989.256.3.G546. [DOI] [PubMed] [Google Scholar]
  6. Holzer P., Guth P. H. Neuropeptide control of rat gastric mucosal blood flow. Increase by calcitonin gene-related peptide and vasoactive intestinal polypeptide, but not substance P and neurokinin A. Circ Res. 1991 Jan;68(1):100–105. doi: 10.1161/01.res.68.1.100. [DOI] [PubMed] [Google Scholar]
  7. Ishida-Yamamoto A., Tohyama M. Calcitonin gene-related peptide in the nervous tissue. Prog Neurobiol. 1989;33(5-6):335–386. doi: 10.1016/0301-0082(89)90006-3. [DOI] [PubMed] [Google Scholar]
  8. Kojima S. Characterization of 5-hydroxytryptamine-induced relaxations of guinea-pig proximal colon. Arch Int Pharmacodyn Ther. 1991 Sep-Oct;313:23–32. [PubMed] [Google Scholar]
  9. Kojima S., Shimo Y. An enhancing effect of 5-hydroxytryptamine on electrically evoked atropine-resistant contraction of guinea-pig proximal colon. Br J Pharmacol. 1995 Jan;114(1):73–76. doi: 10.1111/j.1476-5381.1995.tb14907.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Maggi C. A., Manzini S., Giuliani S., Santicioli P., Meli A. Extrinsic origin of the capsaicin-sensitive innervation of rat duodenum: possible involvement of calcitonin gene-related peptide (CGRP) in the capsaicin-induced activation of intramural non-adrenergic non-cholinergic neurons. Naunyn Schmiedebergs Arch Pharmacol. 1986 Oct;334(2):172–180. doi: 10.1007/BF00505818. [DOI] [PubMed] [Google Scholar]
  11. Maggi C. A., Patacchini R., Meini S., Quartara L., Sisto A., Potier E., Giuliani S., Giachetti A. Comparison of tachykinin NK1 and NK2 receptors in the circular muscle of the guinea-pig ileum and proximal colon. Br J Pharmacol. 1994 May;112(1):150–160. doi: 10.1111/j.1476-5381.1994.tb13045.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Palmer J. M., Schemann M., Tamura K., Wood J. D. Calcitonin gene-related peptide excites myenteric neurons. Eur J Pharmacol. 1986 Dec 16;132(2-3):163–170. doi: 10.1016/0014-2999(86)90601-1. [DOI] [PubMed] [Google Scholar]
  13. Poyner D. R. Calcitonin gene-related peptide: multiple actions, multiple receptors. Pharmacol Ther. 1992;56(1):23–51. doi: 10.1016/0163-7258(92)90036-y. [DOI] [PubMed] [Google Scholar]
  14. Ren J., Young R. L., Lassiter D. C., Harty R. F. Calcitonin gene-related peptide mediates capsaicin-induced neuroendocrine responses in rat antrum. Gastroenterology. 1993 Feb;104(2):485–491. doi: 10.1016/0016-5085(93)90417-b. [DOI] [PubMed] [Google Scholar]
  15. Rodrigo J., Polak J. M., Fernandez L., Ghatei M. A., Mulderry P., Bloom S. R. Calcitonin gene-related peptide immunoreactive sensory and motor nerves of the rat, cat, and monkey esophagus. Gastroenterology. 1985 Feb;88(2):444–451. doi: 10.1016/0016-5085(85)90505-0. [DOI] [PubMed] [Google Scholar]
  16. VAN ROSSUM J. M. Cumulative dose-response curves. II. Technique for the making of dose-response curves in isolated organs and the evaluation of drug parameters. Arch Int Pharmacodyn Ther. 1963;143:299–330. [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES