Ca^{2+} -dependent and -independent mechanism of cyclic-AMP reduction: mediation by bradykinin B₂ receptors

¹Henk Sipma, Adriaan den Hertog & Adriaan Nelemans

Groningen Institute for Drugs Studies (GIDS), Department of Clinical Pharmacology, University of Groningen, Bloemsingel 1, 9713 BZ Groningen, The Netherlands

1 Bradykinin caused a transient reduction of about 25% in the cyclic AMP level in forskolin prestimulated DDT₁ MF-2 smooth muscle cells (IC₅₀: 36.4 ± 4.9 nM) and a pronounced, sustained inhibition (40%) of the isoprenaline-stimulated cyclic AMP level (IC₅₀: 37.5 ± 1.1 nM).

2 The Ca^{2+} ionophore, ionomycin, mimicked both the bradykinin-induced transient reduction in the forskolin-stimulated cyclic AMP level and the sustained reduction in the isoprenaline-stimulated cyclic AMP level.

3 The Ca^{2+} -dependent effect on cyclic AMP induced by bradykinin was mediated solely by Ca^{2+} release from internal stores, since inhibition of Ca^{2+} entry with $LaCl_3$ did not reduce the response to bradykinin.

4 The involvement of calmodulin-dependent enzyme activities, protein kinase C or an inhibitory GTP binding protein in the bradykinin-induced responses was excluded since a calmodulin inhibitor, calmidazolium, a PKC inhibitor, staurosporine and pertussis toxin, respectively did not affect the decline in the cyclic AMP level.

5 Bradykinin enhanced the rate of cyclic AMP breakdown in intact cells, which effect was not mimicked by ionomycin. This suggested a Ca^{2+} -independent activation of phosphodiesterase activity by bradykinin in DDT₁ MF-2 cells.

6 The bradykinin B_1 receptor agonist, desArg⁹-bradykinin, did not affect cyclic AMP formation in isoprenaline prestimulated cells, while the bradykinin B_2 receptor antagonists, Hoe 140 (D-Arg[Hyp³, Thi⁵, D-Tic⁷, Oic⁸]-BK) and D-Arg[Hyp³, Thi^{5.8}, D-Phe⁷]-BK completely abolished the bradykinin response in both forskolin and isoprenaline prestimulated cells.

7 Bradykinin caused an increase in intracellular Ca^{2+} , which was antagonized by the bradykinin B_2 receptor antagonists, Hoe 140 and D-Arg[Hyp³, Thi^{5,8}, D-Phe⁷]-BK. The bradykinin B_2 receptor agonist, desArg⁹-bradykinin, did not evoke a rise in cytoplasmic Ca^{2+} .

8 It is concluded, that stimulation of bradykinin B_2 receptors causes a reduction in cellular cyclic AMP in DDT₁ MF-2 cells. This decline in cyclic AMP is partly mediated by a Ca²⁺/calmodulin independent activation of phosphodiesterase activity. The increase in $[Ca^{2+}]_i$ mediated by bradykinin B_2 receptors inhibited forskolin- and isoprenaline-activated adenylyl cyclase differently, most likely by interfering with different components of the adenylyl cyclase signalling pathway.

Keywords: Cyclic AMP; Ca²⁺; phosphodiesterase; bradykinin B₂ receptor; DDT₁ MF-2 cell

Introduction

Bradykinin is an important mediator of various biological processes, including regulation of blood pressure, neurotransmission and bronchoconstriction. The existence of bradykinin B_1 and B_2 receptors has been firmly established (Hall, 1992). Recently, a novel bradykinin B_3 receptor was proposed (Pyne & Pyne, 1993; 1994).

It was reported that bradykinin induces phospholipase C activation resulting in the formation of inositol 1,4,5-trisphosphate (Ins(1,4,5)P₃) and the accumulation of cytoplasmic Ca^{2+} in DDT₁ MF-2 smooth muscle cells (Gerwins & Fredholm, 1992; Dickenson & Hill, 1992). Besides activation of phospholipase C, bradykinin has been reported to affect the cellular adenosine 3': 5'-cyclic monophosphate (cyclic AMP) level. In cultured tracheal smooth muscle cells, bradykinin elicited accumulation of cyclic AMP (Stevens *et al.*, 1994). In contrast, bradykinin evoked inhibition of cyclic AMP accumulation was observed in D384-human astrocytoma cells (Balmforth *et al.*, 1992; Altiok & Fredholm, 1993) and in NCB-20 hybrid neuronal cells (Garritsen *et al.*, 1992b). These

inhibitory actions were caused by a simultaneous increase in cytoplasmic Ca^{2+} . Recently, inhibition of adenylyl cyclase activity caused by an inhibitory GTP binding protein was reported on stimulation of P_{2U} purinoceptors in DDT₁ MF-2 cells (Sipma *et al.*, 1994).

In this study we describe a bradykinin-induced decrease in the cyclic AMP level in DDT_1 MF-2 cells. Depending on the agonist used to activate adenylyl cyclase, this decline in cyclic AMP was either transient or sustained in nature. Furthermore we classified the bradykinin receptor subtype mediating these responses and studied the mechanisms underlying the effect of bradykinin on the cyclic AMP level.

Methods

Cell culture

DDT₁ MF-2 cells, derived from a Syrian hamster vas deferens (Norris *et al.*, 1974) were cultured in Dulbecco's modified essential medium supplemented with 7 mM NaHCO₃, 10 mM HEPES at pH 7.2 (DMEM) and 10% foetal calf serum at 37° C in 5% CO₂ (Molleman *et al.*, 1989).

¹Author for correspondence.

Experimental design and sample preparation

DDT₁ MF-2 cells were growm in monolayers in 9.6 cm² plastic wells as described earlier (Hoiting *et al.*, 1990). The medium was replaced by 2 ml DMEM at 20°C, 30 min before starting the experiment by adding agonists. Before adding bradykinin some cell preparations were pre-exposed to forskolin (1 μ M) for 10 min or to isoprenaline (10 μ M, 10 min). Antagonists were added 2 min before exposure to bradykinin.

Cyclic AMP phosphodiesterase activity in intact cells was measured as previously described by Garritsen *et al.* (1992a). Isoprenaline pretreated (1 μ M, 10 min) cells were quickly washed 3 times by aspiration and addition of new solution supplemented with the β_2 -adrenoceptor antagonist, propranolol (100 nM). Under these conditions *de novo* synthesis of cyclic AMP was abolished.

Reactions were stopped by removal of the medium and addition of 400 μ l 5% trichloroacetic acid (TCA). Samples were placed on ice for at least 45 min and subsequently washed 3 times with 800 μ l water-saturated diethylether and neutralised with KOH (25 μ l, 0.2 mM).

Measurements of cyclic AMP

A radioligand binding assay was used to determine cyclic AMP concentrations, using a standard curve of cyclic AMP in etherextracted trichloroacetic acid solution (Brown *et al.*, 1971). To reach equilibrium, 50 μ l sample was incubated with a buffer composed of 50 mM Tris-HCl (pH 7.4), 4 mM EDTA, 20 μ g cyclic AMP binding protein, 200 μ g bovine serum albumin and 10 μ l [³H]-cyclic AMP (190 nM, 40 Ci mmol⁻¹) to a total volume of 160 μ l at 4°C for at least 2 h. The reaction was terminated by adding 500 μ l of a charcoal suspension (Norit A special, 3.5 g l⁻¹) followed by centrifugation to remove the excess [³H]-cyclic AMP. Radioactivity in the supernatant was measured by scintillation counting.

Measurements of intracellular calcium

Cells (10^6 cells ml⁻¹) were washed with and resuspended in a buffer solution containing (mM): NaCl 145, KCl 5, MgSO₄ 0.5, CaCl₂ 1, glucose 10, bovine serum albumin 2% and HEPES 10, (pH 7.4) (Hesketh *et al.*, 1983) and were loaded with Fura-2 AM (3 μ M) for 45 min at 37°C. The cells were collected by centrifugation (20 s, 1000 g) and washed two times before the fluorescence measurement with buffer without bovine serum albumin. Calcium-free solution contained Mg²⁺ (6.2 mM) to prevent membrane leakage and EGTA (0.4 mM) to remove extracellular Ca²⁺ (Den Hertog, 1981). Fura-2 fluorescence of the cells (excitation: 340 nM and 380 nM; emission 510 nm) was measured at 22°C. The cell suspension was continuously magnetically stirred. The internal calcium concentration was calculated (Hesketh *et al.*, 1983) using 0.015% of Triton X-100 as permeabilizing agent.

Data analysis

Data are presented as mean \pm s.e.mean and were considered significantly different from control values at P < 0.05 using Student's unpaired t test. A Sigma plot logistic curve fitting programme (Jandel Scientific, U.S.A.) was used to determine EC₅₀ and IC₅₀ values and to analyse binding parameters obtained from the respective radioligand binding assays.

Chemicals

Adenosine 3':5'-cyclic monophosphate (cyclic AMP) was from Boehringer (Germany). Forskolin, isoprenaline, bradykinin, desArg⁹-bradykinin, pertussis toxin, 3-isobutyl-1-methyl-xanthine and staurosporine were purchased from Sigma, (U.S.A.). D-Arg[Hyp³, Thi^{5,8}, D-Phe⁷]-BK was from Hoechst AG (Germany). D-Arg[Hyp³, Thi⁵, D-Tic⁷, Oic⁸]-BK (Hoe 140) was from Peninsula Laboratories Inc. (U.S.A.). Calmidazolium chloride was obtained from Biomol (U.S.A.). $[2,8^{-3}H]$ -adenosine 3':5'-cyclic monophosphate was obtained from Du Pont-New England Nuclear (U.S.A.). LaCl₃ and all other chemicals were from Merck (Germany).

Results

Forskolin and isoprenaline induced cyclic AMP accumulation

Stimulation of DDT₁ MF-2 cells with forskolin (1 μ M) resulted in an increase in basal cellular cyclic AMP from 2.1 ± 0.2 pmol/10⁶ cells to 8.6 ± 0.3 pmol/10⁶ cells. In the presence of the β -adrenoceptor agonist, isoprenaline (1 μ M), intracellular cyclic AMP reached a maximum of 65.6 ± 3.5 pmol/ 10⁶ cells. Both forskolin and isoprenaline induced cyclic AMP formation were maximal after 10 min of exposure to the agonists and remained stable for at least 10 min afterwards as described in detail elsewhere (Sipma *et al.*, 1995).

Bradykinin and cyclic AMP

Stimulation of DDT₁ MF-2 cells with bradykinin (1 μ M, 2 min) did not affect the basal cyclic AMP level (not shown). Bradykinin evoked a transient decline in cellular cyclic AMP in forskolin (1 µM, 10 min) pretreated cells (Figure 1a). The cellular cyclic AMP level showed a minimum between 0.5 and 2 min and returned to its original value after 5 min of exposure to bradykinin. This action of bradykinin on forskolin pretreated cells was concentration-dependent (Figure 2a, IC₅₀: 36.4 ± 4.9 nM). Bradykinin induced a pronounced, sustained decrease in the cyclic AMP level in isoprenaline (1 μ M, 10 min) pretreated cells (Figure 1b). Bradykinin also elicited a pronounced response when cells were pretreated with a lower concentration of isoprenaline (10 nM), resulting in a similar rise in cyclic AMP concentration as seen with forskolin (Figure 1c). The reduction of isoprenaline (1 μ M)-induced cyclic AMP exhibited a similar concentration-dependency on bradykinin (Figure 2b, IC₅₀: 37.5 ± 1.1 nM) as observed for forskolin pretreated cells. Exposure of DDT₁ MF-2 cells to bradykinin has previously been shown to elicit Ca^{2+} release from Ins(1,4,5)P₃-sensitive internal stores and to provoke Ca²⁺-entry (Gerwins & Fredholm, 1992; Dickenson & Hill, 1992). Exposure of cells to forskolin or isoprenaline did not change the basal cytoplasmic Ca^{2+} concentration ([Ca^{2+}]_i) or the bradykinin-induced increase in $[Ca^{2+}]_i$ (Table 1).

Involvement of an inhibitory G-protein

The involvement of inhibitory GTP binding proteins (G_i) in the effects of bradykinin on cyclic AMP was studied by use of pertussis toxin (PTX). Pretreatment of DDT₁ MF-2 cells with PTX (100 ng ml⁻¹, 24 h) neither affected the forskolin induced formation of cyclic AMP nor reduced the bradykinin-induced decline in the forskolin-stimulated cyclic AMP level (Figure 3a). Remarkably, the isoprenaline-induced formation of cyclic AMP was reduced after pre-exposure of cells to PTX. Under these experimental conditions, bradykinin still decreased the isoprenaline-stimulated cyclic AMP level (Figure 3b).

Ionomycin and cyclic AMP

In order to investigate the contribution of cytoplasmic Ca^{2+} to the effects observed, ionomycin (5 μ M) was used to permeabilize plasma membranes and to deplete internal Ca^{2+} stores. In the presence of extracellular Ca^{2+} this treatment resulted in a transient decline in the forskolin-induced cyclic AMP level and a maintained decrease in the isoprenaline-induced cyclic AMP level (Figure 4). The characteristics of the cyclic AMP response in the presence of ionomycin were similar to those obtained with bradykinin (Figure 1). In order to estimate the relative contribution of Ca^{2+} entry and Ca^{2+} mobilization from internal stores to the bradykinin

induced decline in cyclic AMP levels, Ca^{2+} entry was blocked with lanthanum ions (LaCl₃). The bradykinin-induced maximal increase in $[Ca^{2+}]_i$ was reduced to about 65% of the control response (Figure 5, Table 1) in the presence of LaCl₃ (50 μ M). Moreover, the slowly declining phase of the Ca²⁺ response, representing Ca²⁺-entry, was completely abolished by LaCl₃ (Figure 5). Inhibition of Ca²⁺ entry with LaCl₃ (50 μ M) did not change the forskolin or isoprenaline-stimulated cyclic AMP level and did not affect the bradykinin induced decline in the forskolin- or isoprenaline-induced cyclic AMP level (Table 2).

Involvement of protein kinase C and calmodulin dependent enzymes

Pretreatment of cells with the protein kinase C inhibitor, staurosporine (0.5 μ M, 5 min), did not change the basal level of forskolin- or isoprenaline-induced cyclic AMP and did not affect the bradykinin-induced decline in the forskolin- and isoprenaline-stimulated cyclic AMP level (Table 3).

A calmodulin inhibitor was used to determine whether the inhibitory effect of Ca^{2+} on cyclic AMP levels was mediated by Ca^{2+} /calmodulin-dependent enzymes. Calmidazolium is known to inhibit calmodulin-dependent enzymes with high potency (Gietzen, 1983). Pre-exposure of cells to calmidazo-

Figure 1 The time-dependent effect of bradykinin on the cyclic AMP level. (a) Bradykinin $(1 \mu M)$ transiently reduced the cyclic AMP level in forskolin $(1 \mu M)$, 10 min) prestimulated cells. (b) The bradykinin $(1 \mu M)$ -induced reduction of cyclic AMP accumulation in isoprenaline $(1 \mu M, 10 \text{ min})$ prestimulated cells is sustained. (c) The effect of bradykinin on cellular cyclic AMP after pretreatment of the cells with a low concentration of isoprenaline (10 nM, 10 min). *Different from values obtained in the absence of bradykinin, P < 0.05; **P < 0.01. Each point represents the mean ± s.e.mean of at least 5 experiments.

Figure 2 The concentration-dependent effect of bradykinin on the cyclic AMP level. (a) The bradykinin-induced reduction of cyclic AMP accumulation after 2 min in forskolin $(1 \,\mu M, 10 \,\text{min})$ pretreated cells. (b) The reduction in the cyclic AMP level in isoprenaline $(1 \,\mu M, 10 \,\text{min})$ pretreated cells. *Different from values obtained in the absence of bradykinin, P < 0.05; **P < 0.01. Each point represents the mean ± s.e.mean of at least 5 experiments.

Table 1Bradykinin-induced increases in cytoplasmic Ca^{2+} in DTT1MF-2 cells

Treatment	Basal [Ca ²⁺] _i (nM)	Bradykinin induced increase in [Ca ²⁺] _i (nM)
None	153 ± 9	155 ± 22
Forskolin	160 ± 12	154 ± 24
Isoprenaline	156 ± 14	158 ± 30
LaĈl ₃	165 ± 12	$103 \pm 15*$
Hoe 140	163 ± 15	$2.1 \pm 1.1*$
D-Arg[Hyp ³ , Thi ^{5,8} , D-Phe ⁷]-BK	156 ± 11	10±2.9*

Pretreatment of cells with forskolin (1 μ M, 10 min) or isoprenaline (1 μ M, 10 min) did not affect bradykinin (1 μ M)-induced Ca²⁺ metabolism. Blocking Ca²⁺ entry by pretreatment of cells with LaCl₃ (50 μ M, 2 min) reduced the bradykinin-induced evoked rise in [Ca²⁺]_i. The bradykinininduced maximal increase in cytoplasmic Ca²⁺ ([Ca²⁺]_i) was abolished by the bradykinin B₂ receptor antagonist Hoe 140 (D-Arg[Hyp³, Thi⁵, D-Tic⁷, Oic⁸]-BK, 1 μ M, 2 min) and D-Arg[Hyp³, Thi^{5,8}, D-Phe⁷]-BK (10 μ M, 2 min). *Different from stimulation with bradykinin, P < 0.01. Data are presented as mean ± s.e.mean of at least 4 experiments.

Figure 3 The effect of pertussis toxin on the bradykinin induced decline in cyclic AMP. Cells were treated in the presence or absence of pertussis toxin (PTX, 100 ng ml⁻¹, 24 h, horizontal bar). (a) The bradykinin (B2, 1 μ M, 2 min)-induced reduction in forskolin pretreated (1 μ M, 10 min) cells. (b) The bradykinin (1 μ M, B2:2 min, B5:5 min)-induced reduction in isoprenaline pretreated (1 μ M, 10 min) cells. *Different from respective control stimulation in the absence of bradykinin, P < 0.05; **P < 0.01. #Different from values obtained in the absence of PTX, P < 0.01. Data are expressed as mean ± s.e.mean of 8 experiments.

lium (10 μ M, 10 min) did not affect the forskolin- or isoprenaline-induced cyclic AMP level. Furthermore, the bradykinin-induced reduction in the forskolin and isoprenalinestimulated cyclic AMP level was not affected by calmidazolium (Table 4).

The effect of bradykinin on cyclic AMP-phosphodiesterase activity

Cyclic AMP phosphodiesterase activity was measured after inhibition of *de novo* synthesis of cyclic AMP. The cyclic AMP level of unstimulated cells decreased time-dependently under these conditions (Figure 6). This decrease in the cyclic AMP level was completely inhibited in the presense of the non-specific phosphodiesterase inhibitor 3-isobutyl-1-methyl xanthine (IBMX, 200 μ M), which showed that the reduction in the cyclic AMP level was completely due to cyclic AMP phosphodiesterase activity. Bradykinin (1 μ M), added immediately after removal of isoprenaline, enhanced the rate of cyclic AMP breakdown, an effect which was also completely inhibited by IBMX. Ionomycin (5 μ M) did not mimic the effect of bradykinin on phosphodiesterase activity (not shown).

Figure 4 The effects of ionomycin on prestimulated cyclic AMP levels. (a) Ionomycin $(5 \,\mu\text{M})$ caused a transient decline in the forskolin $(1 \,\mu\text{M}, 10 \,\text{min})$ induced cyclic AMP level and (b) a sustained reduction in the isoprenaline $(1 \,\mu\text{M}, 10 \,\text{min})$ -enhanced cyclic AMP level in Ca²⁺ (1.8 mM) containing buffer. *Different from values obtained in the absence of ionomycin, P < 0.05; **P < 0.01. Each point represents the mean \pm s.e.mean of 4 experiments.

Bradykinin receptor subtype

The bradykinin B_1 receptor agonist, des-Arg⁹-bradykinin did not affect isoprenaline induced cyclic AMP formation (Table 5). The bradykinin B_2 receptor antagonist, D-Arg[Hyp³, Thi⁵, D-Tic⁷, Oic⁸]-BK (Hoe 140) completely blocked the bradykinin-induced reduction of the cyclic AMP level in forskolin and isoprenaline prestimulated cells. Hoe 140 concentration-dependently blocked the inhibitory response of bradykinin (1 μ M) on isoprenaline-stimulated cyclic AMP accumulation (IC₅₀ value: 34.0 ± 1.5 nM, Figure 7). The bradykinin B₂ receptor antagonist, D-Arg[Hyp³, Thi^{5,8}, D-Phe⁷]-BK, likewise abolished the effect of bradykinin on the isoprenaline-induced cyclic AMP level (Table 5).

The bradykinin $(1 \ \mu\text{M})$ -induced rise in $[\text{Ca}^{2+}]_i$ was completely abolished by Hoe 140 $(1 \ \mu\text{M})$ and for 93% by D-Arg-[Hyp³, Thi^{5,8}, D-Phe⁷]-BK (10 μM) (Table 1). Exposure of cells to desArg⁹-bradykinin (0.3 μM) did not affect $[\text{Ca}^{2+}]_i$ (increase $[\text{Ca}^{2+}]_i$: 1.3 ± 1.1 nM, n=4).

Discussion

This study shows that bradykinin caused a transient or sustained reduction in prestimulated cellular cyclic AMP levels in

Figure 5 The effect of inhibition of Ca^{2+} entry on the bradykinininduced increase in $[Ca^{2+}]_i$. (a) The bradykinin $(1 \mu M)$ -induced rise in $[Ca^{2+}]_i$ in Ca^{2+} containing buffer. (b) LaCl₃ (50 μM) added 2 min in advance reduced the bradykinin-evoked maximal increase in $[Ca^{2+}]_i$ and completely inhibited the slowly declining phase of $[Ca^{2+}]_i$ representing Ca^{2+} entry. Each tracing is representative of at least 4 experiments.

DDT₁ MF-2 smooth muscle cells. A transient decline in the cyclic AMP level was observed after stimulation of the catalytic subunit of adenylyl cyclase with forskolin. After stimulation of β -adrenoceptors with isoprenaline, the bradykinin-induced reduction in the cyclic AMP level was pronounced and sustained in nature. These different characteristics of the response to bradykinin cannot be explained by a difference in the cyclic AMP level elicited by forskolin and isoprenaline, since the bradykinin-induced reduction in the cyclic AMP level was also pronounced and sustained in cells pretreated with a low concentration of isoprenaline.

Bradykinin activates phospholipase C, resulting in formation of $Ins(1,4,5)P_3$, mobilization of Ca^{2+} from internal stores and Ca^{2+} entry across the plasma membrane (Gerwins & Fredholm, 1992; Dickenson & Hill, 1992; this paper). We showed that an increase in $[Ca^{2+}]_i$ evoked by ionomycin mimicked the effects of bradykinin on the forskolin- and isoprenaline-induced cyclic AMP level. These observations demonstrate, that an increase in intracellular Ca^{2+} is probably involved in the bradykinin-induced reduction of cellular cyclic AMP in DDT₁ MF-2 cells. Since the bradykinin-induced increase in $[Ca^{2+}]_i$ is not changed by either forskolin or isoprenaline, the differential effect of bradykinin on cyclic AMP cannot be explained by discrete regulation of bradykinin-induced Ca^{2+} metabolism. Bradykinin and P_{2U} purinoceptormediated transient inhibition of prostaglandin E_1 -induced cyclic AMP formation in NCB-20 hybrid neuronal cells has been reported previously (Garritsen *et al.*, 1992a,b). Likewise,

Table 2 Ca^{2+} entry and the bradykinin induced reduction in cellular cyclic AMP

Treatment	Cyclic A (pmol/10 ⁶ Isoprenaline	MP ⁵ cells) Forskolin
None	64.9 ± 1.0	9.3 ± 0.5
Bradykinin (2 min)	42.7±0.9**	7.2±0.3*
Bradykinin (5 min)	41.2 ± 1.2**	
LaCl ₃	66.2 ± 1.8	9.1 ± 0.6
LaCl ₃ , bradykinin (2 min)	46.4±0.7**	7.2±0.4*
LaCl ₃ , bradykinin (5 min)	46.3±1.0**	

Inhibition of Ca²⁺-entry by pre-exposure of cells to LaCl₃ (50 μ M, 2 min) did not affect the bradykinin (1 μ M)-induced reduction in the forskolin (1 μ M, 10 min) or isoprenaline (1 μ M, 10 min)-stimulated cyclic AMP level. *Different from values obtained in the absence of bradykinin P < 0.05; **P < 0.01. Data are expressed as mean ± s.e.mean of 6 experiments.

 Table 3
 Protein kinase C and the bradykinin induced reduction in the cyclic AMP level

	Cyclic AMP (pmol/10 ⁶ cells)	
Treatment	Isoprenaline	Forskolin
None	64.4 ± 2.5	9.3 ± 0.5
Bradykinin (2 min)	44.9 ± 2.6**	$7.2 \pm 0.3^*$
Bradykinin (5 min)	43.3±0.7**	
Staurosporine	68.7 ± 2.0	9.6 ± 0.9
Staurosporine, bradykinin (2 min)	46.1±0.9**	7.5±0.4*
Staurosporine, bradykinin (5 min)	48.4±1.3**	

The bradykinin (1 μ M)-evoked decline in the forskolin (1 μ M, 10 min) and isoprenaline (1 μ M, 10 min)-stimulated cyclic AMP level was not affected by pretreatment of cells with staurosporine (0.5 μ M, 5 min). *Different from values obtained in the absence of bradykinin P < 0.05, **P < 0.01. Data are expressed as mean ± s.e.mean of 6 experiments.

 Table 4
 Calmodulin and the bradykinin induced reduction in the cyclic AMP level

	Cyclic AMP (pmol/10 ⁶ cells)	
Treatment	Isoprenaline	Forskolin
None	63.7 ± 1.8	9.1 ± 0.4
Bradykinin (2 min)	36.0±1.6**	6.5±1.7*
Bradykinin (5 min)	41.0±1.4**	
Calmidazolium	62.0 ± 1.6	9.0 ± 0.3
Calmidazolium, bradykinin (2 min)	41.1 ± 1.9**	6.6±0.4*
Calmidazolium, bradykinin (5 min)	40.9±1.1**	

Pretreatment of cells with the calmodulin antagonist, calmidazolium (10 μ M, 10 min), did not influence the bradykinin (1 μ M)-evoked decline in the forskolin (1 μ M, 10 min) or isoprenaline (1 μ M, 10 min)-stimulated cyclic AMP level. *Different from values obtained in the absence of bradykinin P < 0.05, **P < 0.01. Data are expressed as mean ± s.e.mean of 4 experiments.

sustained inhibition of agonist-induced cyclic AMP elevation caused by stimulation of endogenous bradykinin receptors and stably transfected substance K receptors was observed in C6-2B rat glioma cells (Debernardi *et al.*, 1991). Release of Ca^{2+} from internal stores was supposed to be responsible for the

Figure 6 Bradykinin enhanced the rate of cyclic AMP breakdown. DDT₁ MF-2 cells were pretreated with isoprenaline $(1 \,\mu M, 10 \,\text{min})$ and after removal of isoprenaline, cyclic AMP was measured. Control (\bigcirc); in the presence of isobutyl methylxanthine (\bigtriangledown , IBMX, 200 μ M); bradykinin (\blacklozenge , 1 μ M); or IBMX and bradykinin (\blacktriangledown). *Different from cyclic AMP level in the presence of bradykinin, P < 0.05; **P < 0.01. Data are expressed as mean ± s.e.mean of 5 experiments.

Table 5 The effect of bradykinin receptor agonists and antagonists on cellular cyclic AMP in DDT_1 MF-2 cells

	Cyclic AMP (pmol/10 ⁶ cells)	
Treatment	Isoprenaline	Forskolin
None	64.5 ± 2.0	8.7 ± 0.2
Bradykinin	$40.9 \pm 0.4 **$	7.1±0.3*
desArg ⁹ -bradykinin (0.3 µм)	69.6 ± 1.7	
Hoe 140	65.0 ± 1.8	8.8 ± 0.2
Hoe 140 + bradykinin	69.1 ± 1.1	8.3 ± 0.3
Hoe 140 + bradykinin (5 min)	61.1 ± 1.7	
D-Arg[Hyp ³ , Thi ^{5,8} , D-Phe ⁷]-BK	62.1 ± 4.0	
D-Arg[Hyp ³ , Thi ^{5,8} , D-Phe ⁷]-BK	63.0 ± 1.5	
+ bradykinin		

Bradykinin (1 μ M, 2 min, unless otherwise stated) was used to decrease the prestimulated cyclic AMP level. Enhanced cyclic AMP levels were obtained by pretreatment of cells with isoprenaline (1 μ M, 10 min) or forskolin (1 μ M, 10 min). Concentrations used of Hoe 140 (D-Arg[Hyp³, Thi^{5,8}, D-Tic⁷, Oic⁸]-BK) and D-Arg[Hyp³, Thi^{5,8}, D-Phe⁷]-BK were 1 μ M and 10, respectively. *Different from values obtained in the absence of bradykinin P < 0.05; **P < 0.01. Data are expressed as mean ± s.e.mean of at least 4 experiments.

inhibitory action on adenylyl cyclase under these conditions. The bradykinin-evoked slowly declining phase of the Ca²⁺ response is caused by Ca²⁺ entry from the extracellular environment in DDT₁ MF-2 cells. Our results showed that inhibition of Ca²⁺ entry by LaCl₃ did not affect the bradykinininduced decline in the cyclic AMP level. Therefore, Ca²⁺ entry does not play a substantial role in the effect of bradykinin on cyclic AMP formation. Thus, the bradykinin-induced response is solely mediated by Ca²⁺ release from internal compartments. In contrast, it was reported that inhibition of the fors-kolin, dopamine and 5'-N-ethyl-carboxamidoadenosine-in-

Figure 7 Inhibition of bradykinin-induced reduction of the cyclic AMP level by Hoe 140. The B₂ receptor antagonist, Hoe 140 (D-Arg[Hyp³, Thi⁵, D-Tic⁷, Oic⁸]-BK), added to the cells 2min in advance, concentration-dependently inhibited the bradykinin (1 μ M, 2min)-induced reduction of the cyclic AMP level in isoprenaline (1 μ M, 10min) prestimulated cells. The control levels of isoprenaline enhanced cyclic AMP and of isoprenaline given together with Hoe 140 (1 μ M, 2min) were 64.5±2.8 and 68.9±1.9 pmol/10⁶ cells, respectively. *Different from values obtained in the absence of Hoe 140, P < 0.05; **P < 0.01. Each point represents the mean±s.e.mean of 4 experiments.

duced cyclic AMP level by bradykinin as observed in D384human astrocytoma cells was dependent on Ca^{2+} entry (Balmforth *et al.*, 1992; Altiok & Fredholm, 1993).

Reduction in cyclic AMP levels by the activation of protein kinase C was reported previously (Fleming *et al.*, 1992; Bascands *et al.*, 1993). Recently, Assender *et al.* (1994), reported the presence of 3 protein kinase C isoenzymes, among which was the Ca²⁺-dependent α -isoform, in DDT₁ MF-2 cells. The bradykinin-induced response in DDT₁ MF-2 cells was not affected by the protein kinase C inhibitor, staurosporine, a feature also observed after stimulation of P_{2U} purinoceptors in DDT₁ MF-2 cells (Sipma *et al.*, 1994). Moreover, it was shown that the protein kinase C activator, phorbol 12-myristate 13-acetate, did not inhibit cyclic AMP formation (Sipma *et al.*, 1994). Thus, protein kinase C does not play a role in the regulation of bradykinin-evoked cyclic AMP metabolism in DDT₁ MF-2 cells.

The calmodulin inhibitor, calmidazolium, did not affect the bradykinin-induced reduction in the forskolin and isoprenaline-enhanced cyclic AMP level, which showed that calmodulin-dependent enzymes, like protein kinases and phosphodiesterases were not involved in the response. Moreover, it has been shown that Ca^{2+} ions directly inhibited adenvlyl cyclase activity in a biphasic and cooperative manner in membrane preparations of D384-human astrocytoma cells (Altiok & Fredholm, 1993), NCB-20 hybrid neuroblastoma cells (Boyanjian et al., 1991), platelets and GH₃ pituitary derived cells (Caldwell et al., 1992) and of cardiac cells (Colvin et al., 1991). These observations strongly suggest that Ca^{2+} ions exert a direct effect on the mechanism leading to adenylyl cyclase stimulation in DDT₁ MF-2 cells.

Besides the Ca²⁺-dependent mechanism of cyclic AMP reduction, bradykinin was found to enhance the rate of cyclic AMP breakdown in a protocol where *de novo* synthesis of cyclic AMP was prevented. Activation of the phosphodiesterase activity by bradykinin was not dependent on Ca²⁺ since ionomycin did not mimic the effect of bradykinin. Increased phosphodiesterase activity was found after stimulation of muscarinic receptors in 1321N1 human astrocytoma cells (Tanner *et al.*, 1986) and in the pregnant-rat myometrium (Goureau *et al.*, 1990). However, these activations appeared to be secondary to the simultaneous increase in $[Ca^{2+}]_{i}$.

The bradykinin-induced reduction in cyclic AMP levels was not inhibited by PTX, which demonstrated that an inhibitory G-protein was not involved. In contrast, stimulation of P_{2U} purinoceptors in DDT₁ MF-2 cells (Sipma *et al.*, 1994) and stimulation of P_2 purinoceptors in rat hepatocytes (Okajima *et al.*, 1987) caused inhibition of adenylyl cyclase via a G_i protein. Remarkably, PTX decreased the isoprenaline-induced formation of cyclic AMP. How PTX induced this effect remains to be established.

Three mechanisms of cyclic AMP reduction have been identified in DDT₁ MF-2 cells. Stimulation of P_{2U} purinoceptors leads to activation of a G1 protein and effects a pronounced reduction in cyclic AMP levels. This response is sustained in nature in both forskolin and isoprenaline pretreated cells (Sipma et al., 1994). Two other processes thought to decrease cellular cyclic AMP are described in this paper and concern bradykinin-induced activation of a cyclic AMP phosphodiesterase in a Ca²⁺/calmodulin-independent manner and a Ca²⁺-dependent mechanism. The obtained transient reduction in the forskolin-elevated cyclic AMP level implies that both the activation of the phosphodiesterase and the Ca²⁺-dependent inhibition of adenylyl cyclase catalytic activity are short-lived. Since a sustained inhibition of the cyclic AMP level was observed in isoprenaline pretreated cells, this effect was most likely mediated by Ca²⁺ acting at the level of the β -adrenoceptor and/or the stimulatory G-protein. The results obtained with LaCl₃ showed that a transient increase in [Ca²⁺]_i apparently can induce events leading to a sustained inhibition of adenylyl cyclase as suggested previously by De-Bernardi et al. (1991). Histamine H₁ receptors were also reported to mediate a modest transient reduction in cyclic AMP in DDT₁ MF-2 cells. This effect was most probably due to a

References

- ALTIOK, N. & FREDHOLM, B.B. (1993). Bradykinin inhibits cyclic AMP accumulation in D384-human astrocytoma cells via calcium-dependent inhibition of adenylyl cyclase. Cell. Signal., 5, 279-288.
- ASSENDER, J.W., KONTY, E. & FREDHOLM, B.B. (1994). Expression of protein kinase C isoforms in smooth muscle cells in various states of differentiation. FEBS Lett., 342, 76-80.
- BASCANDS, J.L., PECHER, C. & GIROLAMI, J.P. (1993). Indirect inhibition by bradykinin of cyclic AMP generation in isolated rat glomeruli and mesangial cells. *Mol. Pharmacol.*, 44, 818-826.
- BALMFORTH, A.J., PARKINSON, F.E., ALTIOK, N. & FREDHOLM, B.B. (1992). Identification of a B₂-bradykinin receptor linked to phospholipase C and inhibition of dopamine stimulated cyclic AMP accumulation in the human astrocytoma cell line D384. Naunyn-Schmied. Arch. Pharmacol., 346, 303-310.
- BOYANJIAN, C.L., GARRITSEN, A. & COOPER, D.M.F. (1991).
 Bradykinin stimulates [Ca²⁺]-mobilization in NCB-20 cells leading to direct inhibition of adenylyl cyclase; a novel mechanism for inhibition of cAMP production. J. Biol. Chem., 166, 4995-5003.
- BROWN, B.L., ALBANO, J.D.M., EKINS, R.P., SGHERZI, A.M. & TAMPION, W. (1971). A single and sensitive saturation assay method for the measurement of adenosine-3',5'-cyclic monophosphate. *Biochem. J.*, 121, 561-562.
- monophosphate. Biochem. J., 121, 561-562. CALDWELL, K.K., BOYAJIAN, C.L. & COOPER, D.M.F. (1992). The effects of Ca²⁺ and calmodulin on adenylyl cyclase activity in plasma membranes derived from neural and non-neural cells. Cell Calcium., 13, 107-121.
- COLVIN, R.A., OIBO, J.A. & ALLEN, R.A. (1991). Calcium inhibition of cardiac adenylyl cyclase. Evidence for two distinct sites of inhibition. *Cell Calcium.*, **12**, 19-27.
- DEBERNARDI, M.A., TAKASHI, S. & BROOKER, G. (1991). Inhibition of cAMP accumulation by intracellular calcium mobilization in C6-2B cells stably transfected with substance K receptor cDNA. *Proc. Natl. Acad. Sci. U.S.A.*, **88**, 9257–9261.

histamine-induced increase in $[Ca^{2+}]_i$ (Sipma *et al.*, 1994). Pretreatment of DDT₁ MF-2 cells with cyclic AMP-enhancing agents reduced the histamine H₁ receptor-mediated formation of inositol phosphates and the release of Ca²⁺ from internal stores (Dickenson *et al.*, 1993; Sipma *et al.*, 1995) but not the rise in $[Ca^{2+}]_i$ induced by bradykinin. This may explain that bradykinin is more effective in reducing cellular cyclic AMP than histamine.

The effect of bradykinin on the cellular cyclic AMP level and the increase in [Ca²⁺], was abolished in the presence of the bradykinin B₂ receptor antagonists, Hoe 140 and D-Arg[Hyp³, Thi^{5,8}, D-Phe⁷]-BK in DDT₁ MF-2 cells. It was reported that D-Arg[Hyp³, Thi^{5,8}, D-Phe⁷]-BK antagonized bradykinin B₂ receptor-mediated total inositol phosphate formation in canine tracheal smooth muscle cells (Yang et al., 1994) and Ins(1,4,5)P₃ formation in guinea-pig cultured tracheal smooth muscle (Pyne & Pyne, 1993). Hoe 140 has been identified as a highly potent B₂ receptor antagonist (Lembeck et al., 1991), with IC₅₀ values from 0.1 nm-40 nm for several contractile responses. The IC₅₀ value (34 nM) found by us for reduction of the cyclic AMP level is in the same range. It is proposed that bradykinin B₃ receptors are insensitive to bradykinin B₂ receptor antagonists (Pyne & Pyne, 1993; 1994). Thus, since both the Ca²⁺-dependent and Ca²⁺-independent mechanism resulting in the bradykinin-induced decline in the cyclic AMP level as well as activation of the phospholipase C pathway were blocked by bradykinin B₂ receptor antagonists and not elicited by a bradykinin B₁ receptor agonist, desArg⁹-bradykinin, the responses described are mediated by bradykinin B₂ receptors.

In summary, bradykinin B_2 receptors mediate a reduction in the prestimulated cyclic AMP level in DDT₁ MF-2 cells. Besides activation of a Ca²⁺/calmodulin-independent phosphodiesterase, the effect of bradykinin on cyclic AMP was mediated by Ca²⁺ acting on different components of the adenylyl cyclase signal transduction pathway.

- DEN HERTOG, A. (1981). Calcium and the α -action of catecholamines on guinea-pig taenia caeci. J. Physiol., 316, 109–125.
- DICKENSON, J.M. & HILL, S.J. (1992). Histamine H₁-receptormediated calcium influx in DDT₁ MF-2 cells. *Biochem. J.*, 284, 425-431.
- DICKENSON, J.M., WHITE, T. & HILL, S.J. (1993). The effects of elevated cyclic AMP levels on histamine H₁-receptor-stimulated inositol phospholipid hydrolysis and calcium mobilization in the smooth muscle cell line DDT₁ MF-2. *Biochem. J.*, **292**, 409-417.
- FLEMING, N., MELLOW, L. & BHULLAR, D. (1992). Regulation of the cAMP signal transduction pathway by protein kinase C in rat submandibular cells. *Eur. J. Physiol.*, 421, 82-89.
- GARRITSEN, A., ZHANG, Y. & COOPER, D.M.F. (1992a). Purinergic receptor regulation of signal transduction in NCB-20 cells. *Mol. Pharmacol.*, **41**, 743-749.
- GARRITSEN, A., ZHANG, Y., FIRESTONE, J.A., BROWNING, M.D. & COOPER, D.M.F. (1992b). Inhibition of cyclic AMP accumulation in intact NCB-20 cell as a direct result of elevation of cytosolic Ca²⁺. J. Neurochem., **59**, 1630–1639.
- GERWINS, P. & FREDHOLM, B.B. (1992). Stimulation of adenosine A₁ receptors and bradykinin receptors, which act via different G proteins, synergistically raises inositol 1,4,5-trisphosphate and intracellular free calcium in DDT₁ MF-2 smooth muscle cells. *Proc. Natl. Acad. Sci. U.S.A.*, 89, 7330-7334.
- GIETZEN, K. (1983). Comparison of the calmodulin antagonist compound 48/80 and calmidazolium. Biochem. J., 216, 611-616.
- GOUREAU, O., TANFIN, Z. & HARBON, S. (1990). Prostaglandins and muscarinic agonists induce cyclic AMP attenuation by two distinct mechanisms in the pregnant-rat myometrium. *Biochem.* J., 271, 667-673.
- HALL, J.M. (1992). Bradykinin receptors: pharmacological properties and biological roles. *Pharmacol. Ther.*, 56, 131-190.

- HESKETH, T.R., SMITH, G.A., MOORE, J.P., TAYLOR, M.V. & METCALFE, J.C. (1983). Free cytoplasmic calcium concentration and mitogenic stimulation of lymphocytes. J. Biol. Chem., 258, 4876-4882.
- HOITING, B., MOLLEMAN, A., DUIN, M., DEN HERTOG, A. & NELEMANS, A. (1990). The P₂-purinoceptor mediated inositol phosphate formation in relation to cytoplasmic calcium in DDT₁ MF-2 smooth muscle cells. *Eur. J. Pharmacol.*, **189**, 31–39.
- LEMBECK, F., GRIESBACHER, T., ECKHARDT, M., HENKE, S., BREIPOHL, G. & KNOLLE, J. (1991). New, long-acting, potent bradykinin antagonists. Br. J. Pharmacol., 102, 297-304.
- MOLLEMAN, A., NELEMANS, A. & DEN HERTOG, A. (1989). P₂ purinoceptor-mediated membrane currents in DDT₁ MF-2 smooth muscle cells. *Eur. J. Pharmacol.*, **169**, 167–174.
- NORRIS, J.S., GORSKI, J. & KOHLER, P.O. (1974). Androgen receptors in a syrian hamster ductus deferens tumour cell line. *Nature*, 248, 422-424.
- OKAJIMA, F., TOKUMITSU, Y., KONDO, Y. & UI, M. (1987). P₂ purinergic receptors are coupled to two signal transduction systems leading to inhibition of cAMP generation and to production of inositol trisphosphate in rat hepatocytes. J. Biol. Chem., 262, 13483-13490.
- PYNE, S. & PYNE, N.J. (1993). Differential effects of B₂ receptor antagonists upon bradykinin-stimulated phospholipase C and D in guinea-pig cultured tracheal smooth muscle. Br. J. Pharmacol., 110, 477-481.

- PYNE, S. & PYNE, N.J. (1994). Bradykinin-stimulated phosphatidate and 1,2-diacylgylcerol accumulation in guinea-pig airway smooth muscle: evidence for regulation 'down-stream' of phospholipases. Cell. Signal., 6, 269-277.
- SIPMA, H., DEN HERTOG, A. & NELEMANS, A. (1994). The phospholipase C activating P_{2U} purinoceptor also inhibits cAMP formation in DDT₁ MF-2 cells. *Eur. J. Pharmacol.*, 268, 431– 437.
- SIPMA, H., DUIN, M., HOITING, B., DEN HERTOG, A. & NELEMANS, A. (1995). Regulation of histamine and UTP induced increases in Ins(1,4,5)P₃, Ins(1,3,4,5)P₄ and Ca²⁺ by cAMP in DDT₁ MF-2 cells. Br. J. Pharmacol., 114, 383-390.
- STEVENS, P.A., PYNE, S., GRADY, M. & PYNE, N.J. (1994). Bradykinin-dependent activation of adenylate cyclase activity and cyclic AMP accumulation in tracheal smooth muscle occurs via protein kinase C-dependent and -independent pathways. *Biochem. J.*, 297, 233-239.
- TANNER, L.I., HARDEN, T.K., WELLS, J.N. & MARTIN, M.W. (1986). Identification of the phosphodiesterase regulated by muscarinic cholinergic receptors of 1321N1 human astrocytoma cells. *Mol. Pharmacol.*, 29, 455-460.
- YANG, C.M., HSIA, H.C., CHOU, S.P., ONG, R., HSIEH, J.T. & LUO, S.F. (1994). Bradykinin-stimulated phosphoinositide metabolism in cultured canine tracheal smooth muscle cells. Br. J. Pharmacol., 111, 21-28.

(Received November 7, 1994 Revised March 1, 1995 Accepted April 3, 1995)