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5-Hydroxytryptamine-mediated effects of nicotine on
endogenous GABA efflux from guinea-pig cortical slices
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1 The effect of nicotine on endogenous basal GABA outflow was studied in guinea-pig

cerebral cortex slices.

2 Nicotine 1.86—18.6 umol 1! significantly decreased the basal, tetrodotoxin-sensitive GABA efflux,
whereas at higher concentrations (186—620 umol 1-') nicotine increased it. The inhibition was prevented
by mecamylamine while the facilitation was blocked by mecamylamine, (+)-tubocurarine and tetrodotoxin.
3 The effect of nicotine was due to an indirect 5-hydroxytryptaminergic action. In fact, MDL 72222
(1 pmol 1-') completely prevented the alkaloid inhibition and methysergide (1 pmol 1-') reversed the
facilitation into inhibition; concomitant treatment with methysergide and MDL 72222 antagonized the
effect of nicotine at 186 pumol 1-!

4 Lower concentrations of 5-HT (3—10 umol 1-') decreased, whereas higher concentrations (30—
100 pmol 1-') increased, spontaneous GABA outflow. The inhibition of GABA efflux was prevented by
MDL 72222 whereas the facilitation was reversed by methysergide (1 pmol 1-') into inhibition, and
prevented by MDL 72222 1 pmol 1-".

5 These results suggest that, by activating nicotinic receptors present on 5-hydroxytryptaminergic
terminals, nicotine releases 5-HT which, in turn, inhibits or increases the secretory activity of cortical

GABA interneurones via 5-HT; and methysergide-sensitive receptors, respectively.
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Introduction

It is well known that nicotine improves alertness, attention and
memory function. These effects are most likely due to its in-
teraction with specific brain receptors, which increase the firing
rate and secretion of many neurones (Balfour, 1982). Nicotine
increases 5-hydroxytryptamine (5-HT) and dopamine release
(Westfall et al., 1983; Imperato et al., 1986; Balfour, 1989;
Carboni et al., 1989; Riberio et al., 1993; Nisell et al., 1994) as
well as acetylcholine release (Beani et al., 1985; Nordberg et
al., 1989) both in vivo and in vitro preparations. Moreover, the
drug increases excitatory amino acid outflow in vivo (Garza De
La et al., 1989; Beani et al., 1991; Toth et al., 1993) and in vitro
(Perez de la Mora et al., 1991). As regards GABA release,
different responses have been reported depending on the brain
area. Nicotine appears to increase amino acid efflux in un-
stimulated substantia nigra and globus pallidus slices. This
effect is partly mediated by dopamine (Kayadjanian et al.,
1994). Conversely, the drug decreases GABA release in the
cerebral cortex through 5-hydroxytryptaminergic and en-
kephalinergic neurones (Beani et al., 1991).

With the aim of further analysis of the 5-hydro-
xytryptaminergic mechanism(s) through which nicotine affects
GABA cells, an in vitro study was performed on GABA efflux
in guinea-pig cerebral cortex slices, a relatively simple model
containing spontaneously firing GABA interneurones (Beani
et al., 1986; Ferraro et al., 1993). A preliminary account of this
investigation has been published (Beani et al., 1995).

Method

Guinea-pigs of either sex (average weight of 350-400g) were
kept under standard conditions (12 h dark/12 h light cycle,
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free access to food and water). The animals were decapitated
under light anaesthesia, the fronto-parietal cortices were ra-
pidly excised, transferred into an oxygenated Krebs solution at
room temperature and sliced (400 um thick slices) with a vi-
bratome-like apparatus (Beani et al., 1978). After 30 min to
allow re-equilibration of the tissue, sets of 2—3 slices (average
wet weight 50—60 mg each) were separately transferred into
four 0.9 ml chambers and perfused at 0.5 ml min* at 37°C
with Krebs solution (composition in mM: NaCl 118.5, KC1 4.8,
Ca(Cl, 2.5, MgSO, 1.2, NaHCO, 25, KH,PO, 1.2, glucose 11)
bubbled with 95% O, and 5% CO,. After 20 min, 6—7 samples
were collected every 5 min from each chamber: 3 prior to and
3-4 after drug treatment. When used, antagonists were added
to the Krebs solution at the start of superfusion. The GABA
content of the samples was measured by mass-fragmento-
graphic analysis with a Finningan 4510 mass spectrometer
(Bertilsson & Costa, 1976).

Statistical analysis

Statistical differences were checked by ANOVA analysis fol-
lowed by Newman -Keuls multiple range test as specified in the
figure legends.

Drugs

Freshly prepared solution of the following drugs were used: (-)-
nicotine bitartrate, 5-hydroxytryptamine creatine sulphate,
mecamylamine hydrochloride, methysergide maleate, (+)-tu-
bocurarine chloride (Sigma Chemical Co., St. Louis, MO,
U.S.A)), naloxone (Salars, Italy), 1aH, 3a, 5aH - tropan - 3yl -
3,5- dichlorobenzoate (MDL 72222, Merrel Dow, France),
prazosin hydrochloride (Pfizer, New York, NY), ketanserin,
(Janssen, Belgium). Tetrodotoxin (RBI, MA, U.S.A.).
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Results

Spontaneous GABA efflux

The basal efflux of GABA from guinea-pig cerebral cortex
slices remained steady for more than 30 min and was
255412.8 pmol g~! min~! (mean+s.e.mean of 100 determi-
nations). If the slices were perfused with a medium containing
Ca?* 0.1 mmol 1-!, or tetrodotoxin (TTX) 0.5 umol 1-, the
GABA efflux was significantly reduced (after 30 min) to
54+6% and to 53+3% respectively (means+s.e.mean, 6
expts., P<0.05). Thus, about one half of the spontaneous
GABA efflux was Ca?*-and Na*-dependent and appeared to
be linked to the neuronal activity, as previously reported
(Beani et al., 1986; Ferraro et al., 1993).

Effect of nicotine on GABA efflux

Nicotine 1.86—620 umol 1-! was added to the superfusion
medium after three collection periods and was maintained until
the end of the experiment. As shown in Figure la, at low
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Figure 1 Effect of nicotine (at arrow) on endogenous GABA efflux
from guinea-pig cerebral cortex slices. (a) Controls (Q); nicotine
pmol 17': 1.86 (A); 6.2 (©); 18.6 (00); 62(@); 186 (A); 620 (W). (b)
Relationships between nicotine concentrations (maximal effect) and
GABA efflux. Data represent the percentage changes+s.e.mean with
respect to pretreatment value (at least 5—8 expts.). Average efflux of
endogenous GABA before treatment was 276+22 pmol min~! g~!.
The s.e.mean in (a) were less than 10%. Significantly different from
pretreatment value according to ANOVA followed by Newman-
Keuls multiple range test: * P<0.05; ** P<0.01.

concentrations (1.86—18.6 umol 1-') nicotine consistently de-
creased GABA efflux, whereas at higher concentrations (186—
620 pmol 1-!) nicotine transiently increased it to 30—35% but
only in the first 5—10 min (Figure 1a). This suggests that high
doses showed a ceiling effect and caused rapid desensitization.
At 62 umol 1-' the drug was apparently ineffective. Thus, the
alkaloid displayed a concentration-dependent, biphasic action
quite evident when the maximal inhibitory and facilitatory
effects were considered (Figure 1b).

Effects of nicotine antagonists on GABA efflux.

None of the antagonists tested modified spontaneous GABA
efflux, thus ruling out any endogenous nicotinic tonic control
in the slices kept at rest. However, the decrease in GABA
outflow induced by low nicotine concentrations was com-
pletely prevented by mecamylamine 2.5 umol 1-!, but not by
(+)-tubocurarine up to 4.5 pmol 1-! (Figure 2a), while the
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Figure 2 Effect of nicotine antagonists on the inhibitory (a) and
facilitatory (b) effect of nicotine (at arrow) on the endogenous GABA
efflux from guinea-pig cerebral cortex slices. (a) Controls (O);
nicotine 18.6 ymol 17! (A); nicotine plus mecamylamine
2.5umol 17! (A); nicotine plus (+)-tubocurarine 4.5 pmol 17!
(@). (b) Controls (O); nicotine 186 pmol 1! (¢); nicotine plus
mecamylamine 2.5 pmol 17'(A); nicotine plus (+)-tubocurarine
4.5 ymol 17! (@). Data represent the percent changes +s.c.mean
with respect to pretreatment value (at least 8 experiments). Average
efflux of endogenous GABA before treatment was 270+ 10 pmol -
min~! g7!. Significantly different from nicotine alone according to
ANOVA followed by Newman-Keuls multiple range test: *P <0.05,
**P<0.01.
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increase in GABA efflux induced by high nicotine concentra-
tions was antagonized both by mecamylamine 2.5 umol 1-!
and by (+)-tubocurarine 4.5 pmol 1-!. It is worth noting that
nicotine 186 umol 1-!, in the presence of (+ )-tubocurarine,
showed an inhibitory effect near to the limit of significance
(P=0.05, Figure 2b), and less than that evoked by low alkaloid
concentrations in normal slices. Again, rapid desensitization to
high doses appeared to come into play. Interestingly, TTX
0.5 pmol 1-! completely abolished the effect of nicotine
186 pumol 1-! (nicotine 186 umol 1-', 134% =+ 7; nicotine plus
TTX, 99% = 3; mean +s.e.mean of 6 expts., P< 0.05).

Involvement of other transmitters in the nicotine effect

To check for the possible involvement of other neuro-
transmitters in the nicotine modulation of GABA release, the
slices were pretreated with various antagonists which have
been found to be, per se, without effect on spontaneous GABA
efflux.

Nicotine inhibition was unaffected by naloxone
0.3 umol 1-!, idazoxan 0.1 umol 1" and phaclofen 10 pymol 1
(data not shown, n=35 for each drug). Figure 3a shows that
methysergide 1 umol 1-! and ketanserin 0.1 pmol 1-! also did
not change the inhibition induced by nicotine 18.6 pmol 11,
while MDL 72222 1 pmol 1-! completely prevented it. This 5-
HT; antagonist at 1 pmol 1! also prevented the inhibition of
GABA efflux induced by nicotine 186 umol 1-! in the presence
of (+)-tubocurarine 4.5 pmol 1-! (data not shown, n=4).

On the other hand, the facilitation of GABA outflow in-
duced by higher alkaloid concentrations (i.e. 186 pmol 1-),
was unmodified by prazosin (Figure 3b) and by MDL 72222
1 pmol 1-! (n=3). However, it was reversed into inhibition by
methysergide 1 pmol 1-! and completely prevented by si-
multaneous pretreatment with methysergide and MDL 72222

1 umol 1-! (Figure 3b).
Effect of 5-HT on spontaneous GABA efflux

Since the above findings proved that endogenous 5-HT is in-
volved in the nicotine effects, exogenously applied 5-HT was
checked for its ability to modulate GABA efflux. In the 3—
100 pmol 1! range, 5-HT caused inhibition or facilitation of
GABA efflux, depending on the concentrations tested. At 3—
10 umol 1-' the amine steadily decreased, whereas at 30—
100 umol 1-! it transiently increased GABA efflux as nicotine
did (Figure 4a). To ascertain what subtypes of 5-HT receptors
were involved, the experiments were repeated with S-HT re-
ceptor antagonists. MDL 72222 completely antagonized the
effect of low (3—10 umol 1-') amine concentrations, whereas
methysergide reversed into inhibition the increase in GABA
caused by 5-HT 100 pmol 1-'. MDL 72222 1 pmol 1-! plus
methysergide 1 umol 17! prevented any effect of high amine
concentrations (Figure 4b).

Discussion

The measure of GABA efflux from cortical slices at rest can be
considered a simple and convenient tool to study neuro-
transmitter or drug influences on the secretory activity of
GABA interneurones, isolated from any intra and subcortical
input. These inferences are based on: (i) the consistent [Ca?*]-
and TTX-sensitivity of the spontaneous efflux (see also Beani
et al., 1986; Ferraro et al., 1993) and (ii) the lack of a primary
eﬁ'ect of the receptor antagonists tested. Clearly the extra-
cellular concentrations of a variety of endogenous agonists in
the cortical slices are below the threshold required to modulate
tonically GABA release.

The present findings demonstrate for the first time that ni-
cotine influences in a complex fashion spontaneous GABA
efflux: decreasing it at low concentrations yet increasing at
higher ones (see Figure 1). Nicotine effects were already evi-
dent in the first S min of drug contact with the slices (Figure 1),

indicating that the rate of ligand penetration into the tissue
(Rice et al., 1985) and the rate of GABA efflux were compa-
tible with the time interval of sampling. The inhibition of
GABA efflux elicited by nicotine 6.2—18.6 pmol 1-' was long-
lasting and was prevented by mecamylamine. These findings
agree with recent observations showing that nicotine inhibits
GABA efflux from cerebral cortex of freely moving guinea-pigs
(Beani et al., 1991).

Conversely, the increase in GABA efflux displayed by ni-
cotine at higher concentrations (186—620 umol 1-*), known to
undergo desensitization, was short lasting and already max-
imal at 186 pmol 1-'. In addition it was prevented by TTX,
mecamylamine and (+) tubocurarine. Therefore nicotine ap-
peared to activate transiently the TTX-dependent neurosecre-
tory process of either GABA interneurones or their axons at
the preterminal level through nicotinic receptors of both
ganglionic and neuromuscular junction type (Lukas, 1989;
Lena et al., 1993). This excitatory action of nicotine confirms the
results obtained by Limberger et al. (1986) in rat caudatal slices.
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Figure 3 Effect of different antagonists on spontaneous GABA
efflux from guinea-pig cerebral oortex slices. (a) Controls (Q); at the
arrow: mcotme 18.6 ymol 17! (O); mcotme after: methysergide
1 pmol 17! (A); ketanserine 0.1 ymol 17! (J); MDL 72222
1 pmol 17! (®). (®) Controls (O); at the arrow: nicotine
186 pmol 1-! (Q); nicotine after: prazosin 1 pmol 17! (A);
methysergide 1 pmol 1~ 1(A); methysergide plus MDL 72222
1 ymol 1~! (@). Data represent the percentage changess.c.mean
with respect to pretreatment value (at least 5-8 experiments).
Average efflux of endogenous GABA before treatment was
271+ 15 pmol min~! g~!. Significantly different from nicotine alone
according to ANOVA followed by Newman-Keuls multiple range
test: *P<0.01.
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Figure 4 Effect of 5-HT antagonists on the inhibitory and
facilitatory effect of 5-HT (at arrow) on the spontaneous GABA
efflux from guinea-pig cerebral cortex slices. (a) Controls (Q); 5-HT
umol 171 3°(A); 10 (O0); 30 (V); 100 (O). (b) 5-HT 10 pmol 1”
alone ([J) and aftr MDL 72222 1pmol 17! (F); 5-HT
100 pmol 17! alone (¢), after methysergide 1 pmol 1-! (@) and
after methysergide plus MDL 72222 (A). Data represent the
percentage changes +s.e.mean with respect to pretreatment value
(at least 5-6 experiments). Average efflux of endogenous GABA
before treatment was 300+ 21 pmol 17!, Significantly different from
pretreatment value according to ANOVA followed by Newman-
Keuls multiple range test: *P<0.05; **P <0.01.

The experiments performed to ascertain whether nicotine
modified GABA spontaneous efflux directly or indirectly, fa-
vour an exclusively indirect S-hydroxytryptaminergic action
and demonstrate that GABA neurones can be controlled
through different 5-HT receptors which can evoke opposite
responses. This statement is further supported by the evidence
that exogenous 5-HT faithfully mimics nicotine effects. In
addition our results fit well with the histological studies of
Mamounas et al. (1992) showing that rat cortical GABA in-
terneurones are enveloped by a rich network of 5-HT term-
inals. Such arrangements can explain the preferential 5-
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