Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1996 Jun;118(4):984–988. doi: 10.1111/j.1476-5381.1996.tb15496.x

Inhibition by amphetamine of testosterone secretion through a mechanism involving an increase of cyclic AMP production in rat testes.

S C Tsai 1, Y C Chiao 1, C C Lu 1, M L Doong 1, Y H Chen 1, H C Shih 1, C Liaw 1, S W Wang 1, P S Wang 1
PMCID: PMC1909523  PMID: 8799572

Abstract

1. The effect of amphetamine on the secretion of testosterone and the production of testicular adenosine 3':5'-cyclic monophosphate (cyclic AMP) in rats was studied. 2. A single intravenous injection of amphetamine decreased the basal and human chorionic gonadotropin (hCG)-stimulated levels of plasma testosterone. Plasma LH levels were not altered by the injection of amphetamine. 3. Administration of amphetamine in vitro resulted in a dose-dependent inhibition of both basal and hCG-stimulated release of testosterone. 4. Amphetamine enhanced the basal and hCG-increased levels of cyclic AMP accumulation in vitro in rat testes. 5. These results suggest that amphetamine inhibits the spontaneous and hCG-stimulated secretion of testosterone from the testes through a mechanism involving an increase in cyclic AMP production.

Full text

PDF
986

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Avallet O., Vigier M., Perrard-Sapori M. H., Saez J. M. Transforming growth factor beta inhibits Leydig cell functions. Biochem Biophys Res Commun. 1987 Jul 31;146(2):575–581. doi: 10.1016/0006-291x(87)90567-5. [DOI] [PubMed] [Google Scholar]
  2. Barraclough C. A., Wise P. M. The role of catecholamines in the regulation of pituitary luteinizing hormone and follicle-stimulating hormone secretion. Endocr Rev. 1982 Winter;3(1):91–119. doi: 10.1210/edrv-3-1-91. [DOI] [PubMed] [Google Scholar]
  3. Beatty W. W., Dodge A. M., Traylor K. L. Stereotyped behavior elicited by amphetamine in the rat: influences of the testes. Pharmacol Biochem Behav. 1982 Apr;16(4):565–568. doi: 10.1016/0091-3057(82)90416-6. [DOI] [PubMed] [Google Scholar]
  4. Becker J. B., Ramirez V. D. Sex differences in the amphetamine stimulated release of catecholamines from rat striatal tissue in vitro. Brain Res. 1981 Jan 12;204(2):361–372. doi: 10.1016/0006-8993(81)90595-3. [DOI] [PubMed] [Google Scholar]
  5. Buffum J. Pharmacosexology update: prescription drugs and sexual function. J Psychoactive Drugs. 1986 Apr-Jun;18(2):97–106. doi: 10.1080/02791072.1986.10471390. [DOI] [PubMed] [Google Scholar]
  6. Cook S. J., McCormick F. Inhibition by cAMP of Ras-dependent activation of Raf. Science. 1993 Nov 12;262(5136):1069–1072. doi: 10.1126/science.7694367. [DOI] [PubMed] [Google Scholar]
  7. Dluzen D. E., Ramirez V. D. In vitro progesterone modulates amphetamine-stimulated dopamine release from the corpus striatum of castrated male rats treated with estrogen. Neuroendocrinology. 1990 Nov;52(5):517–520. doi: 10.1159/000125637. [DOI] [PubMed] [Google Scholar]
  8. Dluzen D. E., Ramirez V. D. In vitro progesterone modulation of amphetamine-stimulated dopamine release from the corpus striatum of ovariectomized estrogen-treated female rats: response characteristics. Brain Res. 1990 May 28;517(1-2):117–122. doi: 10.1016/0006-8993(90)91016-a. [DOI] [PubMed] [Google Scholar]
  9. Gallo A., Feliciello A., Varrone A., Cerillo R., Gottesman M. E., Avvedimento V. E. Ki-ras oncogene interferes with the expression of cyclic AMP-dependent promoters. Cell Growth Differ. 1995 Jan;6(1):91–95. [PubMed] [Google Scholar]
  10. Gonzalez C. B., Cantore M. L., Passeron S. Steroidogenesis in immature chicken ovary. Hormonal stimulation of adenylyl cyclase system by luteinizing hormone and beta-adrenergic agonists. Cell Biol Int. 1994 Feb;18(2):103–110. doi: 10.1006/cbir.1994.1049. [DOI] [PubMed] [Google Scholar]
  11. Hernandez L., Gonzalez L., Murzi E., Páez X., Gottberg E., Baptista T. Testosterone modulates mesolimbic dopaminergic activity in male rats. Neurosci Lett. 1994 Apr 25;171(1-2):172–174. doi: 10.1016/0304-3940(94)90632-7. [DOI] [PubMed] [Google Scholar]
  12. Hwang C., Pu H. F., Hwang C. Y., Liu J. Y., Yao H. C., Tung Y. F., Wang P. S. Age-related differences in the release of luteinizing hormone and gonadotropin-releasing hormone in ovariectomized rats. Neuroendocrinology. 1990 Aug;52(2):127–132. doi: 10.1159/000125562. [DOI] [PubMed] [Google Scholar]
  13. Häfner S., Adler H. S., Mischak H., Janosch P., Heidecker G., Wolfman A., Pippig S., Lohse M., Ueffing M., Kolch W. Mechanism of inhibition of Raf-1 by protein kinase A. Mol Cell Biol. 1994 Oct;14(10):6696–6703. doi: 10.1128/mcb.14.10.6696. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  15. Marx J. Two major signal pathways linked. Science. 1993 Nov 12;262(5136):988–990. doi: 10.1126/science.8257559. [DOI] [PubMed] [Google Scholar]
  16. Mayerhofer A., Steger R. W., Gow G., Bartke A. Catecholamines stimulate testicular testosterone release of the immature golden hamster via interaction with alpha- and beta-adrenergic receptors. Acta Endocrinol (Copenh) 1992 Dec;127(6):526–530. doi: 10.1530/acta.0.1270526. [DOI] [PubMed] [Google Scholar]
  17. Mori H., Arakawa S., Ohkawa T., Ohkawa R., Takada S., Morita T., Okinaga S. The involvement of dopamine in the regulation of steroidogenesis in rat ovarian cells. Horm Res. 1994;41 (Suppl 1):36–40. doi: 10.1159/000183941. [DOI] [PubMed] [Google Scholar]
  18. Nakhla A. M., Bardin C. W., Salomon Y., Mather J. P., Jänne O. A. The actions of calcitonin on the TM3 Leydig cell line and on rat Leydig cell-enriched cultures. J Androl. 1989 Jul-Aug;10(4):311–320. doi: 10.1002/j.1939-4640.1989.tb00110.x. [DOI] [PubMed] [Google Scholar]
  19. Padrón R. S., Wischusen J., Hudson B., Burger H. G., de Kretser D. M. Prolonged biphasic response of plasma testosterone to single intramuscular injections of human chorionic gonadotropin. J Clin Endocrinol Metab. 1980 Jun;50(6):1100–1104. doi: 10.1210/jcem-50-6-1100. [DOI] [PubMed] [Google Scholar]
  20. Petersson F., Andersson R. G., A:son Berg A., Hammar M. Early effects of hCG on human testicular cyclic AMP content, protein kinase activity, in-vitro progesterone conversion and the serum concentrations of testosterone and oestradiol. Int J Androl. 1988 Jun;11(3):179–186. doi: 10.1111/j.1365-2605.1988.tb00993.x. [DOI] [PubMed] [Google Scholar]
  21. Przegaliński E., Jaworska L., Konarska R., Gołembiowska K. The role of dopamine in regulation of thyrotropin-releasing hormone in the striatum and nucleus accumbens of the rat. Neuropeptides. 1991 Jul;19(3):189–195. doi: 10.1016/0143-4179(91)90118-3. [DOI] [PubMed] [Google Scholar]
  22. Saez J. M., Forest M. G. Kinetics of human chorionic gonadotropin-induced steroidogenic response of the human testis. I. Plasma testosterone: implications for human chorionic gonadotropin stimulation test. J Clin Endocrinol Metab. 1979 Aug;49(2):278–283. doi: 10.1210/jcem-49-2-278. [DOI] [PubMed] [Google Scholar]
  23. Saito T. R., Aoki S., Saito M., Amao H., Niwa T., Terada M., Sugiyama M., Takahashi K. W. Effects of methamphetamine on copulatory behavior in male rats. Jikken Dobutsu. 1991 Oct;40(4):447–452. doi: 10.1538/expanim1978.40.4_447. [DOI] [PubMed] [Google Scholar]
  24. Sakai A., Sakakibara R., Ishiguro M. Human chorionic gonadotropin-ricin A chain hybrid protein: a hormone analog for the study of signal transduction. J Biochem. 1989 Feb;105(2):275–280. doi: 10.1093/oxfordjournals.jbchem.a122653. [DOI] [PubMed] [Google Scholar]
  25. Sevetson B. R., Kong X., Lawrence J. C., Jr Increasing cAMP attenuates activation of mitogen-activated protein kinase. Proc Natl Acad Sci U S A. 1993 Nov 1;90(21):10305–10309. doi: 10.1073/pnas.90.21.10305. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Simpson B. J., Wu F. C., Sharpe R. M. Isolation of human Leydig cells which are highly responsive to human chorionic gonadotropin. J Clin Endocrinol Metab. 1987 Sep;65(3):415–422. doi: 10.1210/jcem-65-3-415. [DOI] [PubMed] [Google Scholar]
  27. Swerdlow N. R., Hauger R., Irwin M., Koob G. F., Britton K. T., Pulvirenti L. Endocrine, immune, and neurochemical changes in rats during withdrawal from chronic amphetamine intoxication. Neuropsychopharmacology. 1991 Aug;5(1):23–31. [PubMed] [Google Scholar]
  28. Taleisnik S., Sawyer C. H. Activation of the CNS noradrenergic system may inhibit as well as facilitate pituitary luteinizing hormone release. Neuroendocrinology. 1986;44(2):265–268. doi: 10.1159/000124655. [DOI] [PubMed] [Google Scholar]
  29. Wang P. S., Liu J. Y., Hwang C. Y., Hwang C., Day C. H., Chang C. H., Pu H. F., Pan J. T. Age-related differences in the spontaneous and thyrotropin-releasing hormone-stimulated release of prolactin and thyrotropin in ovariectomized rats. Neuroendocrinology. 1989 Jun;49(6):592–596. doi: 10.1159/000125174. [DOI] [PubMed] [Google Scholar]
  30. Wang P. S., Tsai S. C., Hwang G. S., Wang S. W., Lu C. C., Chen J. J., Liu S. R., Lee K. Y., Chien E. J., Chien C. H. Calcitonin inhibits testosterone and luteinizing hormone secretion through a mechanism involving an increase in cAMP production in rats. J Bone Miner Res. 1994 Oct;9(10):1583–1590. doi: 10.1002/jbmr.5650091011. [DOI] [PubMed] [Google Scholar]
  31. Wu J., Dent P., Jelinek T., Wolfman A., Weber M. J., Sturgill T. W. Inhibition of the EGF-activated MAP kinase signaling pathway by adenosine 3',5'-monophosphate. Science. 1993 Nov 12;262(5136):1065–1069. doi: 10.1126/science.7694366. [DOI] [PubMed] [Google Scholar]
  32. Yoshino K., Takahashi K., Eda Y., Nishigaki A., Kitao M. Peripheral catecholamine metabolites and free testosterone in patients with polycystic ovary syndrome. Nihon Sanka Fujinka Gakkai Zasshi. 1991 Mar;43(3):351–354. [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES